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Dirac’s sets of commuting observables, in the guise of lists of mutually orthogonal projections which
add to the unit matrix, are readily extended to a convex completion. But, furthermore, there exist
lists of monnegative Hermitian matrices which sum to the unit matrix which do not even belong to
this convex completion. It is shown that these “extraneous” lists appear as tests in ordinary
quantum-mechanical experiments. This circumstance leads to simpler rules for injecting measurement
theory into the social sciences than might otherwise be proposed. Various relationships between lists
of orthogonal projections and more general tests are given. The problem of devising rules of

inference by direct computation is very briefly engaged.

1. INTRODUCTION

The epistemology of the physics of the past half
century is crudely conveyed by the formula Tr PA for
the expectation value of an “observable” A in the state
P. The notion of “observable” was a convenience for
incorporating classical machinery into the new physics,

yet it is desirable to clarify the epistemology as follows:

Associated to each method of preparation designated as
a state-producing method there is a stafe matrix P, and
associated to each further continuation of procedures
which could lead to b mutually exclusive and exhaustive
results there is a list A=(A,...,4,) of matrices, such
that Tr PA, is the probability that state P processed by
b-test A lead to outcome k.

Technical difficulties will be minimized throughout by
using nXn matrices of complex numbers, #n finite. Such
matrices will be said to be of size n. The test is of
size n and bin number b. A few more terms and notions
are most concisely introduced in brief review of
standard material:

The primordial state of quantum mechanics is the
pure state, a one-dimensional Hermitian projection.
Landau, ! von Neumann, 2 and Weyl® observed that the
feasible procedure of what I shall call rouletting states,
namely producing any of several states by random
choice with preassigned probabilities, extends the pure
states to their convex completion, the body of states,
nonnegative Hermitian matrices of trace 1. Indeed,
unitary transformation of any state matrix to diagonal
form displays it as a convex combination of (orthogonal)
one-dimensional projections. The extreme states are
the pure states.

#1. Definition: The primordial tests of quantum
mechanics are the lists (E,, ..., E,) of mutually orthog-
onal Hermitian projections which sum to the unit
maftrix /. I call these sharp tests.

A lingering commitment of scientific thought to an
objective universe of states has led to little interest in
generalizing? the sharp tests. Yet a laboratory assistant
who inserts different b-channel experiments between the
state and a common array of b output bins or counters
according to a predetermined schedule of probabilities
is of course rouletting tests. The b-tests A*
=(A% ..., A}) and rouletting probabilities p,20, Zp,
=1, lead to the rouletted b-test A=(4,,...,4,) with
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A,=ZpA} Indeed, the matrices A, so defined do
generate the rouletted probabilities of outcomes stem-
ming from any state if they are put together with the
state matrix P into the Tr PA, formula, but no other
matrices A} will do provided enough states P are
available, since Tr P(A,-A’)=0 for all one-dimen-
sional projections P already implies that A, -A’,=0.
Even if the original tests A* are sharp, the rouletted
test A is sharp only if the A* coincide (#25).

Therefore b-tests not themselves sharp are readily
produced from sharp b-tests by such an annoying
assistant, or else by imperfect sorting into the bins, a
more likely defect. But are there yet other kinds of
tests?

#2. Definition of b-plex: #8 below shows that the only
sensible b-tests have each A, nonnegative Hermitian,
and Z%_A,=1. A b-tuple of matrices so restricted will
be called a b-plex.

These restrictions are similar to those for a state
matrix, there being a clause for nonnegativity and a
clause for normalization.

#3. Definition: Convex combination of b-plexes A*
with coefficients p, will be related to the usual convex
combination of matrices by requiring commutativity of
convex combination with selection of the ith coordinate
matrix, i.e., TpA"),=Zp AL

Convex combination of b-plexes corresponds to the
physical notion of rouletting the corresponding tests.

The b-plexes of nXn matrices obviously form a
closed convex body for each b, n,

Were the situation as simple for tests as for states,
the following would hold: Convex completion of the
sharp b-plexes would produce all the b-plexes, all
sharp b-plexes would be extreme, and all extreme b-
plexes would be sharp. Indeed, all sharp b-plexes are
extreme (#25), but the other statements are false for
b=3.

#4. Definitions: The convex completion of the sharp
b-plexes will be called the undersharp body (under-
sharp b-body in size n). Those b-plexes which are not
undersharp are extraneous. If the matrices A; of b~
plex (A,,...,A,) commute, the b-plex is commutative.
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We will see that commutative b-plexes are undersharp
(#44). Since a 2-plex is necessarily commutative there
is no extraneous 2-plex. Extraneous 3-plexes and 4-
plexes of 2X2 matrices will be constructed, however
(Sec. 5). Even though corresponding physical tests can-
not be achieved by any rouletting of sharp tests, it is
shown in Sec. 7 that physical tests nevertheless exist
corresponding to arbitrary b-plexes—provided that any
unitary transformation is regarded as physically
achievable by a motion. In a subsequent paper a mag-
netic spin system is described wherein the unitary
transformations and other constructions of Sec. 7 are
indeed physically achievable. It would therefore be un-
advisable to restrict the following summary of quantum
matrix epistemology, for example, by imposing under-
sharpness on the tests.

#5. The matvix format (MF): If state procedure ¢
together with test procedure j yield probabilities p,,,
for the several outcomes k=1, ..., b, of the test, then
nonnegative Hermitian matrices P; and A, are to be
sought fulfilling

Tr P;=1, EAM=I,
%

Tr PA =D

A fit of MF could inject the methods of modern
physics into empirical domains where quantum inter-
ference effects might be large but unsuspected. Es-
pecially if n is small, the clarity achieved by having
few parameters could make further prior theoretical
assumptions unnecessary. Schridinger equation-like
drift of “isolated states, ” for example, could be de-
tected by comparing state preparations which differ only
in respect to a variable “coasting” time, without any
prior knowledge of a Hamiltonian, of existence of a
Hamiltonian, or surety as to what constitutes
“isolation. ”

I have presented elsewhere® the guess that this sort
of analysis might prove interesting for data taken in
“p;;” form in the study of visual perception. Several
groups of workers in quantum logic have similar hopes
of finding quantum interference effects in psychology or
elsewhere in the social sciences.

So as to avoid misunderstanding, note that I am using
ordinary density matrices for initial states, but avoid
them so meticulously for “final states” as to even avoid
using the term ‘“final state.” Nevertheless the test
matrix 4 ,, associated with bin % of test j is nonnegative
Hermitian, hence differs from a “final state density
matrix” only in its normalization. (Tr A,, may be any-
thing from 0 to the format size #.) In an empirical
domain where n is known and #n% - 1 real-linearly inde-
pendent state matrices are physically available, each
new test matrix A, may be fixed in terms of its n* -1
probabilities against these states; it is not mandatory
to talk about the whole test A=(4,,,...,4,). Then
‘“unnormalized final state density matrices” will do.

The plan of the sequel is as follows. First, #8 re-
cords the elementary argument for not looking at any-
thing more general than b-plexes (within the main con-~
text of this paper, namely, the Tr PA formula for
probabilities from complex matrices). Then the study
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of extreme points among the b-plexes is related to
linear independence of spaces X(A,) of 2-sided non-
negative variation or of spaces Y(A,) of 2-sided
“spindle” variation. The nonnegative variation version
gives a lemma, #23, that (A,,...,A,) extreme requires
all A, to be singular (except when b-1 of them vanish),
which later helps determine all extreme b-plexes of
2X 2 matrices. The spindle-variation version estab-
lishes the extremity of the sharp b-plexes almost
immediately.

The possibility that summing some of the A, together
produce a sharp d’-plex introduces a notion of seg-
mentation, unsegmentability, and a reduction of any
b-plex into its unsegmentable parts; the opposite pro-
cess of assembling segments in particular can be used
to generate more extraneous examples.

A different sort of extraction of a sharp structure
from a b-plex yields a “reduction” into a sharp b-plex
and a b-plex of matrices none of which has 1 for an
eigenvalue, in the manner of a direct sum.

The existence of extraneous b-plexes is established
in Sec. 5 by finding all extraneous extreme b-plexes of
2x2 matrices without zero matrices; for these =3 or
4.

It is proved in Sec. 6 that commutative b-plexes are
undersharp, whence 2-plexes, also called questions,
are necessarily undersharp. This result together with
the common emphasis upon sharp and mixed? questions
is held to account for a lack of attention to the
phenomenon of extraneity.

The issue of whether extraneous b-plexes can occur
as physical tests is at this point very interesting, be-
cause such b-plexes indeed exist, but cannot of course
be reached as physical tests by rouletting the usual
sharp tests. Section 7 is a construction not involving
convexity arguments which settles the issue by showing
how any b-plex may occur as a physical test, provided
that any unitary transformation may be eigeneered as a
motion. The construction is similar to Landau tracing’
for state matrices, which as is well known leads from
pure states to mixtures and so simulates rouletting,
yet for tests is more powerful than rouletting in that
extraneous tests appear, not only mixtures of sharp
tests.

Two kinds of sufficiency for undersharpness are given
in Sec. 9, the first depending upon dominance of one
bin over all others, the second upon special hypotheses
involving close relationship of a test to questions by at-
taining the b bins through b~1 successive bifurcations.

An ideally simple fit (Sec. 10) of MF to “data” in-
volving lots of orthogonality opens the final and most
important topic, the praxis of fitting MF. Improvement
of computability by elimination of invariance (Sec. 11)
leads to a conjectural alternative “Sparse Format” (SF).

#6. Notation: V or V , will denote the Hilbert space of
complex n-tuples on which the »X#»n matrices may act.

A(M) will denote the space of eigenvectors of matrix
M belonging to x. Thus, \(M)={0} unless A is an eigen-
value of M, and 0(M) is the dernel of M. If M is normal,
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Z,,MM) is the orthogonal complement (0(M)), of 0(M).
Orthogonal projection on this space of M will be denoted
E,.

I or I, denotes the nXn unit matrix. Thus, E, =V.
diag(a,, a,, . ..) is obvious notation for a diagonal
matrix. The elements of matrix A, are a,,,.

A-B=Tr ATB defines a positive definite Hermitian in-
ner product on the nXn complex matrices, real for A,
B Hermitian. If A-B=0, A and B will be said to be
trace-orthogonal. The accompanying norm ||A]l
=(A-A)/? is the positive square root of the sum of the
absolute squares of A’s matrix elements. Thus }ifl| =#!/2,

A matrix with nonnegative real eigenvalues is non-
negative. If furthermore it is nonsingular it is positive.
A = B means matrix A ~ B is nonnegative.

#1. Topology: Topological statements relating to
various sets of matrices will always refer to the norm
topology on the relevant set. Topological statements
about sets of b-tuples of matrices refer to the topology
induced on subsets by the Cartesian product of the
aforesaid norm topology for each of the b coordinates,
equivalently, to a norm topology wherein the norm of a
b-tuple of matrices is the positive square root of the
sum of the absolute squares of all the matrix elements.

Inasmuch as all matrices of interest will be nonnega-
tive nXn Hermitian matrices <I, the matrices all lie
within the closed ball of radius #'/2, which is compact.
A b-tuple of such matrices has b-tuple norm <(bn)'/?;
all b-tuples of interest thus also lie in a compact ball.
This comment should make the compactness of various
sets (b-plexes, states, the spindle, the undersharp
body, commutative b-plexes) obvious upon definition.

2. PHYSICAL BASIS FOR THE B-PLEX CONDITIONS

Part 1 of the following theorem is standard material,
worked out for the sake of comparison with part 2.

#8. The b-plex theovem: If probabilities p,, p,=0,
Zp,=1, are to be computed from the rule p,=Tr PA,
and state matrices P and b-test bin matrices A, ..., A,,
then

1. If any sharp n-plex represents some test, then
P=PI, P>0, and Tr P=1.

2. If any 1-dimensional projection represents some
state, then (4,,...,4,) is a b-plex.

#9. Proof of 1: Matrix A, may be any 1-dimensional
projection |x)(x|, hence Tr P|lx){x| =(x|Plx) is a
probability, therefore nonnegative. Hence P =0. Also
(x|P~PT|xy=(x|P|x) - (x| P|x)*=0, so P=PT, 5p,
=1=ZTr PA,=Tr PZA,=Tr P if any b-plex A occurs
as a test, and sharp n-plexes are given to occur.

The hypothesis of part 1 is stated with unnecessary
strength in order to refer to an analog of Dirac’s com-
plete sets of commuting observables.

Proof of 2: p,=Tr |x){(x1A,=(x|A,|x) =0, all x,
shows both A, >0 and A,=Af. Zp,=1 yields (x| Z4,
~I|x)=0 for all x, whence ZA,=1. QED
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3. BASIC RESULTS ON THE EXTREME POINTS OF
THE BODY OF B-PLEXES

#10. Definition of spindle: The intersection {A lA:AT,
A=0}n{BIB=BY, B=I-A, A>0} of the nonnegative
cone with the /-shifted nonpositive cone will be called
the spindle, or spindle (n): n being the size, as always.

#11. Remarks: A 2-plex A is defined by its first co-
ordinate A;, which is an element of the spindle. Con-
versely any element A, of the spindle paired with /-A,
forms a 2-plex. This correspondence is obviously a
convexity isomorphism.

The spindle also appears as the set of all possible
matrices which may occur in a fixed place, e.g., place
1, of a b-plex.

#12. Definition: For A Hermitian nonnegative,
|x=x"and 31> 0 such that
- A su <X implies A +uX =0}

will be called the space of 2-sided nonnegative variation
of A, and denoted X(A). The characterization X(A)
={E,ME, |M =M%} of #17 shows X(A) to be a real linear
space.

#13. Definition: For A Hermitian nonnegative,
{r|y=Y"and 3 x>0 such that
— A <u <2 implies A +uY < spindle}

will be called the space of 2-sided spindle variation of
A.

#14. Remark: Y(A)=X(A)n X(I - A) shows Y(A) to
be a real linear space and is otherwise useful.

#15. Lemma for off diagonal zeros: If a nonnegative
Hermitian matrix M has a 0 in a diagonal place, it has
0's in the corresponding row and column.

#16. Pvoof: The result is a direct consequence of
nonnegativity of the 2x2 minors m,m ;- m m; =0
- lm,1? with m =0, QED

#17. Theovem: If A is a nonnegative Hermitian matrix,
X(A) is the set of Hermitian matrices of form E,ME,,
i.e., whichactin E,V. If A is diagonalized, say A
=diag(a,,...,a, 0,...,0) with ;>0 for ¢ <%, a,=0
for i>k, then X< X(A) if and only if X is Hermitian with
0 elements outside the upper-left 2xk bloc.

#18. Proof: Since A + XX, A-)\X must both be non-
negative for A >0 small, it is clear why X must vanish
in the lower right-hand bloc. The “lemma for off-
diagonal zeros” applied to A +A\X shows A + X, hence
X itself, to have zeros everywhere else outside the up-
per left-hand bloc. Continuity in A of the upper left

minor determinants of A +AX and positivity of A con-
sidered as a matrix in the upper left bloc shows that X

may not be further delimited. The form E ,ME, gen-
eralizes this to A not necessarily diagonal, inasmuch
as it specializes correctly when A is diagonal. QED

#19. Corollary: dim X(A)=(rank A)?, for a non-
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negative Hermitian matrix A.

#20. Corollary: The following are equivalent for non-
negative Hermitian A:

A is of rank 1;

A is a positive multiple of a 1-dimensional projec-
tion;

a;;=xFx, or A= |x)Xx| with x+0 not necessarily
normalized;

A is proportional to a pure state;
dim X(A)=1;
X(A)={rA|r real}.

#21. Theorem: The following are equivalent conditions
for b-plex A=(A,,...,A,):

A is an extreme b-plex;
the spaces X(4,),...,X(A,) are linearly independent;

the spaces Y(4,),...,Y(A,) are linearly independent.

#22. Proof: Failure of extremity depends on the
ability to express A as a midpoint of varied b-plexes,
AzxX, X+0, That A +X be b-plexes requires only that
the A, + X, be nonnegative (hence also A, +uX, >0 for
-1<u=<1), and that 5, A,+X,=I. Since Z,A,=I, this
reduces to Z X, =0, a relation of linear dependence
among the b elements X, ..., X, of the spaces of 2-
sided nonnegative variation.

The alternative statement in terms of the Y ,(A)
follows by observing that whenever an expression as a
midpoint is achieved, each X, involved belongs to Y(4,),
not only to X(A,). This is so because each matrix of a
b-plex belongs to the spindle. Hence A, +uX, >0 above
may be replaced by A,+ uX,c spindle. QED

#23. Singularity lemma: If b-plex A is extreme,
either each A, is singular or else b-1 of them are 0,
the remaining one being I.

#24. Proof: Suppose A is extreme and A, for example
is nonsingular. Then #17 shows X(A,) to be all of V.
Linear independence of the X(A,) (#21) then requires
X(A)={0}for k+1, whence A,=0 for k=1, again by
#117. QED

#25. Theorem: Sharp b-plexes are extreme.

#26. Proof: If E is a Hermitian projection, X(E)
={X|X=EME, M=M"} and X(I - E)={X|X=(I - EYM(
- E), M=M7}. Hence Y(E)=X(E)N X(I - E)={0}. Since
the coordinates A, of a sharp b-plex are projections, the
Y(A,) are all {0} and hence are linearly independent.
QED

4. NOTIONS OF REDUCIBILITY

Two notions of a separation of sharp structure out of
a b-plex will now be given: segmentation and 1-elimina-
tion. Applied to an extreme b-plex they will lead to
extraneous extreme b’ ~plexes of smaller size and bin
number. This general knowledge is interesting in itself,
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and will slightly streamline the subsequent discussion
of extreme b-plexes of 2X2 matrices.

A. Segmentation

#2'. Definition of fusion: A b’ -plex A’ obtained from
a b-plex A by adding together some of the matrices, so
that & <b, will be said to have been obtained by fusion.
The corresponding bins will be said to be fused. Fusion
corresponds empirically to gathering the counts in the
b bins into b’ subtotals. Also, A is said to be finer
than A’.

#28. Definition of segmentation: If b-plex A fuses to a
sharp ¥’ -plex E, E is a segmentation of A. If a seg-
mentation of bin number > 2 exists, A is segmentable,
if not, A is unsegmentable.

#29. Definition of (b,E)-plex: Alist A=(4,,...,4,)
of b nonnegative Hermitian matrices which sums to
matrix E will be called a (b, E)-plex. This notation
seems useful only for E a projection; therefore the
notation will imply that E is a projection. Thus a b~
plex is a (b, I)-plex. The rank of E will be said to be
the rank of a (b, E)-plex.

#30. Segmention theorem: Every b-plex A has a
unique finest segmentation E=(E,,..., E,), finer than
each other segmentation of A. The b, matrices A, of A
which fuse to projection E, form a segment of A which
(listed in any order) is an unsegmentable (b,, E,)-plex.
Each original matrix A, is of form E A\E,. E, is the
segment projection of A,. I the (E,,...,E,) are simul-
taneously diagonalized with the 1 eigenvalues of each E,
conveniently together, then each A, {4,,...,4,} has
nonzero elements only in the diagonal square bloc cor-
responding to the 1’s of its segment projection. If A is
a convex combination A=ZXp A", then each A" has E for
a segmentation, and the combination is attained by per-
forming the corresponding combination within each seg-
ment. A is extreme if and only if each segment is
extreme among the appropriate (b,, E,)-plexes.

A sharp b-plex segments into its single projections.

The study of extreme b-plexes may be considered to
be reduced to the study of unsegmentable extreme b-
plexes, by the segmentation theorem.,

#31. Proof: More generally, the reduction to bloc
form and the reduction of convex combination applies to
any segmentation, in particular to a segmentation into
two projections, E, F, E + F=1I: by renumbering
matrices, A, +...+A, =E, Ay, +...tA,=F. A, <E
with E in diagonal form shows A, to have diagonal zeros
where E does, and therefore to be in bloc form A,
=EA,E by the “lemma on offdiagonal zeros.”

ifA=2Zp, A", then A =3p, AJ; hence A] <A, <E and
AT=EA'E as above: not only A, but each A] is zero out-
side the E-bloc.

It remains only to show that there is a finest seg-
mentation. The essence of this is obviously that if
(E, F), (G, H) are segmentations, then all four projec-
tions E, F, G, H commute and define a finer segmenta-
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tion (EG, EH, FG, FH). Indeed, each matrix A, of the
original b-plex (4,,...,4,) is either of form EA,E or
FA,F, and is also either of form GA,G or HA H. There
are altoghether four types of A,: if A,=EA,E=GA,G it
is of type (E, G), etc. Sum all A, of each type, to get
four subtotal matrices Agq, Agy, Agg, Apy. Since the
sum of all the A, with A, =FEA E is E itself, A . +A,,
=E. Similarly, A +Apy=F, Ago+A,.=G, Ay,
+Ag,=H.

Since Ag; is a sum of terms of form EAE, EA, .E
=Ap,. Similarly, GAp,G=A;,. Since EF=FE=0,
FAp,=FEA;.E=0 and also Ay . F=0: Each A, is unaf-
fected by P, @ multiplication but is annihilated by the
other two projections. Hence E multiplication left and
right of Az, +A,,=G yields Ay, =EG and A, ,=GE.
Thus, E and G commute. Similarly for other pairs
among E, F, G, H. It follows that (EG, EH, FG, FH)
is a 4-plex of mutually orthogonal projections. In the
guise of A, Apy, Aps Apy We already know that A
fuses to the 4-plex in question. (More precisely the
fusion may be to a 3-plex or a 2-plex if one or two of
EG, EH, FG, FH vanishes.)

B. 1-Elimination

#32. Definition: If Y M)=0, M is 1-free. (A,,...,A,)
is 1-free if each A, is 1-free.

#33. Theorvem: All the matrices of a b-plex of nXn
matrices may be simultaneously unitarily transformed
to bloc form, with an upper left sXxs bloc sharp struc-
ture which is diagonal (1’s and 0’s on the diagonal), a
lower right (z - s)x(n - s) square bloc of matrices
which form a b-plex of 1-free (n - s)X(n — s) matrices,
and 0’s connecting the blocs.

#34. Proof: If one of the matrices of a b-plex has
eigenvalue 1, say A,, go to a representation where A,
is diagonal with 1 at upper left. All the other matrices
A, must have 0 in the upper left place, hence zeros
elsewhere in the first row and column by the “lemma on
offdiagonal zeros.” Consequently, A,=I-Z,,A, also
has zeros off the diagonal in row 1 and in column 1.
Iterate this extraction of 1’s until the residual (z ~ s)
X{(n ~s) matrices have no more 1 eigenvalues. QED

If such a form is a convex combination, it is so by
virtue of a corresponding decomposition in its 1-free
bloc, inasmuch as the sharp bloc is extreme and hence
is merely repeated in each term of the decomposition.
Thus:

#35. Theovem: An extreme b-plex is unitarily equi-
valent to a direct sum of a sharp bloc and a 1-free
extreme bloc in the sense of #33, and conversely each
such direct sum is extreme.

The following is easy to verify. It unites both of the
above notions of reduction.

#36. Theorem: The segment projections E, of the
finest segmentation of a b-plex are obtained irom the
segment projections e, of the finest segmentation of its
1-free part by fusing the associated sharp parts.
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Each zero matrix in the b-plex of 1-free parts is in
particular a segment, the corresponding segment of the
whole b-plex then being the corresponding single sharp-
part projection filled out with zeros. The 1-free part
may not consist entirely of zero matrices, but there
may be no 1-free part, in which case the b-plex is
sharp and so segments into its singleton projections
anyhow: an empty 1-free part may be regarded as
segmenting into singletons for the sake of #36.

#37. Definition: An unsegmentable extreme 1-free
b-plex is primitive.

A primitive b-plex is necessarily extraneous: other-
wise it would be undersharp and extreme, hence sharp,
hence not 1-free.

The finest segmentation of any extreme d-plex com-
prises any number of 1-bin zero matrices, and seg-
ments free of zero matrices: Zero matrices are always
allowed because X(0)={01}.

5. EXISTENCE OF EXTREME EXTRANEOUS 5-
PLEXES AND DESCRIPTION OF ALL EXTREME
B-PLCEXES OF 2 X 2 MATRICES

#38. Theorem: The extreme d-plexes of 2X2 matrices
are as follows: (I), (P, @) sharp with rank P=rank Q=1,
primitive 3-plexes, primitive 4-plexes, and the -
plexes obtained from these by listing zero matrices.
Each coordinate of a primitive 3-plex or 4-plex is of
form |all+a- o in terms of a real 3-vector a and the
Pauli matrices. Primitive 3-plexes correspond to a,,

a,, a, which form a triangle of nonzero area and perim-
eter 1, primitive 4-plexes to a,, a,, a,, a, which form
a quadrilateral of perimeter 1 which does not lie in a
plane.

#39. Proof: For n=2, segmentability of an extreme
b-plex after the zero matrices are omitted implies a
splitting into blocs of size 1, hence sharpness. Thus an
extraneous extreme b-plex of 2X2 matrices segments
into zeros and only one unsegmentable segment. It is
easy to see by 1-elimination that this nontrivial segment
must be primitive.

Each 2x2 Hermitian matrix M is conveniently rep~
resented in terms of a real scalar part m, and a real
vector part m by expansion in the Pauli matrices, M
=m+m- 0. By #23, each 4,, ..., A, is singular; hence
my=1m). Also |m[ >0 as zero matrices have been
cast out. Thus each A, is a positive multiple of a 1-
dimensional projection, with a multiplier <1, being 1-
free. By #20, X(A,))={rA,|» real}. The condition of
linear independence of X(4,),...,X(A,) (see #21) be-
comes linear independence of the 4-vectors (la,l,a,).
Extraneous b-plexes are impossible for b < 3, linear
independence is impossible for b > 4; hence the only
possible cases are for 3 and 4 bins. The b-plex con-
dition is here Z,la,l =1, Za,=0. A 3-plex, 4-plex of
such rank-1 matrices is represented in terms of vector
parts by a closed triangle, quadrilateral of unit perim-
eter. If the triangle encloses nonzero area, it is easy
to see that the |a,| scalar parts lead to linear indepen-
dence of the three 4-vectors and hence to extremity for
the 3-plex; if not, not. For b=4, the quadrilateral must
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be nonplanar, in which case the |a,| components pro-
duce nonzero 4-volume, hence extremity.

Since there is no room in size 2 for two primitive
segments or for 1-eigenvalue structure together with a
primitive segment, the exhaustive listing of #38 follows.

QED

#40. Remarks: Each of the four types of extreme
point listed in #38 comes in several connected com-
ponents, one for each placement of extra zero matrices.
The real dimensionalities of these four types are ob-
viously 0, 2, 5, 8, respectively. The 5-dimensional
types built on a primitive 3-plex of course are available
only for b > 3; the 8-dimensional types built on a primi-
tive 4-plex only for 4 > 4. Thus, for b > 3, there are
many more extraneous extreme points than sharp ones
(i.e., 5>2).

As the triangle and quadrilateral figures for the
extraneous extreme 3-, 4-plexes have unit perimeter
with no side vanishing, 1-freeness is geometrically
evident. Similarly noncommutativity is evident as non-
collinearity of the vector parts.

As one side of a 4-plex quadrilateral tends to 0 with
the perimeter kept 1 and the resulting triangle non-
degenerate, we find the general primitive 3-plex with
one zero matrix to be a limit of primitive 4-plexes.
Similarly the general sharp 2-plex of orthogonal 1-di-
mensional projections together with one zero matrix
is a limit of primitive 3-plexes, the “bilateral” of
perimeter 1.

6. COMMUTATIVITY AND UNDERSHARPNESS

It is possible to comment on why the phenomenon of
extraneity has escaped attention heretofore economically
as an aside, in the development of other material
relating commutativity and undersharpness.

#41, Theovem: For extreme b-plexes, commutativity
is equivalent to sharpness.

#42. Proof: Sharpness obviously implies com-
mutativity.

To show the converse, simultaneously diagonalize
the b matrices A, =diag(a,,, ..., a,,) of the commutative
b-plex A. If any of these diagonal elements a,; is
neither 0 nor 1, then Z?  a, =1 shows that there is
another a,;, i#k, also properly between 0 and 1. Re-
placing a,,, a;, by a,;x¢€, a,;7¢ represents A as a mid-
point of b-plexes, provided 0< |¢| <a,, and |€| <a,,.

Therefore, all the elements are O or 1. £%_, a,,=1
shows that there is only one 1 to a bin, i.e., the pro-
jections are mutually orthogonal. QED

#43. Covollary: All extreme 2-plexes are sharp. All
2-plexes are undersharp. Sharpness and extremity are
equivalent for b =2.

Thus extraneity is not present for b=2. It has been
common to replace a b-bin test by its various fusions
into questions? or 2-bin tests (4, B), or even to consider
only the sharp 2-tests (E, F), equivalent to projections
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E or subspaces 1(E). The association of 1(E) with “yes”
and 0(E) with “no” introduces a closer linguistic paral-
lel to conventional logic than a direct study of the 5-
tests without fusion, yet misses the phenomenon of
extraneity. The argument that extraneous b-plexes can
actually occur in a physical test is deferred until after
another commutativity-undersharpness corollary:

#44. Covollary: Commutative b-plexes are under-
sharp; the closed convex hull of the commutative 5-
plexes is the undersharp b-body; there is no point
extreme in the closed convex hull of the commutative b-
plexes which fails to be extreme among all b-plexes.

#54 or #56 makes it obvious that there are noncom-
mutative undersharp b-plexes for b = 3.

#45. Remark: The spindle is compact, whence the
set of b-plexes is compact; similarly for the set of
commutative b-plexes, which is obviously closed. The
real dimension of the b-plex body is (b — 1), finite. An
extreme point of the closed convex hull of a compact set
C in a finite-dimensional space itself belongs to C.%7

#46. Proof: An extreme point P of the closed convex
hull H of the commutative b-plexes is itself commuta-
tive. It has been shown in #42 how to express a non-
sharp commutative -plex as a midpoint between dis-
tinct commutative b-plexes A and B. Were P not itself
sharp, P would therefore be such a midpoint. This
would contradict P’s extremity in H, a body which con-
tains the segment AB. Hence P is sharp: The extreme
points of H are all sharp. Since all sharp b-plexes are
commutative and extreme, they are conversely all
extreme points of H. QED
7. THE EXISTENCE OF EXPERIMENTS INVOLVING
TESTS CORRESPONDING TO ANY B-PLEX

#4'1, Theorem: For any given b-plex of nXn
matrices, there exists a physical b-bin test whose b~
plex is the given b-plex.

#48. Discussion: “Physical test” must be formulated
in terms of metaphysical conventions of physical—
mathematical correspondence in order to develop the
assertion into a clear-cut theorem, but the mathemati-
zation is half the story. Therefore both the mathemati-
zation and the verification are lumped in #51 below.
The clear-cut theorem is:

#49. Technical theorvem: Let U be a unitary matrix
acting on V,® V,, p a state on V,, e a sharp b-test on
V,, I the unit matrix on V,, and a the b-plex on V  de-
fined by

vp, Vi, Tr U(p® el)UT(I® e,)=Tr pa,:

this map from bnXxXbn unitaries to b-plexes of nXxn
matrices is surjective.

#50. Metaphysical requivements: A sharp b-test
must exist as a possible test procedure upon a system,
the probe, which is describable in terms of bXb
matrices, The probe must be in the corresponding
eigenstate of the sharp b-test immediately after the test



669 Elihu Lubkin: Theory of multibin tests

is effected. It must be possible to assemble the probe
in one of these eigenstates ¢, together with an arbitrary
state of a system of intervest, describable by an ar-
bitrary #»X» matrix p. The joint development of the
system-probe complex thereafter must eventuate in a
unitary transform in the usual way of the initial state
p®e,. By imposing various “fields” on the system-
probe complex, possibly space and time dependent, it
must be possible to engineer an arbitrary unitary trans-
form of the complex. It must be possible then to im-
pulsively query the probe with the sharp b-test. Briefly,
a Dirac complete set of commuting observables exists
for observation of the probe, and any unitary motion of
the system—probe complex is possible.

It should be noted that not only the probe but also the
system of interest may be engineered to fit in con-

veniently with these requirements. The assertion is that
all b-plexes are attainable in some physical domain of
states and tests; not that for any physical n-dimensional
state space one can devise so many b-tests as to
saturate all b-plexes for each 5.

An example using spin-3 magnets in which the arbi-
trary unitary transformations and the other details of
the construction are indeed physically achievable, is
given in the following paper.

#51. Pyoof: Consider a system of interest, the
system, which is coupled to an instrument by means of
immediate contact with a portion of the instrument
called the probe. The remainder of the instrument con-
tains the registers or bins for recording a result, and
will be called the register. The state space of system,
probe, and register if needed would be taken to be the
tensor product of three individual state spaces. How -
ever, the role of the register will be merely to effect a
sharp test (E,, ..., E,) upon the system-probe complex
at some “final” time, Therefore the probabilities as-
sociated with the b bins 2=1,...,b are

p,=TrPE, (1)

where P is the system—probe state at the final time.
The matrices P’, E, thus act on system—probe space,
with the register not formalized further: the states and
probabilities are relative to the register as

observer, ®'°

The system is originally in state p, the probe origi-
nally in a special state e,, a 1-dimensional projection,
hence the original state P of the system—probe com-
plex is the Kronecker product P=p® e,.

The subsequent measurement consists of a unitary
motion U of the system—probe complex, producing
state P’ =UPUT at the final time, at which time the
register enters to make its observation or bin-reduc-
tion.

U does so much for us that this final observation need
only interact with the probe; thus, E,=Ig e, in terms of
a probe-space sharp test (e,,...,e,), and a unit matrix
called I acting in the n-dimensional system space. The
notation has anticipated the convenience that the probe’s
initial state e, be prearranged by a similar earlier
measurement of the probe by the register which has
noted and set outcome 1. It is also convenient to have
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each e, a 1-dimensional projection; thus probe space is
b-dimensional Hilbert space.

Hence

p,=Tr Ulpe e,V (I e,). (2)

It remains to compute the b-plex system-space
matrices g, such that also

2, =Trpa, (3)

by summing over the probe-space indices. In obvious
index notation,

—_ *
D= Ugp,cq PoeCrasUen,erOge Com (4)

= pce akec' (5)

So that (5) be true for arbitrary states p, the matrix
elements of a, must be

- *
Cpee =Uap,c CrarUinies Oga €rnse (6)

The choice of basis e,,,=5,,5,, leads to

akec=§ ugk,cl u:lz.el; (7)

the summation convention being dropped. Index g labels
a state-space basis, hence assumes n values. Hence
matrix g, is a sum of n matrices, the gth one having
general e, c matrix element of form x, x_in terms of
n vectors x. If the u,, ., are provisionally regarded as
free complex numbers, not entries from a unitary
matrix, the various vectors x are arbitrary. But x}x,
=(b,lx*){x*|b,) is the (e, c) element of a general non-
negative multiple of a 1-dimensional projection. A
general nonnegative Hermitian matrix may always be
represented as a sum of 7 such, inasmuch as it is even
a sum of » nonnegative multiples of mutually orthogonal
diagonalizing 1-dimensional projections. Hence aside
from the provisionally dropped constraint of unitarity,
expression (7) would show matrices a, to be free non-
negative matrices. (9) below shows that unitarity of U
requires a=(a,, ..., a,) to be a b-plex; the problem is
to see that any b-plex can be achieved under the con-
straint of unitarity.

We only wish to show (a,, ..., a,) to be a free b-plex,
not an entirely free b-tuple of nonnegative matrices.
Thus,

A? akec = 6ec (8)

is imposed. (8) is translated by (7) into

g Ugp, o1 Upp,e1 =000 00,01y (9)

on the #’s. Equation (9) can be expressed as orthonor-
mality of the columns labeled (1,1),..., (r, 1) of matrix
U. Any n columns of complex numbers which meet (9)
can have nb-n further columns of complex numbers
adjoined such that all #b columns are orthonormal, by
means of the well-known Schmidt process; of course the
U so achieved is indeed unitary. QED

The other columns of U produce b-1 other b-plexes
corresponding to replacing the initial register setting
e, by e,, ..., e, Thus (9) generalizes to a notion of b
associated b-plexes, which however is not examined
further.
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8. TESTS AS OBSERVABLES

If an experimental test is formally a convex com-
bination of other tests, its bin outputs are indistinguish-
able from those of a test concocted by rouletting those
other tests, whether it is undersharp or extraneous.
Such a test may therefore be felt to be dirty, in provi~
ding a confusion of information from the other tests
which had better be kept separate. A laboratory as-
sistant who mixes tests with a roulette wheel is of
course not recommended. This conceptual rejection of
mixity is particularly moot if the other, less mixed
tests are empirically unfeasible. But mixity is not even
formally available for resolving a test into sharper
components if an accepied fit in the matrix format finds
the test to be extreme, even if the test is thus also
found not {o be sharp. An extraneous extreme test
represents a maximally resolved observable wherein
the grossly separating output bins do not correspond to
a sharp resolution of states into mutually orthogonal
compartments. We may therefore look upon a sharp
test as an unusually fortunate success in seeking clas-

sical Aristotelian sorting, not just freedom from mixity.

If there are enough physical tests, it pays to use sharp
tests for labeling states. But a paucity of tests owing
perhaps to emphasis on tests of a certain type could
interfere with this.

If states and tests are unknown except as procedures
which can be coupled to yield inaccurately known
probabilities, the attempt to choose a special form for
some of the matrices could distort the statistical analy-
sis which would be tried to fit MF. Extraneous and
undersharp tests would here necessarily be on an equal
footing, with perhaps no test being known to be clearly
one or the other prior to effecting a fit.

9. UNDERSHARPNESS THEOREMS

Despite the existence of extraneous tests, it is fre-
quently possible to argue undersharpness.

#52 Theorem: Fusion preserves undersharpness.

#53. Proof: This follows straightforwardly from the
obvious lemma that fusion of two bins preserves
sharpness. QED

#54. Theorem: If the sum of the maximum eigen-
values p,, ..., p,, of bin matrices A,,..., A, of b-plex
A does not exceed 1, then A is undersharp.

#55. Proof: Form the commutative and therefore
undersharp b-plexes A*=(0,...,p;'4,, 0,...,I-p;'A))
with zero matrices except in places k and b, using zero
for py'A, if p,=0. The original b-plex A is represented
by A=¥bip At +(1-%21p,) (0,...,0,I) as a convex
combination of undersharp b-plexes. QED

#56 Corollary: The body of undersharp b-plexes of
nXn matrices has the same real dimension, (b - 1)n?,
as the body of all b-plexes.

#57. Concatenation model: The following model for an
idealized succession of “measurement stages” produces
an undersharp test, it if is analyzed in b-plex language:
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Qutput states are defined for each bin at each stage m.
The idea of an m-output P being split into m + 1 outputs
EPE, FPF by orthogonal projections E, F can be made
grammatical in terms of b-plexes, by considering a
sharp b-test A=(A4,,...,A,,A,) to be replaced at the
next stage by a (b +1)-test, A’ =(4,,...,4,,,A},A,),
where only bin b has been split, according to A} =A,EA,,
Aj, =A,FA,. This can be shown to be undersharp by 1-
elimination. If A’ is defined for A a specific convex
combination of sharp tests as the corresponding convex
combination, then although the coefficients of convex
combination to be used in the next stage are not gen-
erally defined, they may be shown to be defined if E is
of rank 1. Hence the model is limited to a succession of
such (E, F) bifurcations with rank E =1.

#52 shows that lumping data together cannot engender
extraneity. #54 shows that if there are -1 bins of
interest and one last “beam dump” which collects the
lion’s share of events (as defined), one hasn’t got
extraneity.

10. REPERTORIES

Considerations relating to a fit of ideally simple data
to MF are developed in order to illustrate the pos-
sibility of a fit. #66 provides an idealized lower-bound
argument for the format size.

#58. Lemma: For A, B nonnegative Hermitian
matrices, A- B=0. If furthermore A- B=0, then
AB=BA=0.

#59. Proof: Diagonalize A. A-B=Tr AB=3a,b,, is
a sum of nonnegative numbers, whence A-B=0,

IfA-B=0, a,=0 or b,,=0 for each 2. Renumber the
positive a, so that they lie together on the upper left
part of the diagonal. B is zero in these places. The
“lemma for offdiagonal zeros’ shows B to be zero else-
where, except in the lower right bloc. Therefore, AB
=0, BA =0 merely repeats the conclusion, so as to
emphasize that A and B commute. QED

#60. Trace characterization of shavpness: A b-plex
is sharp if and only if its matrices are mutually trace-
orthogonal.

#61. Proof: Let the b-plexbe (4,,...,4,). A,A,=0
for i #j follows from #58. Therefore, 4,7,,,A,=0,
hence A (I -A,)=0. Thus A,=Aj is a projection. A A,
=0 for {+j shows the projections to be mutually
orthogonal. QED

#62. Definition: A family of b states P,,..., P, and
one b-test (A,,...,A,) such that P,.A,=5,, will be
called a b-repertory. An n-repertory will be called a
repertory.

#63. Remark: Since state-test traces are empirically
attainable as probabilities, the notion of b-repertory is
empirical. #66 therefore exemplifies a manner of
gaining an empirical lower bound for 7.

#64. Repertory theovem: X P,,...,P,, (4,,...,A)
constitute a repertory, then P,=A,. Thus these are
mutually orthogonal 1-dimensional projections.
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#65. Proof: If i+j, P,-A,=0. By #58, P,A,=0
=A,P;. Hence } PA,=PA, ButalsojPA,=PI=P,
Hence P, A;=P,=A P, Bring A, and P, to simulta-
neously diagonal form diag(a,, ..., a,), diag(p,,...,p,).
PA,=P, reads a,p,=p,, k=1,...,n. Therefore either
a,=1or p,=0, each k. Therefore Tr A;>rank P, =1,
and also Tr A, >1 unless a,=1 for precisely one &, in
which case P;=A, is a 1-dimensional projection. But
2 Tr A,=TrI=n=} 1 shows that none of the in-
equalities may hold. QED

#66. Theorem: If there is a b-repertory of nXn
matrices, b <n,

#67. Proof: Suppose there is a case with n<b. En-
large the P matrices to b Xb matrices P’ by writing
extra rows and columns of zeros; enlarge the A
matrices to b Xb matrices A’ by writing extra diagonal
ones and offdiagonal zeros in A}, extra zeros generally
in A}, ..., A’. The new matrices constitute a repertory
of bXb matrices with P, A/ in violation of #64. @ QED

11. THE PROBLEM OF COMPUTING MATRICES
FROM PROBABILITY DATA

The problem posed by MF is not of course solvable in
terms of specific matrix elements, owing to unitary and
antiunitary conjugation invariance. If enough dot pro-
ducts P- A are given, the dot products of each matrix
with the matrices of a sharp n-plex will be known, as
exemplified in #64. This will at least fix the solution
modulo conjugation.

Since most of MF is given in terms of dot products,
it may seem that the invariance is a broader O(n?)
orthogonal invariance in the n®*-dimensional real
Euclidean space of Hermitian matrices. The invariance
is however cut down to conjugations by the requirement
that the P, A be nonnegative, and by the fact that I- I
=n does not specify I adequately. Indeed, the positive
cone is not orthogonally invariant for n = 3. The sub-
group of O(n?) which leaves I fixed as a point and which
leaves the positive cone fixed as a set is of course
precisely the conjugations; this is a restatement of a
theorem of Wigner, 011

The direct computation of unknown dot products (pre-
diction of probabilities) from known dot products (data)
is conceivable, free of the ambiguity of conjugation,
provided that one can usefully state the following con-
dition: The figure delimited by the dot products must be
O(n®)-congruent to a subset of the nonnegative cone by a
congruence which carries the vector representing I into
the positive cone axis. The axis is that subset of the
positive cone which remains pointwise fixed under all
congruences which leave the positive cone setwise fixed.
I have been unable to do this explicitly without resorting
to extra dot products with a basis, which restores the
aspect of conjugation~variant elements in lack of de-
finition of the basis, modulo conjugation. The formal
removal of the matrices of a basis by an existence
quantifier is of course not computationally effective.

The use of matrices becomes an advantage if very
many dot products appear between fewer matrices,
with # small. The conjugation invariance does not get
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any worse as more states and tests become included,

so long as the “dynamical system” is the same, i.e.,

so long as n need not be enlarged. It is indeed the calcu-
lation of various properties from few simply determined
states and observables which convinces us of the sound-
ness of quantum mechanics. This is to say that MF

may be good enough.

The following is conjecture on how nevertheless to
avoid it.

All dot products between vectors in the computation
are required to be nonnegative as a general precaution
(#58) and [ is not defined beyond I- I =n. This will hope-
fully make the shape staked out by many vectors roughly
congruent with the shape of the positive cone, and will
identify I by “self-centering” on the axis of this shape,
provided that there exists a unique and much over-
determined solution correctly subjected to MF in size n.
It is conjectured that sufficient overdetermination gives
enough dot products to freeze everything rigidly in the
geometry of O(n?) congruence with only a rule against
obtuse angles to replace positivity so as to keep the
vectors from fanning out. In other words, if such a very
good solution of the unexamined matrix format exists,
then the following format will find it:

#68. Sparse format (SF): List all the state and test
“matrices” relevant to the experiment consecutively:
My, ... :Mwl....w,):(Pn ces Py Apy e Ay e
Ay, ... ’A»,)’ regarding these as symbols, not as
matrices, not even as vectors. The symbols M - M
which occur below are to be regarded as known or un~
known numbers X, with the following restrictions,

stated where convenient in terms of the old symbols:
Xsp=Xpe» each R, S,

rank of matrix (RS —X ;) <n?

and Xp.=0,

P+ A,,=p;;, for measured probabilities,

27 A, M, has a value independent of j called I- M,
k
%;A“-A,,k,=n, each j, 7,

and
I[-P,=1.

Values of P;-A;, computed from this for unmeasured
probabilities constitute the “predictions. ”

#69. Disaission: It is easy to select vectors from the
cone of all vectors at angles <45° from an axis, whose
mutual dot products satisfy X, >0, but which form a
shape not congruent to a subset of the nonnegative
cone—when n = 3. I is of course laid off along the axis,
This exemplifies a solution of SF “spurious” in not cor-
responding to a solution of MF. The true nonnegative
cone is more complicated. But if some of the data
themselves fill in the shape of the true nonnegative cone,
then nonobtuseness would hold the rest to the nonnega-
tive shape. Unfortunately, it is hard to prove that any
data will freeze in SF, even if the same data freezes,
say, by virtue of #64, in MF.

SF itself may be taken as a generalization of quantum
mechanics (can it make sense if # is not an integer
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but 7% is?) provided that SF may freeze itself, before
all the p,,, are given. (Freezing of the unphysical P- P
and A - A dot products is unclear even when all p,,, are
given. ) If freezing to shapes which won’t fit into the
nonnegative cone is possible, it is pertinent to ask
whether actual data support ordinary quantum mechanics
by SF-freezing to shapes which do fit into the non-
negative cone without being told to do so in advance
through MF.

Although no formal invariance blocks SF from
freezing on definite values X ¢, both SF and MF might
be approached in practice by varying parameters so as
to reduce the numerical discrepancies between P;- A,
format expressions and p,;, data. Such a computational
approach incorporating deus-ex-machina introduction
of numbers to break symmetry deadlocks (e.g., choice
of i or - i to first step away from the reals in MF),
would proceed to successively improved solutions with-
out any particular difficulty owing to existence of con-
jugation-equivalent solutions. In practice, therefore,
the conjugation reason for seeking to replace MF by SF
could be moot.

Indeed, direct inference from measured probabilities
to predicted probabilities is in itself unlikely to reveal
much. MF, SF are more likely to be useful with the
help of exhaustive data to search for low-n fits, for the
purpose of seeking the familiar matrices of simple
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quantum-mechanical physics in unfamiliar contexts.
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It is shown that a system of N spin-(1/2) magnets can be constructed so freely manipulable that an
experimenter can impose any unitary transformation upon its state space, N any positive integer.
This is then used with N >b —1+42 log,n to construct arbitrary states over an n -dimensional

Hilbert space and to perform arbitrary b-tests upon these states.

1. INTRODUCTION

In a previous paper (MB) on multibin tests,! it was
shown that b-bin tests of all sorts can be achieved in the
ordinary atomic physics of a system associated with an
n-dimensional Hilbert space, # finite, provided that an
experimenter could force a probe-system complex to
undergo motion P— UPU' with a unitary conjugation
which may be selected freely by the experimenter.

It is shown here how this may actually be done for a
specific class of systems. The constructibility of gen-
eral unitary motions is the essence of this, and may be
of more general interest than its use in MB. Hence the
free-unitary construction is first presented separately,
the details of application to MB being done at the end,
in Sec. 4.

2. ACHIEVABILITY

A physical system is given together with certain basic
motions. The states of the system are described by
density matrices P, and the basic motions by unitary
conjugations, P— UPU". These will correspond in the
usual way to basic Hamiltonians H: U=exp(-iHt), where
time { may be chosen free nonnegative by the experi-
menter. By varying external fields and other external
parameters, the experimenter may also choose various
Hamiltonians. By succession of these operations, the
semigroup of achievable unitary transformations of all
products of basic operations U may be attained by the
experimenter, If all elements of the 1-parameter semi-
group {exp(~ iHt)|¢t= 0} are achievable, then H will be
said to be achievable, too, even if H is not a basic
Hamiltonian. In recognition of the nonempirical charac-
ter of sufficiently small discrepancies, a limit of
achievable motions or of Hamiltonians will also be said
to be achievable. The U will be of determinant 1, the H
of trace 0, without loss of generality.

The sequel is limited to systems with finite-dimen-
sional Hilbert spaces. This immediately turns the
closure of our semigroup into a group. This is most
conveniently formulated for the ensuing computations in
infinitesimal terms, in #1 and #3;:

#1. Inversion lemma: If H is achievable, then —H is
achievable.

#2. Proof: It suffices to show that if U is achievable,
then U™ is a limit of achievable matrices. The positive
powers U, U?, U®, -+ are all achievable by repetition.
Compactness of the set of unitary matrices implies
that either U is of finite order », so that U =U" is
directly achievable, or else that there is a point of
accumulation and also a Cauchy subsequence U?*1,
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Ut2, - .- of increasing powers near it. Hence for any

€ >0, there are integers 7, s, v >s >0, with nU?r

~ U?sil <e. If W is unitary, | WAl = (TrATW'WA)*/2

=IlAll. Hence, also 1U***s™ — "}l <e. Since p, -p, -1

is a nonnegative integer, U* s is achievable. QED
#3. Theorem: If a set of Hermitean matrices is

achievable, then its Lie algebra is also achievable.

#4, Sketch of proof: To achieve a combination of
H,, ..., H, with small nonnegative coefficients
D1y -+ Dy, effect H; motion for a time proportional to
»., then H, motion for a time proportional to p,, ete.
To first order, the resulting motion, exp(-:iH,p,)+ "
xexp(~¢H, p,) approximates the desired exp(—iZpH,).
In order to avoid the second-order commutators for
large p,, p, may be replaced by p,/v for large v, with
the whole process “compounded” v times.

The inversion lemma immediately extends this to
arbitrary real linear combinations.

If A and B are achievable, then a motion generated
by the Lie bracket {(AB — BA) for a short time # is
approximated by performing the A motion for time ¢, the
B motion for time ¢, the —A motion (approximately if
necessary) for time ¢, then the - B motion (approximate-
ly) for time #; the result is exp[-:#2 {(AB — BA)] to order
#. (The approximations for —A, - B must be good to
order #£2.) Larger times may be attained by

compounding. QED

3. THE SPIN SYSTEM

#56. Notation: The tensor products I® -+ @ 0, ®:-+®
I with Pauli matrix o; (i.e., either g,, 0,, or o,;) as the
kth factor and 2 X2 unit matrices I as the other N -1
tensor factors will be denoted ¢,;. A tensor product of
! Pauli matrices and N -/ unit matrices will be said to
be an elementary matvrix of length I. A linear combina-
tion of such objects of a fixed length / will also be said
to be of length . £3.,0,,0,;=0,-0,,.

#6. Theovem: The real Lie algebra of Hermitian
matrices with bracket operation [A, B]=i{(AB - BA)
generated by the 0,, (all ) and the 0, 0, (all k,m) is the
set of all traceless Hermitian 2¥ X2¥ matrices.

#7. Proof: The elementary matrices of length = 1 are
Hermitian, traceless, and mutually trace-orthogonal.
There are 4" ~1 such elementary matrices. Hence they
constitute a real vector-space basis for the (4¥ - 1)-
real-dimensional space of all traceless Hermitian
27 x2¥ matrices.

It therefore suffices to show that the given generators
generate all the elementary matrices of length = 1.
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Those of length 1 are given, together with special com-
binations of length 2. The general objects of length 2 can
be obtained by computing a few commutators:
3[0,®1,0,®0, +0,8 0, +0,8 0,] =0, ® 03 ~ 0, ® 0,. Then
-3[0,®1,0,00,~0,90,]=0,®0,. Finally [I®0c,,0,® 0,]
=0,®0;. Thus all 0;® 0, are generated. If N-2 extra
tensor factors I are carried in all ways, all the elemen-
tary matrices of length 2 are obtained.

-3l0,®0,81,I1®% 0,8 M}=0,® 0, ® M shows how to in-
crease the length of M by 2, essentially arbitrarily.
Since all objects of lengths 1 and 2 are already avail-
able, this length-increasing operation inductively
reaches to the remaining elementary matrices of all
lengths =1, QED

#8. The physical spin system: The kinematical situa-
tion of #5 obviously suits a system of N spin-3 sub-
systems, or “spins.” Let these have magnetic moments.
Construct these so well mutually isolated that a magnet-
ic field can be applied to any single spin in an arbitrary
direction, while the other N -1 spins are at 0 field.
Hence the ¢,; are achievable (and the —o,, even without
using #1). Furthermore, let the spins be independently
movable so that any two spins (the kth and mth) can be
juxtaposed so closely as to develop a nonzero Heisen-
berg interaction Hamiltonian r¢, -0,, A#0, for any
chosen length of time, then again separated: while one
pair is so interacting, the N -2 other spins do not
move. Now the 0,0, (or the -0,-0, if A <0) are also
achievable, whence from #6 all motions are achievable.

‘4. APPLICATION TO THE CONSTRUCTION OF
MULTIBIN TESTS

The N spins will be used to construct both the state
space B, (an n-dimensional Hilbert space V,) and the
probe space D (a V,), needed in MB. Firsta V=B is
constructed instead of a V, for the luxury of obtaining
arbitrary mixed states? without outside rouletting. In
order to make the measurement of the probe simply
feasible by means of Stern—Gerlach experiments, b -1
other spins, enough in principle for a V,;-1, will be used
to construct D. Thus,

N -1 5 2

i.e., N=b-1+2log,n spins are needed for the present
construction.

Let the whole thing first be set with all N spins down,
say, by using a thermal contact with a sufficiently cold
reservoir and an overall magnetic field. Call this state
Vac,. Then contact with the reservoir is broken, and
the reservoir is not used any further.

Achievability of arbitrary unitary motions is so con-
venient that the arbitrary states as well as the arbitrary
tests are constructed by using motions. Vacy is a tensor
product of states down for each spin; in particular,

Vac, =Vacy_,,, ® Vac,_,, with Vac,_,,, €A, Vac,,€C,

A and C being the V5., and the V,b-1 corresponding to
a partition of the spins into N~b +1 spins and b -1
spins. Choose an #*-dimensional sub-Hilbert space B of
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A such that Vac, ,,, € B, and choose B, and B, 8o that
B =B, ® B,, where both B, and B, are V,’s. Thus the
whole Vv is of form ()B,® B,)®R)® C, where R is the
orthogonal complement of B in A.

In order to produce an arbitrary pure state |x)(x| with
x € B without other effect, perform a unitary motion
which rotates Vac,_,,; into x and leaves Vac,_, un-
changed. Landau-tracing | x)(x| over B, produces an
arbitrary mixed state® p over B, appropriate for com-
puting probabilities against the subsequent test, since
the test will not involve B,. [Indeed, to get general p
=2 wilxXx,l, w;20, Tw;=1, x,€B,, {x,1x)=05,,
arrange to produce the B state 2%, w,'/2b,® x;, where
(Bys-..,b,) is any convenient orthonormal basis of B,.]

Cis a V,., a system of b ~1 spin-3’s. Vac,, € C has
all these down, hence has total angular momentum j
=4(b -1) and “z” component j,= —j. The (b=2j +1)-
dimensional subspace corresponding to this j for more
general j, will be the probe space, D. Thus, C=D®R’,
with R’ another residual space.

The general unitary motion of system and probe to-
gether required in MB will now be imposed upon the
space B,® D, with no motion in B,, R, or R’.

The final measurement of the probe required in MB
will seek its j, value. Since this value is the sum of
separate 305 values of the b -1 spins which constitute
the C system, it can be measured by performing sepa-
rate spin-} Stern—Gerlach experiments: The construc-
tion has the spins so foreign to each other for other pur-
poses as to make a simpler, direct measurement of
the j, of system C or D possibly awkward.

The arguments given, including the processe s of
generation of Lie algebra elements, are all construc-
tive, so that experimental procedure for demonstrating
arbitrary tests, including the extraneous tests of MB,
has been given, The fact that such general tests can in
principle be effected is, however, of more interest
than a laboratory demonstration, hence no care has been
taken to seek easy laboratory procedures. The moral
is already made in MB, that a rule in any way restrict-
ing b-tests of nXn matrices to any set more limited
than b-tuples of nonnegative Hermitian matrices which
sum to the unit matrix, could not be tolerated in con-
ventional quantum mechanic¢s. This provides guidance
in extracting rules of quantum epistemology from atomic
physics, for possible application elsewhere.

1E. Lubkin, J. Math. Phys. 14, xxx (1974), hereafter des-
ignated MB. Terminology of MB will be used freely.
2Ability to produce an arbitrary pure state in B, would have
sufficed to compute the test matrices of the subsequent test.
If arbitrary mixed states are nevertheless desired they can
instead be obtained by rouletting pure states. Thus the device
of constructing and using B, is not strictly needed for the
purpose of establishing the existence of arbitrary tests. The
device is adapted from J. von Neumann, Mathematical
Foundations of Quantum Mechanics, translated by R. Beyer
(Princeton U.P., Princeton, 1955).
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Minimax principles for a subset of the real eigenvalues of the quadratic eigenvalue problem (04 +o
B + C)E = 0 are presented, where A4, B, and C are formally self-adjoint operators mapping a dense
subspace A of a complex Hilbert space E into E, and 4 >0. These results are applied to the
problems of the small oscillations about equilibrium of a vertically stratified, viscous, heterogeneous
incompressible fluid in a gravitational field and the oscillations of a rotating thin annular disk, and it
is shown that the minimax principles characterize infinitely many eigenvalues of these systems.

. INTRODUCTION

The linear analysis of the oscillations and/or stability
of many conservative dynamical systems about states of
steady motion (gyroscopic Lagrangian systems) and
certain nonconservative dynamical systems about states
of equilibrium leads to the quadratic eigenvalue problem

(w?A +wB+C)E=0,

where A, B and C are formally self-adjoint linear
operators mapping a dense subspace A of a complex
Hilbert space E into E, the eigenvalue w is a real or
complex number, and £ (an eigenvector corresponding
to the eigenvalue w) is a nonzero element of A,*"!! A
fairly large body of literature dealing with various
aspects of this problem and certain generalizations has
recently developed, with the major part devoted to the
establishment of the completeness properties of the
eigenvectors and generalized eigenvectors in certain
special cases. An extensive list of references can be
found in Ref. 12. Relatively little attention has been
paid to the important question of stability. 2-5-8-11,13,14

Several authors!®~2° have considered the subclass of
“overdamped” systems, i.e., those systems where A,
B, and C satisfy the additional restriction (called the
overdamping condition) (n, Bn)? - 4(n, An)(n, Cn) >0 for
all nonzero < A. In particular, Duffin'5 obtained mini-
max principles for the eigenvalues of finite-dimensional
overdamped systems, and Turner'® has obtained cor-
responding results for a special class of infinite-di-
mensional overdamped systems.

In this paper, with suitable restrictions placed on the
operators A, B, and C so as to insure the existence of
a point spectrum, we obtain minimax principles for a
subset of the real eigenvalues of nonoverdamped
systems. Qur results generalize previous results for
overdamped systems and contain them as a special case.
An extension of this type is highly desirable in view of
the fact that the vast majority of problems arising from
the analysis of physical systems do not satisfy the over-
damping condition. A different set of minimax principles
for finite-dimensional nonoverdamped systems has been
given by the author in Ref. 21.

Two applications of these results are discussed in
Sec. IV, after the development of the minimax princi-
ples in Secs. II and III. The first application concerns
the well-known problem of small oscillations about
equilibrium of a vertically stratified, viscous, hetero-
geneous incompressible fluid in a gravitational field.
The second concerns the oscillations of a rotating thin
annular disk. We show, in particular, that infinitely
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many of the eigenvalues of these systems are given by
the minimax principles developed herein.

1I. THE MINIMAX PRINCIPLE

We adopt the following hypothesis, denoted as (H1),
throughout this paper: Let E be a complex Hilbert space,
A an infinite~-dimensional subspace of E, and let A, B,
and C be linear formally self-adjoint operators from A
into E [an operator F is formally self-adjoint on A
provided that for all n, t< A, (n, F£)=(Fn, £)]. Further
restrictions on A, B, and C will be imposed as we
proceed.

We define C =w?A + wB+C, —©<w<», For each
real w, C, maps A into E and is formally self-adjoint
on A, Let S, denote the set of all k-dimensional sub-
spaces of A, k=1,2, 3,---. For each positive integer &
and every real w, we define the extended real-valued
function

A w)= sup inf
VES, tcv

(§,CL8)

) )
(it is to be understood that the infemum is over all non-
zero £ V). Clearly, A w)=A, (w), £=1,2,3,.. If
A, B, and C are bounded above on A by a,5,, and c,
respectively [(£, At) <all¢lP for all £< A, etc., where
a,b, and c are finite], then for 0 sw < © A () is finite
and is bounded above by w?a+ wb,+ ¢, while if A and C
are bounded above and B is bounded below by b_ on A
[(¢, BE) = b_||Ell? for some finite b_ and all £ < A], then,
for - «<w <0, A w) is finite and is bounded above by
w?a+wb_+c. Let & ={¢,, ¢,,..., d,} denote any set of
k orthonormal vectors from A. Then V=span®< S,, and
inf,_ , [(£, C£)/(£, £)] equals the least eigenvalue A3(w)
of the Xk Hermitian matrix whose ijth element is
(¢, C®,), ¢, j=1,--+, k. Hence

A(w) <A w) (2)

for all positive integers % and all real w. In particular,
if C is bounded above by ¢ and A and B are bounded on
4, then A (w) is finite for all real w and we have

A$(w) <A w) <ePllAll+ |w [IBl+c. (3)
Furthermore, A, (w) is continuous, as we now show.
Lemma 1: Let C be bounded above and A and B be

bounded on A, Then for each fixed positive integer %,
A (w) is continuous in w, — ©< W< o,

Proof: Let w and 5 be real.

(£, Cuwss £)

Mwxo)=sup il SE D

VES, tcVv
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— (E’CNE) (g)AE)
= sup eigfv( (n T (O x200) ey
(s,ss))
()

< (5, wE) 2
< gup eléx%( Lo (02 42w [o] 1Al

+ 8] !IBH),

so that

Afw6) sA w)+ |8]l2lw] + s DlAl+IBIL.  (4)
Replace w by w5 in Eq. (4) to obtain

Adw) <A w8)+ |8][(2]w]| + 3]s DNAN+1BIL.  (5)
Equations {4) and (5) imply

[A w+8)= A w) |<|6]l2]w]| +3]|5])Iall+1BIl],
which proves the continuity of A (w).

We use this result together with some additional as-

sumptions on A, B, and C to establish the existence of
zeros of A fw).

Theorem 1: Let C be bounded above and A and B be
bounded on A. Suppose that for some real § there exists
a subspace A, of A with M=dimA < = guch that
sup, - 2 [(£, Co)/ (£, )] <0, where A_=AlN A. Suppose
further that A > 0 on some subspace Z of A with
N=dim £ >M. Then for each positive integer k satis-
fying M + 1 <k <N, there exists w}c (%, «) and
w; € (- =, Q) such that w;,, 2w}, w;,; Sw; and A w))=0.

Proof. Let &={¢,}¥ be an orthonormal set of ele-
ments from Z. Let Z, denote the span of {oy, =, q&,}
Then A >0 on T implies that mf,cc [(£,AE)/(E, )] >0,
1sk<N.

Since
(£, Cut) 2 (5,AD | (£,BY | (5,C)
M(w)= It =Ty é—%i( 680 YD Gk 5))
e (BAD) . (&,C0)
>0 dnf o - ol 1Bl + dnt S

it follows that A%(w) = = as |w|—~« for 1 <k <N, and so
Eq. (2) implies that A (w)—~ ©as |w| -« for 1 <k <N.
Let k2M +1 and V< S,. Then there exists a nonzero
ne VN a,, so that

(E, COE)

(£,Cgf) ., Cqn)
It b S A

v (£ 8) (n,m)

Thus for k>M + 1, A(R) ssup,, [(£, Cob)/(E, £)]<0.

The existence of zeros w? of A, in (- %, ) and (§2, =) now
follows from the continuity of A, (w) (Lemma 1) and the
fact that A (w)—~ = as |w| — = for 1 <k <N. Since
Afw)= A, (w) for all real w and all positive integers %,
it follows that A,,,(w%) <0 and therefore that A,,,(w) has
a zero in (- %, w;] and in [w}, ©), M +1 <k <sN-1. Hence
we may always select the w} so that w},, = w; and

Wy S Wy
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We proceed to obtain a minimax principle for certain
of the zeros established in Theorem 1; however, we
shall adopt a somewhat modified hypothesis:

(H2) For some real @, there exists a subspace A, of
A with M =dim A, < = such that sup,c [(£, Co£)/(¢, £)] <0,
where A_=Aln A,

(H3) A>0 on A. Let D={t|tc A, d(£)>0}, where
d(£)= (&, BE) — 4(&, AE)E, CE) = (&, Bot)?
- 4(£?A£)(£s CQE)’

where B,=20A + B, Clearly A .CD. For all nonzero
t = D, we define

- (8,BE) £[d(B)}/?
3(E, AE)

Q&)= (6)

(H4) T, =inf,_,Q (£)> ==, T =sup,c ,@.(£) <. Let
k=M + 1, Then for any V= §,, VN A_ contains a non-
zero element so that Vn D is nontrivial. Hence the real
numbers

t = = +

2 Vg:nsf S Q(E), k2M+1, (M
and

- =M

%= 728, eEvﬂn QL8), k +1 (8)

are well~defined and we have
T, SQ,, S0, S+o SQp <, < ooy (9)
r =9,.> Qe = o (10)
With the aid of the following lemma, we obtain suf-
ficient conditions that A, (Q})=0.

Lemma 2. Let (H1) and (H3) hold, let A be a real
number, €>0, 2wA + B be uniformly bounded above on &
by ¥ for all we (A, A +€), and let V be a subspace of A
such that for every nonzero £ VD, @, (£§)<i+e Then
for all nonzero £z V, (&, C,E)/(E £)=~€ly].

220, 2

Proof: Let £c V, £+0. If £¢D, then (£,C £)/(£, £)>0
for all real w. Suppose £cD. If Q(E) sxor @(&) =1,

then (£, C,£)/(&, £)2 0. If @ (E)<A< Q. (), then by the
mean-value theorem

FlRUB =) =1 ()[Q.(8) -]

for some x< (A, @ (&), where f,(w)=(£, C E)/(&, §),
—o<w<®o, Now f,[Q,(§)]=0, 0<@,(§)~r<¢ and f{(x)
=(&, [2xA + BJg)/(E, £) < |y|. Therefore, —f,(A) < |y l¢,
i.e., (§C,8)/(t, &)= —¢ly|. Hence, in any case,

(gs C;&)/('E: ‘E) 2—¢ "}’I M

Let J, denote the set of all positive integers » for
which there exists an €n)> 0 such that 2wA + B is uni-
formly bounded above on A for all we (2}, 2}, +¢€).
Similarly, we define J_ to be the set of all » for which
an €n) > 0 exists such that 2wA + B is uniformly bounded
below on A for all we (R2;—¢€, ;).

Theorem 2: Let (H1)—(H4) hold. Then if Q}>T" for
some l2M+1, A(Q})=0forall 221, kcd,.

Proof: Since T'_ < @; <Q; for k=1, it suffices to show
that Q;>T_, kcd,, implies A (Q})=0. Suppose 2;,>T,
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and let V< S,. Then
Q< = ,
Vs S Q.(8)=, gggbo Q.(8)

where D,={t|£c D, lltll=1}. Since dim V<, VN D, is
compact and @ (£) is continuous on VN D, and thus as-
sumes its supremum there. Hence there exists a non-
zero £z VN D such that @ (£) > Q;> I'_ =@ _(£), which
implies that (&, ang)/(g £) <0; therefore,

inf,p[(£, Cg3€)/(£,£)] <O This last result holds for
arbitrary VC S,, and we conclude from Eq. (1) that
A(R;) <0. Let k= J, and 2, > T'.. Then there exists
€,>0 and y, such that 2wA + B is bounded above on A by
¥, for all we (R}, Q;+¢6,). Given any positive e <¢;, there
exists V., S, such that Q< S“pecvnDQ ()<, +e.
Hence for all nonzero Ec V.nD, Q (8)< Q; +¢, and
Lemma 2 implies (&, Cag £)/(&, E) = —€ly,l for a11 non-
zero £c V,. Therefore, mfecv [(&, Cas8) /&, £)]=—ely,!
so that 0 = A (Q}) = SUp, s, mfecv[ g, CQ;E)/
(£, 8)]=- €lv,l. Since th1s holds for all sufficiently
small €>0, A(2;)=0.

Theorvem 3: Let (H1)—(H4) hold. Then if Q; <T, for
some I2M+1, A(Q)=01for all k=1, kcd..

Pyoof: Let B=- B. The proof consists of replacing B
by B and | using Theorem 2. Consider the triple of f opera-
tors (4, B, C) in place of (4, B, C). Obviously (4, B, C)
satisfies (Hl) and (H3) since (A, B, C) does. For the
triple (A, B, C), C,, is replaced by C =wlA+wB+C

=C_,. Since (H2) holds for (A, B, C), it holds for
(4, E, C) with the same A, and A_, but with — Q replacing
Q. Corresponding to A (w), d(£), D,@Q,(¢),T,, and &,
we have:

(Ey C~w£)
(%, )
d(£)=(¢, Be)2—4(£,Ae)(s, ce)=d(t),

D={t|tea, d&) >0}=D,

Aw)= su inf

vES, tEV =Ad-w),

4

) _(E,Eg)i[g(g)]llz

*(E = Z(E AE) =_Q:(£);
T.= inf Q8)= int [-Q(§)]=-T.> - =,
T.=sup §.(§)=sup[-Q,(£)]=~T, <,
=D ¢D
Q= inf  sup Q)=- sup inf Q(£)=-9;
veE s, tevnD Ve Sy ¢<EVp
= sup gclngQ(E) —Vingk sup Q&) =-4;.

Finally, we observe that 2wA + B is uniformly bounded
below on A for we (R - ¢, Q;) if and only if 2wA + B is
uniformly bounded above on A for we (2;, Q; +¢€), so
that J =4J_. Now Q < T, implies SZ" =T, and Theorem
2 gives Ak(Qk) 0 for allk=1l, k=J.. Smce A ey ;)
=A(- ﬂk)-— A(Rp), the theorem is proved

(1. SUFFICIENT CONDITIONS FOR THE
EXISTENCE OF EIGENVALUES

The minimax principles for certain of the zeros of
the functions A, (w) being established, we next consider
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the problem of whether a zero 2 of A (w) is indeed an
eigenvalue of the system C_ t=0, i.é., whether C,

has a nontrivial nullspace. Two sufficient conditions

for an affirmative answer are given in this section. The
first (Theorem 4) requires that at the given zero  the
operator C is decomposable into K-P, where K and P
are Hermitian, K is compact, and inf.[(£, P£)/(t, £)]> 0.
The second (Theorem 5) requires that C,=7T - L, where
T is Hermitian and L admits a positive, compact,
Hermitian inverse. The latter result is particularly
useful in applications to physical systems.

Theorvem 4: Let A, B, and C be bounded linear
Hermitian operators from E into E, and let A (Q)=0
(with A=E) for some real Q and all k< U, where U is
some subset of the positive integers. Suppose further
that C, =K ~ P where P is a positive Hermitian operator
and K is a compact Hermitian operator, with
inf,[(£, P£)/(%, £)]>0. Then U is a finite set, and for
each kc U there exists a nonzero £, E such that C,t,
=0, where (£, £,)=0if k#l, k1= U.

Proof: Let k= U. Then

(£, Cat)
0=A(Q)= sugk It = ;)
_ o (& [K - P]t)
_Eélgk !1(2{’ (E’ 3;')
(&, Pt) ((E,KE)
(¢, PE)

= inf
Vsélk %21’ (E! E)

which implies

_1>,

.. (£,KE)
sl ey = kel

(11)
Now P admits the positive bounded Hermitian square
root P!/2 with the positive bounded Hermitian inverse
P1/2 we set £ =P'/%t and obtain from Eq. (11)

(&Ko)
(¢, 0

sup inf
VESy tEV

=1, kU, (12)
where X =P™/2KP1/? is compact and Hermitian.
Clearly (12) implies that |[K||>0. 1t follows from well-
known theorems on compact Hermitian operators that

K admits of a nonempty set of real nonzero eigenvalues
{u3}u{u;} with corresponding orthonormal eigenvectors
{¢;}u{0;} possessing the following properties®:

Bizppzen>0; pyspu; <+ <0

[each of the sets {u;} and {u;} may be finite, infinite, or
(but not both) empty]; lim,_ , u;=0 (if {u;} is infinite);
lim,  u;=0 (if {4} is infinite); and for all (< E,

2+;Eu;-|(c, o712 (13)

For ke U, A,=1, and we have x,>),=1 for all positive
integers ! <k, where x,=sup,_g inf,c, [(g,KE)/(E, B)],
1=1,2,3,:--. This implies that uj,..., ¢} all exist. In-
deed, suppose that {u} consists of precisely n<k
positive eigenvalues. Then given any V= S,, there
exists a nonzero { = V such that (¢, ¢} ) 0 for all the

n ¢;. Therefore, Eq. (13) implies ( (¢, K£) <0, so that
nf@,[ £,KE)/(£, £)] <0. Since V was arbitrary, we
conclude that X, = sup,, inf,- , [(§, K£)/(£, £)] <0, a
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contradiction. Hence u3,..., u} exist. Let V,

=span{¢}, ..., #;}. Then for ¢V, llzlF=3Fi(¢, ;)12
and it follows from Eq. (13) that

. (LKD)
f =
:::-Ii'o (&8 ey

Zuile, oDI® _ .
e, oD 12 ke

Hence 1=2X,> u}. On the other hand, let V<= S,. Then
there exists a nonzero ¢{< V such that (¢, ¢3)=0 for
i=1,2,...,k—-1. Equation (13) yields

(LKD) T ML D12+ Z5 718, 0112
€0 [HE

< Zima BN, OD)1°
gl

 Tamsl (& DI _
Sk ’||(g||2¢i Sk

where the last estimate follows from Bessel’s inequality
Therefore, inf,- ,[(£,K£)/(£, )] <pl, and since V was
an arbitrary element of S,, it follows that A, <u;. Thus
ke U implies py=2x1,=1, K¢;= ¢}, and therefore

(K - P)¢, =0, where ¢,=P*/2¢;#0. Since ;=1 for

k= U, U must be a finite set (u;=1 for infinitely many
i contradicts lim . u;=0). Let m denote the number of
elements in U. The set of m vectors T={¢,|k< U} is
obviously linearly independent and is a basis for
S=spanT, so that m=dimS. Let {zp,};’gl be an orthonor-
mal basis for S, and for each k< U, set £,=9,, where
U={ky, k..., k,} and j satisfies k,=k. Since the £, are
linear combinations of the ¢,, we have Cy¢,=(K - P)§,
=0 for all ke U. This completes the proof.

Corollary 1: Let A=K,, B=K,-P,, and C=K,~ P,,
where K,,K,, and K, are compact Hermitian operators
from E into E, P, and P, are bounded Hermitian opera-
tors from E into E, and K, >0. Let (H2) and (H4) hold,
with A=E. [Note that if C <0, (H2) and (H4) hold with
M=Q=0, A_=E, and T'_ <0 <T,.] Then the following
conclusions hold:

(A) If inf {(£, [P, + P,)£)/(&, £)}> 0 for w > w, and if
;2T and Q> w, for some positive integer m, then
for all = m there exists a nonzero £;c E such that
Cgqy £,=0; furthermore, (&, £;)=0if Q,=8}, k=l

(B) If inf {(&, [wP, + P,J€)/(&, £)}> 0 for w< w, and if
Q; <T, and Q; <w, for some positive integer m, then
for all & =m there exists a nonzero &; ¢ E such that
CQEE;Z:O; furthermore, (&, £7)=0if Q;=Q;], k2l

(C) If inf[(£, P,t)/(£, £)]>0, then lim,_  Q;=, and
the numbers m and w, required in (A) exist.

(D) If supg[(, P,£)/(£, £)]<0, then lim,  Q;,=-,
and the numbers m and w, required in (B) exist.

Proof: (A) By hypothesis, (H1)—(H4) hold with A=E.
Thus Q; is defined by Eq. (7) forall k=M +1. If
Q: =T., Theorem 2 implies A,(Q};)=0 for all k=m,
If §},> w,, the stated conclusion then follows from
Theorem 4, since k=m implies ;= Q] > w, and we
have Cqs =K ~ P, where K= (2;A + @K, + K, is compact
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and P=Q;P, + P, satisfies infg[(£, Pt)/(£, £)]>0 for
k=m. The proof of (B) is similar. To prove (C), let
a=inf (&, P,E)/(k, £)]>0, let N be any given positive
number, and let 0 <e< a/4N. Since K, is compact, there
exists a finite-dimensional subspace E, of E such that
Supgi[I(E,Kzi)l/(ﬁ, £)]< a/2. Since A is compact, there
exists a finite-dimensional subspace E, of E such that
SUp,e gy [(£, AE)/(E, )] <e. Letn,=dimE,, n,=dimE,,
and set S={t|t=q,t, +dyt, +d,t,, E,c E, E,c B, £, € A,
@€ Z, i=1,2,3}[Z is the set of all complex numbers
and 4, is defined in (H2)]. Then S is a subspace of E
with dim S sn, +n,+M, and ¢ S* implies {c A_N EjN E;.
Let k=n +n,+M+1, and Ve S,. Then there exists a
nonzero ¢ < V such that < S*. Hence ¢ VN D and

= (& BY) +Vd(E)  _ (&, BY)
2(¢, A¢) 2(¢,A0)

Q.(8)=

_(§9P§)_(§’K C) 0/2
=TS AD L e N

so that sup,_ Q.(E)> N. Since this holds for any
VeS,, Q;=Nforall k=n, +n,+M+ 1. Finally, we note
that w, may be taken to be a™*||P,|l. Statement (D) fol-
lows by applying (C) to C_,=w?A + w(-B)+C.

We consider next the case where C, contains an
operator with a positive, compact, Hermitian inverse.

Lemma 3: Let (H1) hold, let A, (2)=0 for some real
€ and positive integer n, and suppose that Cq=T~L,
where T is a bounded Hermitian operator from E into
E and L admits the positive compact Hermitian inverse
K such that KL =1 on A. Then sup,c g infye 0 {(¢, (T

-112)/(t, ©)}=0, where k=K'/? and T=kTk.

Proof: Let Ve S,. Since A (2)=0, inf,_, [(£, Cot)/
(&, £)] <0, so that given €> 0, there exists £c V with
HEll=1 such that (£, CoE)<e. Set t=kLE. Then {#0 and
kt=KLE=t. Hence €> (&, Cot)=(&, [T - L&) =(kt, TkE)
- (kt, LE)=(¢, [T -1]¢), and 1= 1P = llegl?
=(¢, Kt) <K, £), so that (¢, [T -1]g)/(¢, £) <elKIl.
Therefore, infecan{(t, [T-116)/(¢, )} <ellKll, which
implies that inf,_,; ., {(¢, [T -I]¢)/(¢, £)} <0. Since V
was an arbitrary element of S, it follows that
SUPye s, infrous o) {&, [T -Ilg)/(t, £)} <0. Given €>0,
there exists Ve S, such that inf, ,{(§, Co8)/(&, £)]> —¢,
so that (£, C,£)/(&, £) > —~¢ for all nonzero £c V. Let
Lec kL(V), t+#0. Then ¢ =kLt for some nonzero £c V,
kt=¢, and we have (g, [T - 1]t)/(¢, K£)=(£, Cot)/

(£, £)> —€, which implies that (¢, [T -1]£)/(¢, £) > - €lKl.
Since this holds for all nonzero ¢ <= kL(V),

infee oy o (& [T = 112)/(8, £)} = - €lK|l, and therefore
SUPycg inf«_: RL(V) {(g, [T -1 /g, £)}= —ellKll. This
holds for arbitrary ¢>0, so that

SUpyc s infec o o L6, [T =116)/(E, £)} >0, which com-
pletes the proof.

Lemma 4: Let the hypothesis of Lemma 3 hold, and
suppose that EL{A)=E. Then sup,c, inf,- A [T
=I12)/(g, £)} =0, where o, is the set of all z-dimensional
subspaces of E.

Proof: Let Ve 0,, 0<e<3, {¢,}] be an orthonormal
basis for V, and p=sup,€E"|x|/|lel, where E, denotes
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the complex Euclidean n-dimensional vector space
fxlx=(%,%,...,%,), x, complex, j=1,...,n}, |x|
=27.1x,|, and lellz-E“Ix,I2 Smcem E, there
ex1sts ¥, (-kL(A) such that llp, - y,ll<ep™, j=1,.

The set {z[),};' is linearly independent. Indeed, suppose
Zlay;=0. Then

Blosh [k

CY

e

(51, |I|¢,-zp,l|)

<ept(Dla,)r <ol
1 1

which implies Z]| @,;12=0. Since ¢, kL(4), there exists

a nonzero x;< A such that §;,=kLy;, j=1,...,n, and
the set {x,}] is clearly linearly independent. Let V,
=span{y,}{. Then V,cS,. Let n= kL(V,), n+0, and set
t=n/lmll. Then £¢=3!a,p; and we define {=37a;¢,
and y*'= ||l —(le a, |2)*/2, Now

- I; a0, <

n
i <ep"Zl) |a,| <ey,

so that |y —1]| <e<i, and y"1< 2. Therefore, we have

g —vell=

1=l

n
<@ 2|+ [1-y|y?
sey + eyl < 4e,
so that

| -1l) _ (&[T -110) |
(m,m) (€, 2)

= (&, [T -1]6) - (g, [T - Il ©) | <|(¢,
+I(£_Y§a

Thus we have shown that given any Ve 0, and 0<e< 4,
there exists a V, < S, such that for any nonzero
ne kL(V,), there exists a nonzero ¢< V such that

(ga[f-l]g) (ﬂ,[f—l}n) =~
@D mm ol -

Hence inf,. , {(£, (T -10)/(&, O} < inf,c upov, {0, [T
-Iln)/(m,m}+ 8e[|T Ill, and it follows from Lemma 3
that inf, , {(¢, [T - I10)/(¢, £)} <8ellT -1l This holds for
all sufficiently small positive €, so that inf,, {(¢, [T
-IJ2)/(¢, £)} <0, which implies that

SUPyc ., mftcv{(g, T -1lt)/(¢, £)} <0. We now establish
the oppos1te inequality. For any Ve S,, RL{V)c 0, so
that

(T -11{E=-v£D)]

sup inf M = sup inf (&, [T—I]E) _

Ve, tEV (&9 VES, {ERL(V) (&, 8)

and the lemma follows.

Theovem 5: Let (H1) hold and suppose that A,(Q)=0
for some real @ and all » = U, where U is some subset
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of the positive integers. Let C;=T-L, where T isa
bounded Hermitian operator from E into E, L admits
the positive compact Hermitian inverse K, and KL =1
on A, TKT(E)c L(A), and L{A)=E. Then U is a finite
set, and for each neU there exists a nonzero ¢,c A
such that Cy¢,=0, where (¢, £,)=0if m#n, m,ncU.

Proof: Let k denote the positive, compact, Hermitian
square root of K. Suppose that 0=(¢, kL) for some
¢cE and all t€ A. Then 0=(k¢,L¢) for all = A, and

since L{A)=E, k¢ =0, so that ¢ =0. Therefore,
EL(A) = {0} and kL{A)=E. By Lemma 4,
Supy, inf, {(¢, (T -1]g)/(g, ©)}=0 for all ne U,
and since T =Tk is compact and Hermitian, it follows
from Theorem 4 that U must be a finite set, that there
exists for each n= U a nonzero ¢, E such that (T'-1)¢,
=0, and that {¢ [nc U} is linearly independent. Let
S= {k£ |ne U}. Since k>0, S is linearly independent.
Let {¢, |nc U} be an orthonormal basis for the span of
S. Then (KT -I)¢,=0 for all ne U. Indeed, (KT -I)¢,
=(KT -1 Sra kg'j_kEUa,(T nNg,=0. It remams to
show that C,¢,=0, nc U. We have {,=KT¢,
=TKT¢, and since TKT(E)cC L(4), there exists E,,E A
such that T¢, =LE,. Therefore, ¢, =KT{,=KLE =t
and so T¢,=L¢,, i.e., Cot,=0.

IV. APPLICATIONS

The results presented in the last two sections have
application to a large number of physical systems, as
we mentioned in the introduction. Two such examples
are discussed herein. The first is the problem of small
oscillations about equilibrium of a vertically stratified,
viscous, heterogeneous incompressible fluid in a
gravitational field. The second concerns the oscillations
of a rotating thin annular disk. We show that infinitely
many of the eigenfrequencies of these systems are
characterized by the minimax principles given in Egs.
(7) and/or (8). We make no attempt here, however, to
determine precisely all the eigenfrequencies so
described.

We shall have occasion to make use of certain well-
known results from the theory of linear differential
equations, which for convenience are summarized
below.

Proposition: Let L be the nth-order linear differential
operator given by

LE(x) =ib (X)) (x) <E(“ - diﬁ
= dx?

where the p,(x) are complex-valued functions of class
C™? on the closed interval a <x <b and p,(x) #0 on
[a,b]. Let F and G be constant nXn matrices,

=(&a), £V (a), ..., £ (a))?, and suppose that L is
formally self-adjoint on S={(x)|£< C"[a, b], FE, +G¢,
=0}. Then the following conclusions hold:

(1) The operator L possesses a denumerably infinite
set of eigenfrequencies, all real, with corresponding
orthonormal eigenfunctions (in S). The eigenvalues have
no finite limit point.

(2) Every £= S can be expanded in a uniformly con-
vergent series of the eigenfunctions.



680 E.M. Barston: Eigenvalue problem

(3) If 0 is not an eigenvalue of L, then L admits the
compact Hermitian inverse K defined on / z[a, b] such
that KL=Ion S, Ry Cla,b], K(Cla,b])=S, and LK =1
on Cla, b].

For a proof of these results, the reader is referred
to Ref. 23.

A. The stratified heterogeneous incompressible fluid

We consider small disturbances about the static
equilibrium of a vertically stratified horizontal slab of
viscous incompressible fluid, in a gravitational field.
The fluid is confined between rigid horizontal walls at
z=0and z=5>0, where z denotes the vertical co-
ordinate, The pertinent equation and boundary conditions
are given in Eqs. (22) and (23) of Ref. 24, viz.:

H,E(2)= (L, +2L,+ L,)t(2)=0, 0s<z<b, (14)
EO)=¢£(B)=¢'(0)=¢'(b)=0. (15)

Here £(z) denotes the vertical component of the fluid
velocity, A is the eigenfrequency of the disturbance (a
time-dependence of the form e** has been assumed),
L,=-dpd+kp, L,=~kgp, and L,=d* pd® - 2k%dpd
+ k% + P2u”, where 1(2) is the fluid viscosity, p(z) is
the fluid mass density, g> 0 is the gravitational ac-
celeration, % is the magnitude of the horizontal wave
number, () =d( )/dz, and d denotes the differential
operator d/dz. We assume that u = C40, 5], p= C?[0,5],
p>0o0n[0,b], p>0o0n[0,b], 2>0, and take E
=/,[0,b] and A= {E(z) £ C*[0, b], E(0)=¢(b)=E'(0)
=¢'(b)=0}. For £c 4, £+0, we have

(£, L,8)= [ p(1& 12+ K1 £1%)dz >0, (16)
(&, L) = ["u(18" +FPE1% + 4121/ 1)dz > 0. (1

The operators L,, L,, and L, are all formally self-
adjoint on A; furthermore, for each real » #0, H, is a
formally self-adjoint fourth-order differential operator
on A, and the Proposition applies to H, with S=A4,

1000 0000
0100 0000
F=loo000) ° {1000/
0000 0100

Case 1: Arbitrary p/. We set w=x, A=L,, B=L,,
and C=L,. Obviously (H1) and (H3) hold. It is easily
seen that for all w <0, C, is bounded above. Indeed, for
w<0, £= A, f=ming, 4, p=maxg ,p, r=ming 0,
as|wlp, B=2ka - w?p, and y=kia - w?k?p + Kgr, Eqgs.
(16) and (17) give
(&, -ng)z j(”b[a('s” +k22|2+4k2|£'|2)

- PP E 12+ B2 E12) + BPrgl £1%]dz

= L(alg 2+ B1¢ 12 +y1£1%)dz
(Ml zem_ B . L
-[llee-% +(r-5a) lel]a

2 [y - g2 (4a))lIElR. (18)

Let 2<0. Then by the Proposition, C, has an infinite
set of real eigenvalues {6"}1" with corresponding ortho-
normal eigenfunctions {¢,}°C A, and, since Cg is
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bounded above, the {5,};° cluster only at — =, so that
there are only a finite number M of positive eigenvalues.
We may assume, without loss of generality, that the
eigenvalues are enumerated in decreasing order, viz.:
8,28, =+-. Then5,>0, §,<0forn=M+1, so that
for A, =span{¢,, ..., ¢,}, Proposition (2) implies that
(£, Cat)=32 3. 6,l(0, £)12 <0 for any £c A_=ALN A,
Thus (H2) holds. Consider (H4). Since A>0 and B> 0
on A, Q.(£)<0 for all nonzero £ D and I'_ <0. Let
teD, £=0, and set x=(&, BE)/2(£,AE) >0, y=2(¢,CE)/
(&, BE). If y <0, @ (£)=0 while if y>0,

Q) =-x+Vx(x=y)z—x+Vx-yfF ==y (19)
with

_ 2l o 1k1%z
(&, L,¢)

220" gk min{0, 7}.

Hence in any case, @ (£)=20" gk ?min{0, »}, so that (H4)
holds. By a process of estimation similar to that used
in Eq. (18), it is readily seen that 2wA + B is bounded
below on A for all real w and that J_ contains all positive
integers n>M + 1. We now show that Q; — -« asn— =,
Let N>0. Then B - NA is bounded below on A, and it
follows from the Proposition that B - NA admits an
infinite set {a,} of real eigenvalues with corresponding
orthonormal eigenfunctions {x,}y'c 4, and that the only
limit point of the {@,] is + =. Thus there are only a
finite number m of negative eigenvalues, so that, as-
suming the eigenvalues to be enumerated in ascending
order (i.e., @, sa,<-+), a,20forallu=m+1. Let
E,=span{y,,...,Xnfand E,=fpin=¢§,+&,, £ <cE,

£,€ A,}, so that E, is a finite-dimensional subspace of
A with dimE<sm+M. For n sm+M+1, given any
Ves,, there exists a nonzero £€V such that £ LE,,

and so ELE,, £1A,, E€A cD, and =2 ,(x;, £)x,, the
last result following from Proposition (2). Hence

(E;[B_NA]S) -
N-"kan =V

— Zwmﬂa,i] (Xp g)_‘z <-N
(g, Ag) ’

2Q (&) == 2=

so that inf _ -, @_(n) <= N/2. Since V was an arbitrary
element of S,, O, <-N/2fornz=m+M+1, i.e.,

lim__ ;=-, Thus there exists a positive integer
12M+1 such that Q; <T,, and it follows immediately
from Theorem 3 that A (2;)=0 for all n=1. For each
fixedn=M+1, Q;<0 and Cn;. is bounded above on A,
so that for some positive number p, L=pI -Cg; is
positive on A. We conclude from Proposition (3) that L
has a positive compact Hermitian inverse K on E such
that KL=1I on A, C[0,b]>K(E), and L{A)=C[0,b]. Since
Cl0,5]= /,[0,b], the hypothesis of Theorem 5 is satis-
fied (set T =pI) for each Q; with »>I. We have thus
shown that the system defined by Eqs. (14) and (15)
possesses an infinite set of negative eigenfrequencies
A,=8;, n=l, with )\, ——-oasn— o,

There remains the question of whether any of the
2, are eigenvalues. Here we run into the problem that
J, is empty (2wA + B is not bounded above for any real
w) so that Theorem 2 is useless. We can circumvent



681 E.M. Barston: Eigenvalue problem

this difficulty, however, in the two special cases dis-
cussed below.

Case 2: p’ <0 on [0,b]. Suppose that o <0 on [0, b]
and that {z1p’(2z)=0, 0 <z <b} has Lebesgue measure
zero. Then (£, L,£)=Fkg [2(-p’)1E12dz> 0 for all non-
zero £cA, so that the equilibrium is exponentially
stable. We set w=2A"", and rewrite Eq. (14) as

T t=(wPA+wB+C)E=0, EcA, (20)

with A = L,, B=L,, andC=L,. Obviously (H1) and (H3)
hold for the triple of operators (4, B,0). For w0,

C =w?C .1, and therefore (H2) holds with 2=90" and
A =4, where Q and A, are as given in Case 1. Fur-
thermore Eq. (18) implies that C, is bounded above on
A for w< 0. Consider (H4). Since B >0and A>0 on

A, §.(£)<0 for all nonzero tc D=D, and so I'_ <0. Let
EcD, £+0, and set x= (£, BE)/2( (£,A£)>0, y=2(¢, Ct)/
(E’ Bg) >0. By Eq' (19)) Q+(£) = —-y=- 2(&9 Ll&)/
(E,L,£)= - 2pk72("1, and therefore (H4) holds. Obviously
2wA + B is bounded below on A for all real w, and J_
contains all positive integers =M + 1. We show that

§: —~ - wagn— o, The fourth-order differential opera-
tor B is formally self-adjoint and positive on A, and it
follows from the Proposition that B possesses an in-
finite set of positive eigenvalues v, <v, <... with cor-
responding orthonormal eigenfunctions {y,}7 c A. The
eigenvalues cluster only at + «. Given N>0, there
exists a positive integer ¢ such that v, > 2|lA||N for all
n>gq. Let E;=span{p,, ..., p and E,={¢1& =, + &,
t,€ E,, £, A}, so that the dimension of the subspace
E,C A does not exceed g+ M. Fornzqg+M+1, given
any Ve§,, there exists a nonzero £ V such that ¢ LE,
and s0 £ LE;, £L A, £E€A_CD, and £E=37,(0,, £,
where the last result follows from Proposition (2).
Hence

(ol (EBE)
Q.(£) <—(2liAl) 0N
2|lA”) -1 Eﬁan’(ll)m £)12

2ol (@, )1

and therefore inf,. , »,@_(§)<-N. Since V was an
arbitrary element of S, we conclude that Q‘ -~ N for
nzg+M+1, i.e. 9 ~—wasn—o, In part1cu1ar,
there exists a posmve 1nteger B such that 5‘2 <f,, and
Theorem 3 implies that A (Q )=0for alln=> ﬁ For any
given positive integer n>M + 1, 9' <0 and Cg- is
bounded above on A. We proceed exactly as in Case 1
to conclude from Theorem 5 that for each n =5, 2,
—(Q ! is an eigenfrequency of the system descnbed by
Eqgs. (14) and (15). The X} are all negative, and »;—0
as n— =, It is readily verified that Q(8)= [c;u(.g)]-1 <0
for every nonzero £c D, and therefore that (8))1=;
for all n=M + 1. Hence \;=Q;, n=f.

<=v,2lAl) < -N,

Case 3: o 20 on [0,b]. Suppose that p’ =0 on [0, 5]
and that {z|p’(2)=0, 0 <z <b} has measure zero. Then
(&, L;£) <0 for all nonzero £< A, so that, referring back
to Case 1, C<0 on A and the “overdamped” condition
d(£)=0 on A is satisfied. With =0, we have M =0 and
A_=D=A, and since Q_(£)<0< @ (£) for all nonzero
(= A, I'_<0 <T,. Thus we may take /=1 in Case 1 and
conclude that A;=; <0 is an eigenfrequency of the
system described by Eqs. (14) and (15) for allz > 1.
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We now use our minimax principle to construct an
infinite set of positive eigenfrequencies. We set w=2"!
and rewrite Eq. (14) as

C t=(wPA+wB+C)t=0, (21)

withA=-L,, B=-L,, and C=- L,. Obviously (H1)
and (H3) hold for the triple of operators (4, B, C). Since
C<0on 4, the system is overdamped with D= A, and
(HZ) holds with M =0 and A_=A., We have

QE)<0< ;_Lkz(zgma.x[0 »12)7 < @ (&) for all nonzero

£€ A, and therefore I'. <0< I, The operator 2wA + B
is clea.rly bounded above for all real w, J contains all
the positive integers, and it follows from Theorem 2
that A (Q") 0 for all »= 1. The operator C is bounded
above for w >0, and so we may proceed as in Case 1 to
conclude from the Proposition and Theorem 5 that

A, =(:)" is an eigenfrequency of Eqs. (14) and (15) for
each n <1. It follows easily from the definition of Q*
and the fact that the eigenvalues {v,}7 of the pos1t1ve
operator B=— B cluster at + (see Case 2) that Q* —-
as n— «; thus A;—~0 as n— =, Finally, one read11y
verifies that é*(g) =[Q.(8)]* > 0 for all nonzero

t< A, so that the 1} are given directly in terms of @,(£)
by the max—min principle

o= gup Inf Q.(£). (22)
Note that A} = Q7.

This special case of o’ =0 on [0, 5] has been investi-
gated by Turner'® and Eisenfeld, 2° Turner obtains mini-
max principles for the eigenvalues—however, they are
not given directly in terms of L,, L,, and L,. Eisenfeld
shows that the eigenfunctions are complete. Their re-
sults depend critically on the requirement that L, <0
on A,

B. The rotating annular disk

We consider the planar oscillations of a thin annular
disk rotating about its center with a given angular
velocity £, and restrict our attention to rotationally
symmetric modes. The pertinent equation is Eq. (13)
of Ref. 9, viz.:

(w?A + wB+C)E=0, tc A,

where A=I, C=I-L, A=A XA,
L0 i _(L1 0)

Li=v, (_ 'd%eé' + %x-z); L=y, (‘ ;1% + %x-2>;

A ={fix)|fe C?la, 1], Fl@)=0=F"(1) - H(4y,yi* - DA},

8, ={f(x)|fe C?[a, 1], Al@)=0=F'(1)-2A1)},

0<a<1, and y, and v, are positive constants satisfying
the inequality 4y, >y, > 2y,. The appropriate Hilbert
space is E= / ,[a, 1]X / ,[a, 1]. A time dependence of
the form exp(iwSi) has been assumed.

It is readily verified that L, and L, are formally self-
adjoint and positive on A, and A,, respectively. We

‘infer from the Proposition that L, and L, admit the
‘compact Hermitian inverses K, and K, defined on
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[ sla, 1] such that K L ,=Ion A,, L(A)=C[a,1]}, and
K(/,a,1)cCla, 1], n=1,2. Thus L is formally self-
adjoint and positive on A, L possesses the compact
Hermitian inverse K = (/! &) defined on E such that
KL=1Ion A, and L(A)=Cla, 1]XC[a, 1]. Since A,=3,
=Cla, 1] =/ ,[a, 1], we have A=L{A)=E. For each
real w, T KT (E)cCla, 1]XC[a, 1]=L(4), where T,

= 2 2
=w?A+wB+I=(471 2§9).

We now show that the minimax principles of Eqs. (7)
and (8) each generate infinitely many eigenfrequencies
of the disk. The pertinent results of the preceeding
sections are collected together in the following theorem,
which is convenient and appropriate for application to
numerous problems relating to the oscillations of
rotating elastic systems.

Theorvem 6: Let A, B, and H be bounded Hermitian
operators from E into E, 6 =infg[(£, A£)/(£, £)]>0, let
A be an infinite-dimensional subspace of E, L be a
formally self-adjoint positive operator from A into E
with compact inverse K on E such that KL=I on A, C
=H-L, A=L{A)=E, K(E)c L(A), and T KT c L(A)
for all real w, where T, =w?A + wB + H. Then the sets
N,={n1Q,=2T}and N_ E¥n| Q; <T} are both nonempty, &,
and ; are eigenvalues of C £=0 for all m =infN, and
n=infN_, and ; —c and @, - - asn— o,

Proof. By hypothesis, (H1) and (H3) hold. Since L is
formally self-adjoint on A and L{A) =E, K is Hermitian,
and L >0 on A and A =E imply that K > 0. It follows
from well-known theorems on compact Hermitian
operators® that K admits an infinite set of positive
eigenvalues p, = ji, =++ >0 with corresponding ortho-
normal eigenvectors {¢,};" that spanK(E), and lim,_ 4,
=0. We have u,p,=K¢,=Ly, for some $,= A (K(E)
cL(4)), so that u2¢,=KLy,=1, and therefore Lo,
=X, 0, M=) n=1,2,3,.--. Thus every ¢, is an
eigenvector of L with eigenvalue A, and {¢ | spans A,
since KL =I on A implies K(E)> A. Obviously A, —~ « as
n- and therefore 1, > ||H|| for all sufficiently large n.
Let M be the least integer such that x,,, = |lH|l. Let
A, =span{¢,, ..., ¢, ) Then for Ec A_=ANA, &
= Z;d((pn’ E)¢n’ and

(5, L) =], (5, 6065 LO=0 1, [ (6 * 21 1P,

so that
(£,CE)=(&, HE) — (&, LE) < (IHN =2y )EIR <0,

Hence (H2) holds with =0 and the above choice of A,
and M. Consider (H4). We have, for all nonzero £c D,

_(E’BE).*_[d(E)]l/Z _];(E,BE) >

118l

v

Q&)=

2(¢, Af) T2(AE T T 275
Q(g)__(E,BEH[d(e)]”Z < 1By _11Bil
A 2(&, AE) 2 (E,Af) 2 5

so that T, = — 3 IBIl/6, T.<1lIBll/s, and (H4) holds.
Since |2wA + Bl| <2|w! lAli + ||BI| for all real w, J, and
J_ contain all positive integers n = M + 1. We show that
§; < and Q;—~ =« as n— «. Given N>0, there exists
a positive integer m =M such that »,,, > IH|I + IA[(N
+11 Bll/26)%. Let V, =span{¢,,..., o }D A,, and let
n>m. Then given any Ve §,, there exists a nonzero:
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£V such that £LV,,, and 80 £= ), (¢, £)0,, lIEIP
=E;oll(¢k’ E)lza

- (£,CO=(5, L&) - (&, HY)
>3 M0y )

= HINER = (n,,,, — WHI) HEIR > AN
+ liBli/25)211£ (2.
Now £V and £1V,, implies £ A_C D, and we have

>__I_I_B_” -1/2 —(£9C£) 1/2
00> - e (= 0Y" s,

— /2
Que) < BL _japare (_—‘E’CE))‘ <-¥,

so that

sup QM =>Q(§)>N, inf @ (n)<Q(E)<-N.
nevilp nE v D

Since V was an arbitrary element of S,, we conclude

that Q>N and @, <N for all n>m, i.e., §;— © and

Q; — =@ asn—, In particular, the sets N,={n1Q,>1T_}

and N_={n|Q; <T,} are nonempty, and since J,> N, and

J_oO N_, we conclude from Theorems 2 and 3 that

A(R;)=0 for k=2infN, and A(Q;)=0 for k=infN_. The

remainder of the theorem now follows immediately from

Theorem 5.

26 (& 8)
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Concerning conservation laws resulting from geometric

invariance groups for field theories
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A geometric symmetry group is defined as a point transformation of a Riemannian manifold
combined with a transformation law for the field as a geometrical object. A covariant definition of
invariance of an action integral is given. It is shown that geometric invariance groups can be
determined from knowledge of a tensor §% which can be computed from the density function L in
the action integral. A general form for comservation laws due to geometric symmetry is given.
Results are applied to electromagnetic fields and it is shown that the Bessel-Hagen conservation laws
represent all of the possible conservation laws for electromagnetic fields arising from geometric

symmetry.
1. INTRODUCTION

1t is well known that if field equations can be derived
from a variational principle, then symmetries of the
action integral correspond to conservation laws for the
physical system. This correspondence between sym-
metry groups and conservation laws is stated mathe-
matically in the Noether theorems.! In the early work
by Noether and Bessel-Hagen? the concept of a sym-
metry group was very broad. In fact Bessel-Hagen
viewed a symmetry group as simply a change of vari-
ables in the action integral which left the integral in-
variant. In recent years authors concerned with ap-
plications of the Noether theorems to physical theories
seem to have adopted a more restrictive view of sym-
metry transformations. Given an integral

W=[dcg > L(¢,,0,9,)

where ¢, is a geometrical object representing the field,
a coordinate transformation in infinitesimal form

Fo—xo + Ax (1)

is introduced and object ¢, is transformed according to
its mathematical nature as a geometrical object. From
the fact that L is assumed to be a scalar, invariance
under coordinate transformations from the Lorentz
Group results.

So far as the methematical statement of the Noether
theorems is concerned, it is possible to transform co-
ordinates x* and field varibles ¢, independently. If in
fact transformation (1) represents a coordinate trans-
formation, it seems logical to try transforming ¢, as a
tensor or vector, perhaps, but it is not necessary to do
this if symmetries can be found by transforming ¢, in
some other way. Hence, in this paper the combined
transformation

X% = x® + Ax®,
¢A(x) - QFA(E),
where ¢ (%) is determined by the transformation prop-
erties of a ¢, as a geometrical object, will be called a

geomelvic transformation of an action integral to in-
dicate its special nature. However, the transformation

(2)

X% =x%+ Ax®
will not be treated as a coordinate transformation. This
may sound contradictory, but it is not. As just pointed
out the transformations of x* and ¢, are independent so
far as application of the Noether theorems is concerned.
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Hence, the transformation of ¢, selected above was
singled out simply because it is the usual choice in the
literature and not because of any assumptions about the
nature of the transformation of variables x®. Any trans-
formation such as (1) can be interpreted either as a
coordinate transformation or a point transformation. ®
In this paper Eq. (1) will be interpreted as a point
transformation for a good reason. In the calculations
to follow we assume only a Riemannian manifold as the
underlying space. Then to achieve covariant results in
our calculations, it becomes apparent that Ax® in (1)
must be a vector. That is the case if (1) is a point
transformation, but it does not make sense to treat Ax®
as a vector when (1) is a coordinate transformation
(many authors do so, however). Hence ¢, in (2) is not
being transformed to a new coordinate system, but is
being dragged along as we move from point x to point x
in the manifold.

Specification of our viewpoint toward (1) is crucial
when we decide how to handle metric tensor g, in the
following calculations. We shall agree not to introduce
any local variation of the metric and operate at all
times within a fixed coordinate system, Hence, given
point transformation x¥* =x* + Ax®, g, (x) transforms

to £,,(%).

Under the above conditions it is possible to give a
very general analysis of invariance of action integrals
and a description of all possible conservation laws re-
sulting from geometric symmetry. It must be kept in
mind, however, that other kinds of symmetry groups
are conceivable. In fact, the arguments in this paper
prove that other symmetry groups must exist for elec-
tromagnetic fields and perhaps others, because con-
servation laws are known to exist which do not fit the
pattern produced in this paper for conservation laws
arising from geometric symmetry.

2. GEOMETRIC SYMMETRY GROUPS FOR
INTEGRALS

We shall assume real numbers (x!, 22, 1%, x%) are co-
ordinates of points in a Riemannian manifold with
metric tensor g,;. The coordinate system will be kept
fixed and the metric tensor will not be given any local
variation. To illustrate the ideas we shall study an
integral

W= [ dxg'/? L(dg, V40,), (3)

but similar calculations can be made for other kinds of

Copyright © 1974 American Institute of Physics 683
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geometrical objects ¢,. A geometric transformation
group is specified by

X =2+ Ax* =%+ (2 ek

) (4)
- X

Pal*) = bg(x) 5=5

where generators £? are functions of the x* and ¢!, . . .,

€ are independent parameters. We assume tensor Vb,
is transformed by rule

ax ox”
Vabs= Vd)"aa?"‘ FI:

It is convenient to let V ¢,=F, in the following, so we
shall do so. The usual total variations of ¢, and F ,
are defined by

Bo(X) = ¢,(x) + Ad,,
F,i(%)=F 4(x)+ AF ,

Variations A¢, and AF , are not vectors or tensors,
however. This causes difficulties in attempts to produce
convariant results in the following. It was shown by
Plybon in a recent paper* that covariant forms of the
Noether theorems could be produced by redefining total
variations as follows. Given A¢, as above the local
variation of ¢, is

8, = o) = (%)

and 5¢, can be computed from A¢, by 6¢, =420,
- 3,¢,4x%, Let

(A¢)a=6¢a+vl¢>an". (5)
Similarly, let

(AF)aB=6FaB+ V)LFozB Axl‘ (6)

For geometric transformation (4) we find
(Ad)y ==,V ,A%" (M
and

(AF)aﬁz - FaVVBAxv - FuBVanv' (8)
Now using these vector total variations we define the
total variation of integral (3) by

aw=[ dx F/2L[¢, +(89),, F,, +(AF),,]
..fﬂdx &2L(¢,, F,.)- 9

We say geometric transformations (4) form a geometric
symmetry group if AW=0. This is similar to the usual
definition of a symmetry group for an integral, but not
quite the same due to use of vector total variations.
This can be expected to have some effect on the re-
sulting symmetry group. In flat spaces nothing has been
changed but in Riemannian spaces in general we have

a new concept of a symmetry transformation. The
precise nature of a symmetry transformation in a gen-
erally covariant theory does not seem clear in current
literature, so some definition is in order. The defini-
tion selected here seems necessary to this author in
order to produce covariant results, We shall now com-
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pute AW and show how geometric symmetry groups can
be determined. We have

F/2=g(R) /2 =g/ %1+ T}, Ax*)
and
dx =dx(1 + 8 ,Ax%).
Hence,
dx g2 =dxg' }(1+ v Ax9). (10)

Substitution of (10) into (9) and some rearrangement
yields

AW = fn dxg”z(L van“+ (A¢) + o (AF)M)
(11)
Now using (7) and (8) we find
AW = [ dxg'/? $%, v, Ax® (12)
where
oL 3L
8 _ ] —————
5, =18, - 64) 50 3F,, Lo 5F,, Dve (13)

Given (3) we can compute S®, from (13). Tensor S*,
determines AW for a given point transformation. From
the form of S°, we can determine which point trans-
formations will lead to geometric symmetries.

3. SOME SPECIAL CASES

Suppose S$# =53, Then

S8V Ax = $SP(V, A%, + V Ax,).
Hence
AW =0 if V,Ax, +V Ax,=0. (14)

Equation (14) is Killing’s equation and we have found
X®*=x%+ Ax® produces a geometric symmetry if Ax®

is a Killing vector. In this case our point transformation
is a motion for the manifold. Such transformations are
well known in the literature and have been studied ex-
tensively. > In the case of a Minkowski space we have

the Lorentz group as the group of motions.

Suppose further S*#=S%* and $% =0, Now we find if

VAX,+ V Ax = (x)g,,

for some scalar i(x), then
SB, V,Ax?=35%, P(x)=0.

If Ax¥ satisfies the above condition then
X =x%+ Ax®

is a conformal point transformation. Hence the group. of
conformal transformations yields a geometric symmetry
group if S*#=8% and S* =0.

The preceding results look familiar since all of the
above is well known if §¢ is the energy—momentum
tensor for a field. However, S° as defined above has
not been shown to be such an energy—momentum tensor.
In fact, in covariant theories it is not easy to explain
what an energy—momentum tensor should be in general.
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The special cases of §% examined above are probably
the most important ones for classical field theories,
but it is conceivable that some other special properties
of S% might arise in a given theory leading to other
geometric symmetry groups.

A particularly interesting application of the preceding
to electromagnetic fields can be made. Let ¢, be the
4-potential and let

fu=Vud,=V,0,.
Let L=~ %fwf‘“’.
Then
W= [ dxg} (15)

is an action integral for the electromagnetic field in
vacuum. From (13) we find

S8, == 31 f285,+ [ 2 ,, (16)

which we recognize as the conventional energy—momen-~
tum tensor for the field. Since $#* =S58 and $%, =0 in
this case, then the conformal group of point transforma-
tions yields a geometric symmetry group for the field
by our preceding arguments. This result is well known
in flat spaces. The argument given here shows it to be
true in any Riemannian manifold. The nature of the
conformal group varies from one manifold to another,
however, and in fact some manifolds do not admit any
conformal point transformations.

4. FORM OF THE CONSERVATION LAWS

When a symmetry group exists this implies existence
of conservation laws, It will be shown now that a rather
general form can be given for all the conservation laws
arising from (3) because of geometric symmetries. It
was shown by the author? that if any symmetry trans-
formation as defined above exists, then Vv _P*=0 where

P =T Ax* + %‘—- (Ad), (17)
aB
and
oL

Tm)‘:Lﬁg_gia_BFm. (18)
Suppose

Ax* = Ereb,
Then

(A¢)B == ¢UVB§‘§€”
and

oL
Po= (1= 0,V = Pret (19)
B

Due to independence of parameters ¢* we conclude
Vo P2=0 fork=1,2,...,7.

These are the desired conservation laws. It is worth-
while to express vectors P¢ in terms of S% to illustrate

J. Math. Phys., Vol. 15, No. 6, June 1974

685

the explicit nature of these conservation laws.

In the following let

oF 4
Now from (19) we have
Pg:Taxg?"Las A .
But
LByt =Lo8[V (¢ kL) - Voo, £2].
Hence
Py=T3E+ L Fy, £, - LVy(,£})
or
P2 = (Lo ~ L F,,+ L*8F,, )£} - L**V (¢ £1).

Using the definition of S%, we see
o & A P o A oL A
Py=(S ER+BOF, B+ Eg—‘pxﬁk
[+1
- Vo(L*¢ M) + VL £

where B°* = L°% 4+ L%,

Assuming ¢  satisfies the field equations, then

~ Ba.
59 = VoL

so we find
Py =(S4E}) + BPOF, £} + V B*($,£}) = V(L *#,£}).(20)

Derivation of (20) was motivated by the author’s ob-
servation that most conserved vectors for field theories
have the form

5% &,
which appears as the first term of (20). So it was felt
that possibly all conserved vectors associated with
geometric symmetries were of this form. In the attempt
to show this (20) arose. We see the situation is not so
simple as expected. Tensor S% and generators £ do not
determine conserved vectors by themselves. Although
more complicated than expected (20) does represent all
possible conserved vectors arising from geometric
symmetry and can be useful in recognizing such con-
servation laws.

For instance, in recent years several papers have
appeared describing infinitely many divergenceless
expressions believed by some to represent new con-
served quantities for electromagnetic fields in vacuum, ¢
These so-called conservation laws should be related to
some symmetry transformations for the action integral.
In the case of electromagnetic fields L8 =— [ 8¢ go B8
=0 and (20) reduces to

Py =83 By = V5(L* ,£))- (21)

All conserved vectors for electromagnetic fields in
vacuum connected with geometric symmetries must be
of this form. In Minkowski space we have

aaP: = aa(sa)\gz) - aaaﬂ(LaB ¢)¢ Ei)

and the second term vanishes because of antisymmetry
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of L*®, Hence all conservation laws due to geometric
symmetries have the form

3 ,(S%E) =0. (22)

The symmetry group in this case is the conformal group
and (22) yields the fifteen Bessel-Hagen conservation
laws. These are the only possible conservation laws for
electromagnetic fields in vacuum related to geometric
symmetries. The recent conservation laws due to Lipkin
and others are not of this form so they cannot be related
to geometric symmetries.

5. SUMMARY OF RESULTS

It has been pointed out that the symmetry transforma-
tions employed by most authors today when applying the
Noether theorems are more restricted than necessary.
This suggests defining geometric symmetry transforma-
tions as those in current use with some clarification
concerning the real meaning of these transformations.

It has been shown the geometric symmetry transforma-
tions for a given integral are determined by tensor 5%
defined by (13). By use of this tensor we fin¢ once more
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the geometric symmetry group for electromagnetic
fields is the conformal group in any Riemannian mani-
fold. If we do not insist on geometric transformations
then other symmetry transformations may exist and ap-
parently do. It is possible to write down a general form
(20) for all conserved vectors related to geometric
symmetry. In the case of electromagnetic fields we find
the Bessel-Hagen conservation laws are the only ones
which can arise from geometric symmetry.
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The most general vertex model defined on a honeycomb lattice is the eight-vertex model. In this
paper it is shown that the symmetric eight-vertex model reduces to an Ising model with a nonzero
real or pure imaginary magnetic field H. The equivalent Ising model is either ferromagnetic with

e 2H /kT

real or antiferromagnetic with e *#/*T unimodular. The exact transition temperature and the

order of phase transition in the former case are determined. As an application of the result we verify
the absence of a phase transition in the monomer-dimer system on the honeycomb lattice.

1. INTRODUCTION

The vertex model in statistical mechanics plays an
important role in the study of phase transitions in lat-
tice systems. A case of current interest is the eight-
vertex model on a square lattice.:® This is a rather
special model in which only a limited number of the
possible vertex types are allowed. The most general
one on a square lattice would be the sixteen-vertex
model. ® Unfortunately, except in some special cases, *°
the behavior of this general model is not known.

In this paper we consider the counterpart of the six-
teen-vertex model of a square lattice for the honey-
comb lattice. That is, we consider an eight-vertex
model defined on the hexagonal lattice. It turns out that
we can say a lot more in this case. While the exact
solution of this model still proves to be elusive in most
cases, we can make definite statements about its phase
transition. In particular, the exact transition tempera-
ture can be quite generally determined. An application
of our result is the verification of the absence of a
phase transition in the monomer-dimer system on the
honeycomb lattice.

2. DEFINITION OF THE MODEL

In the study of a vertex model one is interested in
the evaluation of a graph generating function. Consider
a honeycomb lattice and draw bonds (graphs) along the
lattice edges such that each edge can be independently
“traced” or left “open.” Denote the traced (resp. open)
edges by solid (resp. broken) lines; then, as shown in
Fig. 1, there are eight possible vertex configurations.
With each type of vertex configuration we associate a
vertex weight a, b, ¢, or d (see Fig. 1). Our object is
to evaluate the generating partition function

Z=Z(a,b,c,d)=2 a°b" c"?d?, (1)
G

where the summation is over all possible graphs on the
lattice and, for a given graph G, n; is the number of
vertices having 7 solid lines (or bonds). This defines
an “eight-vertex” model for the honeycomb lattice.

Since all possible vertex types are allowed, this
eight-vertex model is the counterpart of the sixteen-
vertex model of a square lattice. Note that we do not
distinguish the bonds in different directions. Whereas
it is possible to consider the further generalization of
eight different weights, we shall not go into this com-
plication in this paper. As a motivation we point out
some special cases of interest. When c=d=0, the
partition function (1) becomes the monomer-dimer gen-
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erating function for the honeycomb lattice. When b=d
=0, Z reduces to the partition function of a zero-field
Ising model, which can be evaluated by pfaffians.

In a statistical model of phase transitions, the vertex
weights are the Boltzmann factors

a= exp(~ €/kT), b=exp(-e¢,/kT),
c=exp(— €/kT), d=exp(- €;/kT)

where €; is the energy of a vertex having 7 bonds. While
the weights (2) are always positive, the symmetry re-
lations to be derived below are valid more generally for
any real or complex weights.

(2)

3. SYMMETRY RELATIONS

The partition function (1) possesses a number of
symmetry properties. Interchanging the solid and
broken lines in Fig. 1, we obtain the symmetry
relation

Z(a,b,c,dy=2(d,c,b,a). (3)

Also since both the total number of vertices, N, and
the number of vertices with odd number of bonds are
even, we have the negation symmetry

Z{a,b,c,dy=Z(~a,-b,- ¢, ~d)
=Z(~-a,b,-c,d)
=Z(a,~b,c,-d). (4)

The weak graph expansion® yields an additional sym-
metry relation. For its derivation it is most convenient
to use Wegner’s formulation” of the weak-graph expan-
sion, Denote the vertex weights by w(z,j, k), where
i,j,k=2x1 are the edge indices such that +1 corresponds
to no bond and —1 corresponds to a bond on the edge.
Le., w(+,+,+)=a, w(+,+,~)=w(+, -, H)=w(-,+,+)
=b, w(+7_7_)=w(—’+"")=w(_"—,+)=c? and
w(=,=,=)=d. Define a set of new vertex weights
w*(+,+,+)=a*, etc. by

w*(er,B,7) = %’: Vi Ve V(i i, B), (5)
a b b b c c c d

FIG. 1. The eight vertex configurations and the associated
weights for a honeycomb lattice.
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where the 2X2 matrix V having elements V,, satisfies
vV=1, 6)

I being the identity matrix, We then have the weak-
graph symmetry

Z(a,b,c,d)=Z(a*,b*, c*,d*). (1
There are two possible choices for V:
vi=a+(l ) ®
or
o) =y (3 3) ©®

for aribitrary (real or complex) y. The explicit trans-
formation generated by (8) is

a* = (1 +32)3/2[q + 3yb + 3y2¢ +y%d],

o* =1+ %[ya~ (1 - 29*)b + (5° = 2y)c - y*d],
c* =1 +42)%/2[32a + (3= 29)b + (1 - 292)c + yd],
a* =(1+32)%/2[y*a — 39%b + 3yc - d].

The transformation generated by (9) leads to identical
vertex weights subject to the negation symmetry

b* — = b*; d* — — d* hence is not independent. We shall
write (10) in the short-hand notation

w*(9)=V(pw. (1)

It is also seen that two consecutive transformations are
equivalent to a single one:

V) = (ZE) . (12)

(10)

In particular we have
V(y)V(y)=1I. (13)

4. SPECIAL SOLUTIONS

Before we consider the model with general weights,
it is useful to first consider some special cases whose
solutions are known

A.b=uva, c=u*a d=u3a

The vertex weights in this case can be converted into
the bond weight »2, Since all graphs are included in (1),
we then obtain

Z=a"Z({1,u,1?,u’)

=a¥(l +u2)3¥/2, (14)
Here we see a simple example for which the partition
function (1) does not exhibit a phase transition.
B.b=d=0

Here only the vertices with even number (0 or 2) of
bonds are allowed. The graphs in (1) are then precisely
those encountered in the high-temperature expansion of
a zero-field Ising model. Writing

¢/a=tanhK, 15)
we then obtain

Z=2(a,0,c,0)
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=a¥Z(1,0,tanhK,0)
=a"2"¥(coshK)"*¥/2z . (0,K), (16)

where more generally Z,, (L,K) is the partition func-
tion of an Ising model on the honeycomb lattice with
interactions - 2TK and a magnetic field - 2TL. From
the known expression® of Z,,,..(0,K) given by (A1) we
obtain, in the large N limit,

2r 27
%1:12:(167:2)-1/ dG/; doIn{a® +3c* +2(ct - aPc?)
[

x[cos8 +cosd +cos(6+ @)}, (17)

We remark that (17) is valid for arbitrary (real or
complex) a and ¢, although the physical range of an
Ising model is restricted to real values satisfying
|c/al <1. The expression (17) is nonanalytic at

a/C=:t ﬁ. (18)

Other established properties of Z, (L,K) for L+0 are
summarized in the Appendix.

C.a=d b=c

The vertex weights are now symmetric under the
interchange of the solid and the broken lines in Fig. 1.
In this case we can again reduce the partition function
to the form of (16). Indeed, taking y=1 in (10}, we
obtain

Z=2((a+3b)/V2,0,(a~0)/V2,0). (19)
The phase transition now occurs at

a/b=3+2V3. (20)
D. ad =bc

In this case we define the Ising parameters L and K
by

z=tanhK=c/a, T=tanhL=5/Vac. (21)
Then
Z=a"z(1,VzT,2,2%%7)
=a"2"¥(coshL)¥ (coshK)-*¥/2Z, (L,K)
=(2a%c)"¥(ac - b2 (a® - *)*N/2 Z, 10 (L, K). (22)

Here the second step follows from the generalization of
(16) to the high-temperature expansion of Z,,, (L,K).
E.b% =ac
In this case we have
Z=a"Z{1,u?,u?,d/a), (23)

where u=a/b. The partition function on the rhs of (23)
is in a form similar to that considered in Ref. 5. We
then obtain in a similar fashion®

Z=(/a)™ (1 +a?/b*)*N/% (ad/bc-1)"/?Z
where

exp(4K) =1+ a?/ b2,

exp(2L) = (1 + a?/b%)%/2 (ad/bc ~ 1),

€,x, @49

Ising

(25)

We see that the Ising model is ferromagnetic for real
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a/b. For the Boltzmann weights (2) (subject to 2¢, =¢,
+¢,), we find the model in general exhibits no phase
transition, except for ¢, < ¢, (a>b) and ¥, < (e, —€,) (€, —¢€,)™*
<0 the model has a first-order phase transition at
exp(2L) =1 or

(a? + %)%/ 2= a2d - b°. (26)

Here 7,=3 ~21In(27 +15v3)/In(6 +4V3) = ~0.1022204 ++ »,

5. GENERAL CASE

We are now in a position to discuss the general solu-
tion for arbitrary (positive) vertex weights (2). The idea
is to introduce the weak-graph transformation (10) and
choose y to make the new vertex weights satisfying
either a*d* =b*c* or b**=a*c*. We can then use the
results of the Appendix to determine the critical behav-
ior of the vertex model. For clarity we use subscripts
1 and 2 to distinguish the two cases. That is, in analogy
to (11), we write

wi=w*(y,)=V(y)o, i=1,2, (27)
and consider the two cases separately.
(i) a*d¥ =b*c¥: From (27) and (10) we find y, given
by
yi-24y,-1=0, (28)

where A= (b2~ ac +bd - ¢?)/(ad - bc). The new vertex
weights w} = {a¥, b¥, c¥, d*} are real if we take the posi-
tive solution

y=A+A2+1)1/2>0, (29)
Then, from (10), a* >0, Also c¥ is real since

af +ct =1+ %(a+by, +c+dy,)>0. (30)

The partition function is now
Z =2a¥3cy)¥(akck = b2V (a¥% ~ c¥2)3N/2
XZ 110e (LY KY), (31)

where

exp(2K}) = (a} + ct)/(af - c¥),

exp(2L¥) = [(a*c¥)V/ 2 + b¥ ]/ [(a¥c}) /2 - b¥]. (32)

We observe that exp(2K¥) <1, L¥ =pure imaginary if

c¥ <0. Since not much is known about Z,,, .(L¥,K}¥) for
K¥ and L¥ in these ranges, we shall be interested only
in c¥ >0. We observe in particular that, for ¢ and c¥

positive, exp(2L¥)#~1,
(ii) 8}*=a¥c¥: From (27) and (10) we find y, given by

(bd ~c?) yZ+ (ad - be) y, + (ac - %) =0. (33)
The partition function is then
Z=(b3/ a4V (L + g/ b/

X(afdy/bfcy -10/2Z (L%, K¥). (34)
Here the weights af, b}, c¥,d} are real if the
discriminant

A= (ad-bc)? - 4(bd - c*)(ac = b?) (35)

is positive. The parameters K¥ and L¥ are given by (25)
with a— a¥, etc, After some steps we find the simple
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result:

exp(4K¥)=1+A/(bd - c* +ac -b?)?>0. (36)

We shall consider A >0 which corresponds to K¥ being
ferromagnetic. The similar expression of L}, which is
not needed for our discussions, is rather complicated
and will not be given.

The two transformations (i) and (ii) are obviously
related. To see the relationship, we observe from (27),
(12), and (13) that

wf =V(y,) V(y,) ¥
=U D=2 )w*.
(1 +9.195)

Since (34) is invariant under the negation of d¥ and d¥,
there exists a single transformation which relates w}

to w¥. To effect this transformation, we set ad=bc in
(33) and obtain y,= (a/c)*/2. The new weights are then

at=4(1+a/c)®2(a/c)'2 (b + Vac),

b¥ =201 +a/c)*2(a/c-1)(b + Vac),

c3=b}*/af,

df =@ +a/c)®?(a®/?/c% %~ 3ab/c +3Vac - bc/a).
Now (36) becomes, for ad=bc,

@37

(38)

exp(4K¥)=[(a+c)/(a=). (392)
Also using (38), we find
exp(2L¥)= (Vac +b)/(Vac =b), if a/c>1, (39D)

= (b + Vac)/ (b - Vac), if a/c<1.

Letting a=a¥, b=>b¥, c=c¥, d=df in (39) and com-
paring with (32), we then obtain the relation

exp(4K}) = exp(4K}),

exp(2L¥)= texp(2L}), for a}/c} 21,
Note that while exp(2K}) can be taken to be positive,
exp(2K*) can be either positive or negative, We observe
from (40), (32), and (36) that A>0 and c¢* >0 are equiv-

alent. Hence, for A >0, K¥ is ferromagnetic and
exp(2L}) is real.

(40)

Using the results of the Appendix, we conclude that,
for A >0, the nonanalyticity of Z can occur only at
exp(2L¥)=+1 or ~1, To distinguish these two cases,
we turn to L¥. Since exp(2K}) may be negative, it is
then convenient to consider the following situations
separately:

(i) a¥ > c¢*>0: From (40) and exp(2L¥)#-1, the non~
analyticity can occur only at exp(2L¥*)=exp(2L¥)=1.
By using (32) this is equivalent to

b¥=d* =0, (41)
A little algebra using (28) reduces (41) to
2(ab — cd)[(b? = ac + bd — ¢?)? - {ad - be)?]

+ (ad — bc)(b? = ac + bd - c?)

x (a2 + d? = 352 = 3¢® - 2ac = 2bd) =0 (42)

which defines T=1T_. To see whether indeed a phase
transition occurs at T,, we observe that K¥ and K} are
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equal and positive. Then from the result of the Appendix
we need to compute z,=(c¥/a¥),. T, The vertex model
will exhibit a first-order transition if z.>1/V3, a
second-order transition with an infinite specific heat if
z,=1/VY3, and no transition at all if z, <1/v3, even if
(42) has a solution. The following useful expression of
z, is obtained by combining (29), (10) and (41):

Zc=

f(ac +bd)A® +4(ab — cd)A + (3b + d)(d = b) + (a+3c)(a - c)] .
Te

L 42+ PVAZ+12(ab — cd)A+ (Bb+dP + (a+3c)?
(43)

(ii) ¢f > af >0: In this case the nonanalyticity occurs
only at exp(2L¥)=-exp(2L¥)=~1. Then T, is again
given by (41) or (42). Now K¥ >0 and exp(2L})=~1;
hence the vertex model always has a first-order transi-
tion. Note that we can reach the same conclusion by
considering K¥. In this case exp(2K¥) <—1 and exp(2L¥)
=1. We need only to reverse the signs of exp(2K¥) and
exp(2L¥) which leaves Z, .. (L¥,K¥) unchanged, as can
be seen from the low-temperature expansion.

Combining the results in (i) and (ii), we conclude
that a phase transition occurs for A >0 only if

zczl/\/-ﬁ_.

A special case is that (41) or (42) is an identity.
Then, for all A, L} =0 and Z reduces to that of a zero-
field Ising model. The vertex model now exhibits the
Ising-type transition (logarithmic specific heat singu-
larity) at T, defined by

A/(bd=c®+ac-b2)2=(2+ V321,

Unfortunately we are unable to make any general
statement for A <0. For A <0, K} is antiferromagnetic
and exp(2L¥) is unimodular and lies on the unit circle.
Presumably the zeros of an Ising antiferromagnet also
distribute along the unit circle in the thermodynamic
limit.!° The vertex model then in general shows a
unique transition.

44)

6. SUMMARY

We have established the following results for the
vertex model (2):

(i) I (42) is an identity, then an Ising-type transition
occurs at T, defined by (44), where A is given in (35).

(ii) For A> 0 and (42) not an identity, a phase transi-
tion occurs at T, defined by (42) if z,>1/V3, where z,
is given in (43). Otherwise (z, <1/ \f:%) there is no phase
transition. The transition is of first-order except that

he specific heat diverges for z,=1/v3.

(iii) For A <0 and (42) not an identity, the vertex
model is related to an Ising antiferromagnet with a
pure imaginary magnetic field. Nature of the transition
is not known,

It is instructive to illustrate with some examples.

i) a=d, b=c: Since (42) is an identity, we find from
(44) the critical condition

(a®+2ab ~3b2)/4p2 =2+ V3)2 -1,
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which agrees with (20).

(ii) 32=ac: We find A = (a®d — b®)?/a® > 0 and exp(4K¥)
=1+a%/b%. This is in agreement with (25). It can be
verified that the condition (42) is the same as that ob-
tained from exp(2L)=1 in (25).

(iii) b=c=d: We find A=b?*(a—b)>>0 and exp(4K})
=2, Since K} is a constant with z;*=3+2v2> V3,
there is no phase transition.

(iv) Monomer-dimer system: For ¢ =d=0 the parti-
tion function (1) becomes the monomer-dimer generat-
ing function Z,,,(a, b?) where a and »? are, respectively,
the monomer and dimer activities. It is known that this
system does not have a phase transition.!! We verify
this by observing that A=0, K¥=0. Also (42) has no
solution for c=d=0, ab#0.

To obtain a closed expression for Z,,, we find that,
for c=d=0, either exp(2K¥)=1, exp(2L¥)=-1or
exp(2K*)=~1, exp(2L*)=1. In either case the Ising
partition function is identically zero. Therefore we
must take the limit ¢ =d— 0 appropriately. This leads
to the expression

Zyn(a,b?) =1lim (b/4c)¥ Z

c=0

(L, K3) (45)

Ising

where (for small ¢)
exp(2K¥)=1+4c/b,
exp(2L¥)=-1+2aVc/b%/2,
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APPENDIX: ISING PARTITION FUNCTION

We summarize in this Appendix the relevant proper-
ties of the Ising partition function Z, (L,K).

A closed expression is known for L =0, In the large
N limit, one has®

1 3 1 2r 27
I—\;anIsm(O,K)=;1n2 +1-G2 ./(; de 0 d¢

X1In[c® +1 - s*(cos @+ cos ¢ + cos (6 + ¢))],
(A1)
where

c=cosh2K, s=sinh2K,

The second derivative of (Al) diverges logarithmically
at tanhK =+1/V3,

A unique property of the honeycomb lattice (coordi-
nation number =odd) is that the partition functions at
L=ii7 and L=0 are related. To see this connection,

consider the high-temperature expansion of Z, , (L,K).
Using the identities for L =i}7,
27 oexp(Lo)=2 sinhL =2i, (A2)

o=l



691 F.Y. Wu: Eight-vertex model

2. exp(Lo)=2 coshL =0,

g=%1
we see that only the vertices with odd number of bonds
contribute in the expansion. Thus we obtain

Zyg1as 47, K) = (20)7 (cOShK)™ /220, V7,0,2°/) (44

= Z;“ng(O:K),
where
tanhK tanhK =1.

The last step follows from the symmetry relation (3)
and (16). Note that Z,, (i37,K) is analytic for real K.

Most of the established properties for L+#0 are for
ferromagnetic interactions (K >0). For K>0, Z,,, .
can be nonanalytic in L or K only at |exp(2L)| =1,12:13
This means exp(2L)==1 for real exp(2L). At exp(2L)
=1 the analyticity extends to all 0 <z <1/v3 while the
first derivative w.r.t. L is discontinous for all 1/v3
<z<1, At exp(2L)=-1 this first derivative is presum-
ably discontinuous for all 0 <z <1, This is similar to
the result of a square lattice’* and can be easily seen to
hold in both the high and low temperature limits. We
hope to return in the future for an exact calculation of
this discontinuity.
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We investigate some Kinetic properties of an isotopically disordered harmonic crystal. We prove
rigorously that for almost all disordered chains the transmission coefficient of a plane wave with
frequency o, t y(w), decays exponentially in N, the length of the disordered chain, with the decay
constant proportional to ® for small w. The response of this system to an incident wave is related
to the nature of the heat flux J(N) in a disordered chain of length N placed between heat
reservoirs whose temperatures differ by AT >0. We clarify the relationship between the works of
various authors in the heat conduction problem and establish that for all models J(N)-0 as N -
in a disordered system. The exact asymptotic dependence of J(N) on N eludes us, however. We
also investigate the heat flow in a simple stochastic model for which Fourier’s law is shown to hold.
Similar results are proven for two-dimensional systems disordered in one direction.

1. INTRODUCTION

There does not exist at the present time any dynam-
ical system for which kinetic laws can be proven to hold.
A kinetic law relates fluxes to gradients, e.g.,
Fourier’s law of heat conduction. Indeed the two “stan-
dard models” of equilibrium statistical mechanics, that
of the noninteracting gas for an ideal fluid and the per-
fect harmonic crystal for the ideal solid do not obey any
macroscopic kinetic laws. The next dynamical model,
in order of complexity, is the isotopically disordered
harmonic system where the masses of the individual
particles are independent identically distributed random
variables. This paper studies the transport properties
of such a system, particularly those of the disordered
harmonic chain: We give new rigorous proofs of some
already known (or conjectured) results and derive a few
new ones.

We consider a disordered chain in which left and right
end particles are coupled by some mechanism to heat
baths at different temperatures; call them T, and T,
T, - T,=AT. Using some description of the coupling
to the heat baths,! we can compute the steady state
energy flow across the chain. If J(N) is the flow across
a particular chain of length N and (J(N)) the average of
J(N) over the different choices of the N masses we
identify N AT as the ‘“temperature gradient” across the
chain and define the average conductivity of chains with
length N by K(N)=(J(N))/(AT/N). Fourier’s law will
hold if K(N)—~K as N— » with K a finite, strictly
positive, constant. Fourier’s law certainly fails for
periodic systems. In these J(N) tends to a nonzero con-
stant as N increases, i.e., K(N) grows linearly with N.
This was proven for the homogeneous chain in' and for
the general periodic chain in.? The behavior of J(N)
does not depend on the dimensionality of the system:
Hellemann® investigated two-dimensional homogeneous
cylindrical systems with general couplings and found the
same behavior for J(N) (see also Nakazawa*). For truly
disordered chains the situation is entirely different.
Here Casher and Lebowitz? proved that J(N)— 0 as
N - = for almost every random chain (almost all is
defined here with respect to the probability measure on
the chains constructed from the individual distribution
of each mass). Ideally we would like to decide if
lim .., K(N) is finite, zero, or infinite. Regretably we
still cannot do this in a definite way. Some heuristic
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arguments suggest® that for the linear chain K(N) de-
creases as N-1/2, This, if true, implies that the random
chain is an even poorer heat conductor than a real
system and would presumably be a peculiarity related
to the chain being one-dimensional. We would then have
to look at two- and three-dimensional random harmonic
systems to obtain models in which Fourier’s law holds.

Intuitively, we picture the heat baths exciting the ends
of the chain and setting up vibrations which travel along
the chain. These vibrations are linear combinations of
the chain’s normal modes. The energy flow therefore
depends on the fraction of normal modes which have
significant amplitudes at both ends of the chain. We
could say that a normal mode which has significant
amplitude at both ends is an efficient heat carrier. In
periodic systems (i.e., m, is periodic in i) nearly
every mode is efficient and so that heat flow J(N)
through a periodic chain of length N approaches a non-
zero limit with increasing chain length. In a disordered
system on the other hand nearly every mode is “lo-
calized” and so relatively few are efficient heat con-
ductors. This leads to J(N)— 0 as N — « for these
systems.

The difference between the normal modes in periodic
and disordered systems is reflected in the spectrum of
the corresponding infinite chains and the character of
plane wave solutions to the lattice equations of motion
[a plane wave solution is one of the type u(t) =u(0)e’“t].
In a periodic chain the frequency spectrum consists of
allowed bands separated by gaps. The bands are actually
the spectrum of an infinite-dimensional self-adjoint
matrix operator. The spectrum of this operator is ab-
solutely continuous. At allowed frequencies the plane
wave solutions are bounded periodic functions on the
chain. For frequencies in the band gaps the plane wave
solutions grow or decrease exponentially. In a dis-
ordered chain the corresponding spectrum is more
complicated. For almost all chains the corresponding
infinite matrix operator does not have any absolutely
continuous spectrum.? Indeed for every frequency w>0
the plane wave solutions of the equations of motion of
the semiinfinite chain (1-2) grow exponentially for al-
most all chains. Borland® was the first to appreciate
this exponential growth (he used it to explain the fre-
quent occurence of localized modes in random systems).
A rigorous proof of the existence of exponentially

Copyright © 1974 American Institute of Physics 692
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growing solutions for infinite chains was, however, only
obtained when Matsuda and Ishii® proved that the power-
ful results of Furstenberg’ apply to this system.

The harmonic chain

We will now specify more precisely the dynamical
system with which we are primarily concerned here.
The harmonic chain is a one-dimensional system of
particles coupled together by harmonic springs. The
force between two adjacent particles is proportional to
the change in the length of the connecting spring: When
both particles are in their equilibrium position this
force is zero. At the nth site there is a particle with
mass m  whose displacement from its equilibrium posi-
tion at time ¢ is u, (¢). The center of mass movement of
a finite chain of length N can be removed by constraining
the first and last particles by additional harmonic forces.
The Hamiltonian for the system with the spring constant
set equal to one, is then

N-1

N
— 1 72 L 241,212
H_"Zl tm_ 42+ '; Hu,—u,, P +3u+5ul,

(1.1)

This is often described as a chain with fixed boundary
conditions because it is also obtained by considering a
chain beginning with a particle labelled 0 and ending with
one labelled N+ 1 and demanding that u,=u,,=0. The
equation of motion for the chain is

M, i(t) + & yu(t) =0. (1.2)

u(f) is the column vector [u,(£), ..., u,{t)], M, is the
diagonal matrix with entries m; «- m,. &, is the NXN
tridiagonal matrix with entries ($,),,=2, ($,);,
=-1for |i-jl =1 and (,),,=0 otherwise.

This harmonic chain has N normal modes, i.e.,
solutions of the form u(f)=u(0) e**. Any solution of
(1. 2) with specified initial conditions is a linear com-
bination of these solutions. For a normal mode (1. 2)
becomes

My w*u(0)=%, u(0)
or

W (MA2u(0)=M3/? &, (M;}/2 ML/? u(0)) (1.3)

The normal mode frequencies are thus (determined by)
the eigenvalues of the symmetric matrix H
=M% % M2

These ideas extend to a semiinfinite (or infinite)
harmonic chain. Again m, and u, are the mass of the
nth particle and its displacement from its equilibrium
position; #n runs from 1 (or — «) to ©. We will assume
that all m; are bounded above and below. The equations
of motion for the semiinfinite chain are

m i, + 2u, ~u,  ~t,, =0 (n>1), (1.4)

m, i, + 2u, ~u, =0,

The energy

©

E(t)= 2, sm, ¥2+ Zﬂ) Hu,—u,, P+ 52
n

n=1

is a conserved quantity and so the set of solutions to
(1. 4) with finite initial energy span a Hilbert space
whose norm is just the energy functional. For these
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solutions (1. 4) can be written

M (t) +2u()=0. (1.5)

& is the bounded self-adjoint tridiagonal matrix operator
on k with entries ¢,,=2, &,,=~11if |i-jl=1and &,
=0 otherwise. M is the infinite diagonal matrix with
entries m ;. It is a bounded operator on .. The “allowed”
frequencies w? are points in the spectrum of the sym-
metric operator H =M"1/2& M"1/2 with |Hl| <4/m, m
=min, {m }.

Models of stationary heat flow

In this paper we are interested primarily in the be-
havior of the thermal conductivity of a random harmonic
crystal. Since we are interested in a stationary flow we
need to have our system coupled at its ends (left and
right) to some kind of inexhaustible heat reservoirs
which are maintained at temperatures T, and T, so
that energy will flow steadily across the system from
left to right due to the temperature difference T, - T,
=AT>0.

In this note we use two models for the heat bath and
its coupling to the chain. These were developed by
Lebowitz et al.!'? and by Rubin and Greer.® In
Lebowitz’s model the heat bath is a Maxwellian gas of
very light molecules. These gas molecules collide with
the end particles of the chain. At each collision the
momentum of the end particle is altered in a discon-
tinuous way. Using the Maxwell—Boltzmann distribu-
tion for the velocities of the gas particles prior to a col-
lision we can compute the probability per unit of time
that the momentum of an end (chain) particle will jump
from p to p’. This will depend on the gas temperature
and the frequency of these collisions. The frequency is
incorporated into a constant » measuring the coupling
between the particle and the heat bath. Finally we get
a modified Liouville equation for the Gibbs ensemble
density w(u;... %, b, ... oy, t) of the system, !2
by =m i),

o l: ] N ( a2u
W«igl ox, (@gp0su)+ zdyy ax;9x, /) (1.6)

X=Xy, o0 Xy =(y ... Uy, p;... D, and a;; and d,; are
entries in the 2N X 2N matrix
0 -My 0 0
a= , d= .
o, L oM, LT
L and T are diagonal NXN matrices with entries
L”= K(ﬁn + 5“,).
Ty=Tp8,;,+Tgbyy
A represents the coupling of the baths to the system
(A =0). When A =0 the system is isolated and follows the

equations of motion given in (1. 2). The solution of
Liouville’s equation (1. 6) with A =0 has the form

oy eee 2, ] = w2y (= £) ore 2y (= £);0]

where x,(?) is the solution of (1. 2) with initial values
Xy*** %, 5. In this case u will not approach any stationary
state. For A >0, however, any initial distribution ap-
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proaches a unique stationary distribution which is a
generalized Gaussian. The expected value of the heat
flow across the system in the stationary state, for a
specified set of masses {m,}, is?
JN)=7"(T, - TR)kzmlm”[: W? | Z(w)L |2 dw
=1 T, =T I\m,m, ]_: W j w) dw. (1.7
Here Z(w) is the NXN matrix & ,— w*M, ~ iwM,L and

Fnlw)

={2mm 22W? + K3 |+ 220 (mEKE , +MIKS L)

(1.8)

JN-1

4, .4,.,2,.,2 -1
+ wtmimA KG b

K,,(w?) is the determinant of the submatrix of & — w? M
beginning with the ith row and column and ending at the
jth row and column.

Rubin and Greer’s model® is rather different. In it
the chain of N particles (which constitutes the system)
is connected at either end to semiinfinite chains of
identical particles. Initially the left-and right-hand
chains are in thermal equilibrium at temperatures T,
and T, respectively. We can follow the time develope-
ment of the infinite system from a specified initial state
and at any later time we can compute such quantities as
the local temperature or energy flow. More interesting-
ly we can find their average values over the ensemble
of initial states and then calculate the steady state value
approached as {— «, of these averaged quantities. In
the next section we give a simpler rederivation of
Rubin’s result relating the stationary heat flow J(N) in
his model to the integral of the square of the transmis-
sion coefficient t%(w). This uses a method introduced by
Ford, Kac, and Mazur. ® Qur approach is quite similar
to that of Casher and Lebowitz, 2

In Sec. 3 we use Furstenberg’s theorem to prove
rigorously an earlier result of Rubin, based on an ex-
plicit but not entirely rigorous computation that, in a
chain with random masses, N! lim |#,(w) |~ —v(w) as
N =, with y(w)>0 for w+0. It follows from this that
J(N) like J(N) =~ 0 as N — « for almost all random chains.
We also show that y(w) is a continuous function of w for
small w and y(w)/w? — const for w— 0. The latter result
was proven earlier by Matsuda and Ishii® using a
perturbation expansion.

In Sec. 4 we use the Casher—Lebowitz expression for
the heat flux, J(N) to derive an explicit expression for
the nonvanishing heat flow in an infinite periodic diatom-
ic chain and in a uniform chain containing a single
impurity. We then, in Sec. 5, derive rigorously an ex-
pression for the weak coupling limit of the heat flux
J(N,2) where X is the coupling to the heat reservoirs,
i.e., we compute lim, , A™* J(N, ) and find it in agree-
ment with the perturbation result of Matsuda and Ishii. ®
We note however that the interchange of the limits
A — 0 and N — « should not be expected to be valid when
the heat flow vanishes as N — ., This is shown ex-
plicitly in Sec. 6 where we construct a nondynamical
model which obeys Fourier’s law of heat conduction.

Section 7 discusses the generalization of the Rubin
formalism to a two-dimensional harmonic square lat-
tice in which the masses in each column are the same
and the heat flow is along the x-axis. We find, as ex-
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pected, ? that when the system is periodic the heat flux
per unit cross-sectional area does not vanish when the
length of the system becomes infinite. When the masses
in the different columns are random, then the analog of
the Casher—Lebowitz argument for chains, based on the
Furstenberg theorem, shows that the flux vanishes.

The difference between the two flows is, as in the case
of chains, a reflection of the difference between the
spectral measure of periodic and random harmonic
systems and, in Sec. 8, we give an explicit proof that
the spectrum of a simple harmonic chain is absolutely
continuous, 2

Finally in Sec. 9 we discuss briefly the relation be-
tween the heat flow in Rubin’s and Lebowitz’s model.
We also discuss there what strengthening of the
Furstenberg theorem is needed for obtaining the
asymptotic N-dependence of J(N) or J(N). Appendices
A—C contain some technical details.

2. THE HEAT FLOW IN RUBIN'S MODEL

The first step is to look at a finite analog of the in-
finite chain. Particles of unit mass are placed at sites
-Sto 0, from sites 1 to N particles of random mass
and from sites N+ 1 to N+S+ 2 particles of unit mass
are placed. The random masses are assumed for
simplicity to be all greater than one and are identically
distributed, independent random variables. At ¢ =0 we
know the position and momenta of every particle in the
chain. The left-hand segment of unit masses is just a
chain driven by an external force ,. Explicitly

n(t) + Ln(t) =g(0), (2.1)
where
'ﬂ(t)= (uo; U gyeen, u-s)v sztbs-rla
gt) =, (),0,...,0).
Q? has the spectral representation
§+1
P=2 W) £ (] (2.2)
4=
where
2 4 .iaf OT N [ 2 1/2,<ja'n>
w’=4sin (—S+ 2) and Ea(y)_<————s+ 2) sin\55 )
1sj<S+1.
If
S+!.
1’1(0):“=1 b, &y (2.3)
S+1
n(0)=2, v, &,
then as is known
up (D =g+ [, Aglt=$)uy(s)ds, (2.4)
where
g()=2 [(cos w,t) b, + w:* (sinw,t)v,] £,(1),
¢ (2.5)

A (=20 w(sinw,t) £X(1).

The initial energy of the particles —S,...,01is
£%,(¥2+ w2 b2). The b, and v, have a Boltzmann
(Gaussian) distribution at temperature 7, and so we
can compute the statistical properties of g. When S —
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uo(t):gl(t)+fotA(t—s)ul(s)ds, (2.6)

A()=(2/m) [ w™(k) (sin2k) sin[t w(k)]dk, (2.7)

w(k) =2 sin(k/2),

(£,(t) =0,

(&1 g (t+s)=(T, /7 f: w2(k) (sin®k) cos[w(k)s ldk,
(2.8)

where we have set Boltzmann’'s constant equal to one.
Similarly,

Uy =g D)+ j:A(t— s)u,(s)ds. (2.9)
&y has identical properties to g, when T, replaces T;.

Here g,(¢) and g(t) are to be interpreted as “inde-

" pendent Gaussian random variables” with mean zero
and covariances given by (2. 8) for g, and a correspon-
ding expression with T, replacing T, for g,. We set
g=(£,0,...,84.

Using (2. 6) and (2. 9) we have a closed set of equations
for the particles 1 to N:

. o *
myit, + 2u;) =, =u, =g, +A*u,,

myih, + 20y =ty — 1y, =0

My by + 20y — Uy, —uy=0,

. _ _ _ *
Myl + 2y -ty =uy,, =g+ A*u,.

(2. 10)
The same set of equations was obtained by Magalinskii. 1°

In the Fourier representation (2. 10) takes the form
[8y = M, w? - A(w) U,] w(w)=g(w) (2.11)

where U, is the N by N diagonal matrix with entries
(Uy);;=(8,,+8,,). In Appendix A we show that the NXN
matrix Y, (w)= &, ~Myw?~A(w) U, is nonsingular for
all real values of w except w?=0 and 4. These singu-
larities are integrable. We specify that u(f) and g(¢)
vanish when <0, It is important that we include this
carefully in the calculation. u(t) is the sum of a particu-
lar solution of the inhomogeneous equation (2. 10) and a
general solution of the homogeneous equation which
matches the initial values of u and i. In Appendix B we
show that the general solution decays at least as fast as
£1/2, This represents the diffusion of energy into the
chain and so initial data on the N particles does not
contribute to the steady state heat flow. A solution of
the inhomogeneous equation is

u(t)=(2m)" [ expliwt) Y (w)™? g(w)dw. (2.12)

The value of A(w) and the statistical properties of
g(w) are easily computed as continuations of the as-
sociated Laplace transforms. We obtain

A(w) =42 - w? - iw(4 - w?)P/?]

(g(w))=0,

(W) g oM =(T 6y, +Tpb,,) 5, [Ew)+ )] 6(0+ w),
F) =414~ 0¥/ - 0]

f(w) = lim (e+iw)™. (2.13)
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We choose the branch of z'/2 which is cut from 0 to «
along the positive real axis. For later use we note that
when w is real

AW) -A(-w)=—iw(d- w2, |w|<2,
A{w) = A(- w)=0, |w| =2, (2.14)
Hw)+&(-w)=(4- w3, lw|<2,
glw)+g(- w)=0, lw]|=>2,

where (x)1/2 is the positive square root of x = 0.

We can now compute the average heat flow past
particle 1 at time {:

JN, £) = Giy (g = u,))
= <7"‘1 (ul -8 - A*u1)>

Substituting from (2. 12) and using (2. 13) and (2. 14)
gives the following expression for the stationary heat
flux in Rubin’s model,

(V)= lim W, ty=1 (T, =Tp) [} o (4= w?)]|aw)[?dw,

(2.15)

(2. 16)
A (w)=det]Y, (w)].
In deriving this we use the result
lti‘rar: 13.131 I: exp(i(w + o)t] [e+i(w+0)]? F(o)do
=1f(-w) (2.17)

when f is a continuous, integrable function.

It is interesting to note that only the frequencies in
the allowed band of the infinite chain which, because we
considered only heavy impurities, contains all the
characteristic frequencies of the finite chain, contribute
toJ (N). Any solution u(#) which vanishes when £<0
must contain contributions from almost all real fre-
quencies [because u(w) is a nonzero analytic function in
the lower half plane and so its boundary values u(w) can
only vanish on a set of measure zero]. As time in-
creases however the. contribution from frequencies out-
side the allowed band falls to zero.

We can relate Ji (N) to the transmission coefficients of
the segment 1, ..., N for plane waves with frequencies
from 0 to 2. To calculate the transmission coefficient
of an incoming plane wave with frequency w we only need
to find a solution of the equations of motion which to the
right of the segment 1,...,N is a combination of an in-
coming and a reflected wave and to the left is a pure
outgoing wave, i.e.,

u(f)=D exp|-i(wt+kj)]+ R exp[- i(wt - &j)], j=N,

uj(t) = exp[" i(wt + k])]’
w=w(k)=2sin(k/2).

j=s0, (2.18)

Clearly ID|™ is the transmission coefficient ¢ sw) and
the argument of D! is the phase shift of the plane wave.
Also R/D is the reflection coefficient with |R/D|?

=1~ tf,. Using the transfer matrix approach, we find

“erl | exp[- k(N +1)]

e | exp(~ ikN)

exp[+iB(N+ 1] || D
exp(+ ikN) R
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=T,T,... To<“°>, (2.19)
ul
u, 1
U, = exp(+ ik)
where T is the “transfer matrix, ”
2-m;w -1
T,= . (2.20)
1 0
We find that
|D(k) | = |2 sink| |K,, ;- exp(=ik)(K,, , + K, y.,)
+ exp(~ 2B) K, .|
=t (w), (2.21)

where K; ,(w?) is defined in (1. 8).

The expression for ¢, (w) is related simply to A, (w)
in (2. 16),
Afw)=K, - exp(=ik) (K y+K; y.,)+exp(— 2E)K, ...
(2.22)
The final result is then
J(N)=(4n) (T, - Tp) S dw ().

This agrees with the result of Rubin and Greer.®

(2.23)

For periodic chains ¢, (w) approaches, as N —~«, a
finite value different from zero for w in the spectrum
of this chain. This spectrum consists of bands in the
interval we [0,2]. For w not in the spectrum t{w)
vanishes as exp[- N5(w)], where §(w)=(w - w,)* and w,
is band edge nearest w. Indeed, for m,=1, for all 7,
ty(w)=1. Thus J(IV) will approach a finite positive value
as N— « in periodic chains. The situation is quite dif-
ferent in random chainsg where, as will be shown in the
next section, {,(w) goes to zero, exponentially in N for
almost all chains.

3. GROWTH OF SOLUTIONS TO THE LATTICE
EQUATIONS

We consider a semiinfinite chain with masses m,
iz1. A plane wave solution with frequency w satisfies
the equation [cf (1.3)—(1.5)]

(3.1)

This is more conveniently written in the transfer matrix
notation

(2 =my, W) uy=uy,, +u,.,.

Uy,y 2-m,o? -1 1 uy
u, | = 1 0| [%~
Uy
=T, (w) (3.2)
Uy

T, is in the matrix group SL(2, R). In disordered chains
the sequence {uN(w)} grows exponentially with N for
almost every sequence of masses and almost all initial
values of u, and «,. This was first proven by Matsuda
and Ishii® using a theorem of Furstenberg.’ Here a

brief summary of the theorem and its application is given.
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We see from (3. 2) that the asymptotic behavior of
uy(w) is determined by the behavior of products of the
transfer matrices T, associated with the chain,

Furstenberg’s theorem deals with products of
matrices in the groups SL(m, R) when the matrices
themselves are random variables.

Theorem (Furstenberg,” Theorem 8. 5): Suppose that
G is a subgroup of SL(m, R) such that

(1) G is not compact;

(ii) no subgroup of G with finite index in G is
reducible;

(iii) there is a probability measure u on G.
Then for almost all sequences {g, :N > 1} chosen from
G we have

.1
&1333]— logll gy g uli=y>0 (3.3)

for any nonzero vector u in R¥.

Remark: A real analytic group G is reducible if it has
a faithful finite-dimensional continuous representation
and if every finite-dimensional continuous representa-
tion of G is semisimple, i.e., if G has a representation
as linear transformations on a finite-dimensional vector
space V the only subspaces of V which are invariant
under the action of G are {0} and V itself. In our case
G is a subgroup of SL(2,R) and so there is always a
faithful representation as matrices acting on RZ, The
remaining condition must be checked explicitly. v can
be explicitly calculated in terms of certain measures on
the projective space P™!, These measures are deter-
mined by u and the induced action of G on P™!, In the
statement of this theorem almost all is meant in the
sense of the standard measure on the product of a
countable number of copies of G which can be obtained
from the basic measure i on G.

Matsuda and Ishii have proven the following result,

Their argument has been greatly simplified by
Yoshioka, 1*

Theorem (Matsuda and Ishii, Theorem 1): If there are
at least two different masses present, the subgroup of
SL(2, R) generated by the transfer matrices (>-",«* F)
obeys conditions (i) and (ii) (for w?>0).

The mass m is a random variable with probability
distribution dp (-) and the measure u on the subgroup is
determined by dp(- ).  The corresponding y is written as
v(w) and by (3. 3) ¥(w)> 0 for w+0. y(w) can be calcu-~
lated from the following equations, when w? is small,
i.e., n defined in (3. 4b) is real, ®

()= f ICOS(Z;W) || dG(e), (3.4a)
where
2 cosn =2 ~ (m) o?, (3. 4b)

(my= [~ mdp(m).

dG(-) is a probability measure on (- im, iw) which
satisfies
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GA)= [ GWA, m)]dp(m (3.5)
for every measurable set A in (~ 37, i7). Here ¥(A,m)
={¥f,m):6c A} and

tan[\Il(G,m)+n]=tan9—2[r—n—-—<—m->-] tan 1 . (3. 6)

(m) 2
The integral in (3. 4) is absolutely convergent and can
be shown to be independent of the particular measure
dG used, provided that dG(-)} obeys (3.5). These are
Eqgs. (3.14) and (3. 15) in Ref. 5.

We now give a nonperturbative proof of Theorem 2
in Ref. 5. This deals with the low frequency behavior
of y(w).

Theorem: For small values of w, y(w) is continuous

in w and
yw) _1 (md)=(m)p

im “=" =8~ m

Proof: We always choose w so small that 5 is real.
Then the stationary measures dG(9,n) (explicitly
showing the dependence on 1) can be chosen to depend
continuously on 7 (see Lemmas 1.2, 2.2, and 2.3 in
Ref. 7). Then because the integral defining ¥(w) con-
verges absolutely we can write y(w) as the sum of terms
similar to

):f”z’-E log| cos 8] dG(6,1) + a(€, 1),
ale,n)=lim fl/zw log|cos8| dG(8,n)

and absolute convergence also means that lim__, afe, n)
=0, So by choosing n and n’ (corresponding to w and w’)
sufficiently close together and also choosing ¢ small
enough, we can make A{w)~ A(w’) arbitrarily small.
Consequently, y(w) is a continuous function of w.

(3.7)

r/2 2

cos%6 > dG(8,m)

-5/2

= f_m log cos?[ (8, m) +n]dG[¥(8, m),n]

f”"’ log cos? 8dG(8,7). (3. 8)

¥(6, m) can be calculated from (3. 6) to second order
in 7. Using this gives
log cos®[¥(8, m) +n)=log cos?g ~ a sin26
+a’f(6) + 0(a®),

f(8)= - sin 9 cos® 4. (3.9)

a=2 <m<:n§m>> tan(in).

Since y{w) is independent of 2, (3. 8) is not changed if
we integrate it over dp(m). We obtain

v(w)= [ dp(m) [~ asin® (6, m)dG(6,n)

+ [ apom) [717 @® Fl@(0,m)]dG(9,m)

+0(n?). (3. 10)

®(6,m) is the inverse of ¥ and expanding in powers of
a gives

sin2&(6, m) = sin 2(8 +n) + 2a cos?(8 +n) cos2(8 + 1)
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+0(a?). (3.11)
Then to second order in a '
2y(w)= [ dp(m)-a [ {sin26+ 2 cos26[n+acos?6]}

dG(6,m)

- [dp(m)a® [ cos®cos20dG(8,n). (3.12)
Finally, we find
: ._.L m- <n1%)2
}ugrg:[ v(w)/w?]=%- (m) [ dp(m ( o)
r/2 2
x [, cos26cos’0 dG(6,0).  (3.13)

We can choose dG(#8, 0) to be 77! dd and so finally get
the result of the theorem.

We can use this result to.connect Sec. 2 with earlier
work by Rubin’? on the transmission of plane waves
through random chains. We can rewrite (2.21) as

2|sink |t} (w) = ; (1, —e ) o T o TN[e,.lk] (3.14)

Furstenberg’ has not only shown that the norm of
T, T, u grows exponentially with N but also that the
vector converges to a fixed direction (depending on u).
Consequently, we can use (3.13) to calculate
(1/N) log f(w)] = 2y(w).

lim [- (3.15)

N=w
This relationship was previously proven by Minami and
Hori'® using a different method. If each mass can take
the values m and m (1 + Q) with probabilities g and p,
we see from (2. 13) that

() 15

Rubin’s normalization of frequency is equivalent to
taking m =4. The mean spacing between the heavy
particles is 3, (#+1)¢"p=p'. In Rubin’s notation this
is C™! and so for small w, 2y(w) behaves as C(1
-C)Q%(1+QC) . This agrees with Rubin’s result
(Eq. 4.4, Ref. 12]. (Note, however, that Rubin’s N
differ from ours by a factor of C.) Because {Z(w) de-
cays exponentially with N for almost all random chains,
we can use the argument of Ref. 2 to conclude that
(J(N))—-O as N -,

3 '
hl_rgi " (3.15")

Sulem and Frisch!'? have recently examined the trans-
mission of light through a one-dimensional system in
which the refractive index takes different constant
values on successive intervals. These values are in-
dependent, identically distributed random variables.
They used an argument based on the random ergodic
theorem to show that almost all such systems are total-
ly reflecting. The method of Ref. 12 shows that
Furstenberg’s theorem applies to their model. !®

4. CALCULATION OF HEAT FLOW IN SPECIAL CASES

The heat flow through an arbitrary chain of masses
given by (1. 7) can only rarely be explicitly calculated.
In Ref. 2, Casher and Lebowitz checked that it agrees
with Ref. 1 for the infinite isotropic chain. Two more
examples are given here; the infinite diatomic chain and
the infinite isotropic chain in which a single impurity is
imbedded. The spectrum of both systems contains an
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absolutely continuous part and so the limiting value of
the heat flux, J, is nonzero (Ref. 2 and Sec. 8).
A. The infinite diatomic chain

This is an infinite periodic chain in which m is m,
when j is odd and m, when j is even. From Ref. 2 the
heat flow through an infinite periodic chain whose unit
cell contains the masses m,++- m_ is just

J=1mm AT [ dw|wsing| [c(w)], 4.1)
cwyt=(1+w*mm) (m K, ,+m, K, ).

Only frequencies in the allowed bands will contribute to
J. These are just the values of w? for which

Ky, @) ~ K, oy(@)]| 2. (4.2)
For a wave vector g they are the solutions of
K, {w)~K, .. (w)=2cosq

as g ranges from 0 to 7. For the diatomic chain these
are

w?=(m'+m;") (1z£¢(q)).
d(gP =1~ u(1-cosg),

b= 2mymy(m, +m,) 2,

(4.3)

The acoustical branch of the spectrum is given by the
negative sign and the optical branch by the positive sign.
Then (4. 1) reduces to

J=2(1+M32)? g AT [T dgsin’q|¢(q)|
X [(1+M02) - (2 p(g)?)] ",
M=m +m,. (4. 4)

A partial fraction expansion of the integrand gives

= (i) @

((2ux3 +2x+1)(2x+ 1)
- 2(1 + %)

Using ¢?=cos?(1q) + (1 - 2p) sin®(1q), each term be-
comes a simple trigonometric integral and we get

)[(1 £ 2P = 22T,

J 8\ 3AT ) {(1 +x)2—x26 -(1+ 2x)1/2 [1

T+ x)(1~62
+2x + 231 - 8%)]} (4.5)

where x=M>? and we have set |m,-m,| =M. This
agrees with (3.13) in Ref. 1c when m,=m,=m. Near
8=0, J is a decreasing function of § so that starting
from a monatomic chain and keeping M fixed J will
initially decrease as |m, —m,| is increased.

B. A single impurity in an infinite isotropic chain

When a finite number of impurities are added to an
infinite isotropic chain the spectrum of the new chain
still contains an absolutely continuous piece. At most a
finite number of isolated eigenvalues will be added to
the original spectrum. These eigenvalues correspond
when the impurities are light to highly localized normal
modes. . Using the techniques of Ref. 2 it is clear that
they will not contribute to the heat flux through the in-
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finite chain. In principle we can use (1.7) to calculate
the limiting value, J, for any set of impurities. There
seems to be a simple expression for J only for a single
impurity and even this cannot be evaluated in terms of
elementary functions. It was found more convenient to
use techniques similar to those of Sec. 2 on the
Langevin equation approach used by Ishii. ¢ [The resuits
will be exactly equivalent to those obtained from (1. 7). ]
The final result, for a single impurity of mass m in the
middle of a chain of unit masses, is (for details see
Appendix D)

J=(21) 11 AT f:de 8in?60 (1 +u?) [(1 + u?)? + w202,
(4. 6)

wW=220? v=(m-1)w? w?*=2(1-_cosb).

When m =1, this agrees with (3. 13) in Ref. lc.

5. HEAT FLOW IN A WEAKLY COUPLED CHAIN

We give here an exact derivation of the asymptotic
behavior of the heat flow in Lebowitz’s model when the
coupling constant X of the chain to the heat baths is
small. This is of interest because in the limit x ~ 0 the
dependence of the heat flux J(N,x) [where we have in-
dicated the explicit dependence of J(N) on A] on the am-
plitude of the normal modes at the ends of the chain
becomes transparent. For small 1 the integrand in
(1.7) is large when K, ,(w?)=0, i.e., at the normal
mode frequencies of the chain. We will only treat those
chains whose normal modes are distinct. This is not an
important restriction {(see Ref. 17 for a discussion of
this point). Our theorem is also Theorem 7 in Ref. 5.

Theorem: Consider a chain of masses {m;:i=1,---,N}
which has distinct normal mode frequencies {w? :i
=1+ N} and corresponding normal modes {u;:i=1.-. NL
u, is normalized by 3%, m,u,(j)*=1. Then

i - B, X 1Pmyui(N)?
HmA (N, ) =17 e, m, AT S —PatlLlmy (N
h~rtr)1 ( )=m7 mm, ZJ: mlui(1)2+mNui(N)2

(5.1)

Proof: If w} is a simple zero of K, ,(w?), then when
w? i8 near w?
K, y(0®)=(w® - WK}, (0]) + O(w? = w?)? (5.2)

where the prime indicates derivative. Hence the con-
tribution of «? to (1.7) is

JON, ) =mym, AT |K , (0?)| 7(0?)2/2, (5.3)
where
(W) =2m my+ miK; (w?)+my K5 o (0f).
Using the identity
K,y (WK, yoy (0F) =Ky (WD) K, (0®)==1, (5.4)
(5. 3) reduces to
J (N, ) =mm, AT lK'l,N("-’%) |- |K1,1v-1(“’¢) |
[my K3 oy +m, ] (5.5)
The normal mode associated with «? is just u, and
u, () =K, ;. (0 N(w)™?,
(5. 6)

N
N(c;vi)z:‘?1 mjl(i’,._l(wi).
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Considering the equations
(2-m,, wz)KU=K1,+1+K,-,»-1, (5.7)
-m; K+ (2~my, wz)K’u =K, + Ky,
and multiplying the first by K/; and the second by K,
and substracting, we get

L Kf, = (Klj-l K,lj - K’lj-l Klj) - (KU K’1j+1 - K’1j K11+1)

5.8
= - 0y (5.8)

Thus

N-1

ng.; TR K?j = ¢)0 - ¢N+v

b :Kl,-l -Kij,-KY, Ky =0,
and if w?=w?, where K, ,(w?)=0, then

N-1

jZ-Q: mlefj(w%):N(wzi):KiN(w%)Kmu (w?) (5.9)

So (5. 5) reduces to the term in (5. 1) associated with
w? and the proof is complete.

Matsuda and Ishii have argued in Ref. 5 that this sup-
ports the conjecture that (J(N,\)) decreases as N-3/2,
We want to point out, however, that even if one could
establish that, for random chains, the right side of
(5. 1) behaves as N?/2 when N — « this would not neces-
sarily tell us anything about the behavior of J(N, 1) as
N — « for any fixed x» > 0. What (5. 1) gives is the large
N behavior of lim,_, 2™ J(N, A) and this need not be the
same as the large N behavior of "' J(N, ) for x> 0.
They will agree for periodic chains where x~! J(N, ) ap-
proaches a finite nonzero limit as N — = for any x > 0.
We surmise that for a system obeying Fourier’s law
the asymptotic form of the heat flux may be of the form

J(N, X)) ~A(ATY /(1 +yaNYL, (5. 10)

where y is related to the resistance to heat flow in the
interior of the system, e.g., the degree of anhar-
monicity in a anharmonic crystal, or the “degree of
disorder” {(m - (m))®) in a random crystal if indeed such
a system obeys Fourier’s law. If this surmise is right
then the two asymptotic behaviors will not be the same.
This surmise is based (or strengthened) by the be-
havior of the heat flow in a simple stochastic model
system discussed in the next section.

6. RANDOM REFLECTION MODEL

This is a simple system which transports energy and
has a Fourier law behavior. It is a variation of one
originally considered by Lebowitz and Frisch.'® It is a
dilute gas of noninteracting particles which move linear-
ly along a cylinder. At either end of the cylinder is a
heat bath and barriers are placed at random positions
along the cylinder. When a gas particle meets a barrier
it will either pass through without changing its velocity
or it will be reflected with its velocity exactly reversed.
The probability of reflection is » and of transmission
1-7. At each end it can be directly reflected with
probability 1 - X or with probability A it is reflected back
with a random velocity. This random velocity is inde-
pendent of the incident velocity and has a Maxwellian
distribution characterized by the temperature of the
heat baths. These are T, on the left and T, on the right
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(T,>T,). Thus x plays the role of coupling to the heat
baths as before, 0 <) <1. Since the total number of
particles is constant, the total number flowing to the
right at any point will, in a steady state exactly balance
the total number flowing to the left. The first group will
presumably be more energetic and so energy will be
carried along the cylinder.

We look at the steady state situation. There are N
barriers and between barriers ¢ and i+ 1, the number of
particles in a unit volume with velocities between v and
v+dv is f(v) dv.

Let
fiw)=fv), v>0, (6.1)
fiwy=fi-v), v>0,

be the densities for those particles flowing to the right
and those flowing to the left. f; and f} are the corres-
ponding densities for the particles between the heat
baths and the first and last barriers. At each barrier
the net flux of particles with velocities near v must be
zero. So

f:('U) ZTfi-(U) + (1 - V)f;f.l(v%
fi.(v) = 7’]?(”) +(1- 7)fi_+1(”),

At the left the flux of particles incident on the heat bath
with velocities near v is vf;(v) dv. This is redistri-
buted by direct and diffuse reflection so

v ) =(1=N) vf5(v) + 1 v g (v) fo" ufy(w)du.  (6.3)

84(v) is proportional to the Maxwellian distribution of
particles in the heat bath at temperature 7. It is nor-
malized so as to conserve the total flux striking the
edge of the cylinder. So g,(v)=B,m exp(- B, mv?),
By=(kT,)™". g, is defined similarly. So

N=zi>0.
N>t=0.

(6.2)

fo@)=(1=N)f5(v) +rgo(v) [ ufsw) du (6.4)
and
i) =1 =i (@) + (M) gi(v) [ () du. (6.5)
The solution of these equations, for 0 <{ <N, is
fi*:V[go_'_C{(gl_go)]y (6. 6)
fi= V[gl +Cpi (g - g1)]’
where C,=a + jB with,
a=(1-2)1-7/[(2+2)}{1=7)+rrN],
B=x7/[(2=2) (1 ~7)+ nN] (6.7

and v is the total flux of particles flowing in either
direction, i.e., fj vf; (v)dv=f, vf;(v)dv=v for
N =i20. The next flux of energy from left to right is

f: s () = fi(v) | dv= (2- 7\;/(7;(.} 1_’)1-’2 A¥YN

X B(Ty—T,)=J(N,1).

The heat flux J(N, ) has the form conjectured in
(5. 10). It depends only on the number of barriers
present and does not depend at all on their spacing (be-
cause there is no attenuation between adjacent barriers).
In particular, it does not depend on the length of the
cylinder. However, if we suppose that in a cylinder of

(6.8)
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length L the number of barriers present is randomly
distributed with a Poisson distribution whose mean is
pL the average heat flow will be

(J(L,a)):; -(-%I%E- exp(~ pLYJ(n, ). (6.9)
In the limit
}‘igx [—L—Yg,':—(;l‘—’l%)z] = yh(1 - ¥)/7p, (6.10)

is independent of 2, Eq. (6. 10) depends on the asymp-
totic expansion

S et 1 1
2T nis —7“’(72‘)

as {—~ o, for fixed positive b.

{6.11)

Exactly the same result holds if the barriers are
placed with a constant density p along the cylinder. So
we can say that the thermal conductivity of this model
is

K=vk(1-7)(vp). (6.12)

Decreasing the barrier spacing means that p increases
and then K will tend to zero.

7. A SIMPLE TWO-DIMENSIONAL MODEL

This is a cylindrical system in which the masses in
each column are identical although from column to
column the mass may vary randomly. The cylindrical
analog of Lebowitz’s model has been examined by
Nakazawa.* We will combine the method of Sec. 2 with
his method to examine the cylindrical analog of Rubin’s
model. Each column of the cylinder contains p masses
and the displacement of the particle in the ith column
and the ath row is x,,. Its mass is m,. When -S <i <0
and N+1<i<N+S+2, m,=1; when 1 si <N the m,
are independent, identically distributed random vari-
ables. The particle at site (i, a} is coupled by harmonic
forces of unit strength to those at (i~ 1,a) and (i + 1, a)
and by forces of strength u to those at ({,¢~ 1) and
(i, a+1). The equation of motion of this system, with
Xy pa =%y 5 18

miki,a + (zxi,a =Xi1,.” xi«vl,a) + “(2x1,a —Xie1T xi,ad)

=0. (1.1)

We exploit cylindrical symmetry by forming the sums

b
x,(8,)=p/? a}; %, , exp(i 8, a) (7.2)
where 1<l <p, 9,=2nl/p. Then (7. 1) becomes
MR(8,)+ 2 (8)%(8,)=0, (7.3)

where M is the diagonal matrix with entries m,, Q% #)
the tridiagonal matrix with diagonal entries 2 + 4 sin®10
and off diagonal entries — 1 and x(8,) is the column
vector whose ith entry is x,(6,), ~S <i SN+5+2, These
are identical to the equations of motion (1. 2) of a linear
chain with different coupling strengths between adjacent
particles.

We have the inversion formula

x;fﬂ“”ﬁ% x,(6,)n7%. (1.4
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In terms of these coordinates the energy in the left-hand
piece of the cylinder is

155 () 1(0)+x(8) 20, x(0)). (7.5)

Here x'(6,)={x(6,): =S <i <0}.

We can repeat the analysis of Sec. 2 to obtain a closed
set of equations of motion for the columns 1 through N.
If the left-and right-hand pieces are initially in thermal
equilibrium at temperatures T, and T, we find, after
letting S — « and then p— «, that the analog of (2. 6) and
(2.7) are

%0, =g,(0, 1) + fOTA(t-— s)x,(6, s)ds,

A= = fﬂ (k) sinftw(k)] sink dk,

<g1(f)> = 0;
& glt+sh=n% T, f: (k) sin’k cos[sw(k)]dk,
w(k)? =4(sin? L k + u sin® £6) (7.6)

{in the limit p— =, 8, becomes a continuous parameter
8 ranging from 0 to 27). In deriving these we note that
the SXS matrix 2% 6) has eigenvalues 4(sin® ¢,

+  sin? $6] with ¢,=jn/S+1 (1 <j <S) and eigenvectors
gj: [2/(3 + 1)]1/2 (Sin(bj’ "ty SinSde).

The average energy flowing past the particle at site
(1, a) (from left to right) is

j(N, f= <5€1'a (xl,,, =X .a» =p* IZ‘:J; (551(91) - xo(ex)D- (7.7

When p— o, f(N, 1) becomes
FN, ) =(2m) [*7 %,(6) [%,(8) - xo(6)] a6 (7.8)

This is just a superposition of currents from harmonic
chains with coupling matrices £2(8) so that repeating
the analysis of Sec. 2 we obtain, when {— « (setting
Boltzmann’s constant equal to unity),

ey - r < w
J(N) = (4n) IAAT fD fze fo dc:» | det Y(w, 6) |2
Xiw[A(w) = A(~ w)] [glw) + &(- @)].
A and éf are the Fourier transforms of A and g and
are obtained by analytic continuation of their Laplace
transforms. Y{w, 6) is the NXN matrix 9%(8) - w?M
- A(w)L. We find that when 4y sin® 16 <sw? <4
+4u sin? 16, then

A(w) —A(= w)= - i(w? - 4u sin® 10)*/2 (4 + 4 sin® 16

(7.9)

— 21 /2
@ (7.10)
Sw)+ g= w)=w N w? = 4 sin? 16)}/2(4 + 4p sin® 16
_wz)llz

and that they are zero otherwise. Thus, calling R the
range of the w integration, we obtain

JN)=AT [ d6 [ de|det ¥(w, 0)|* (* - 4y sin® 1)

X(4+4p sin® 10 - w?). (7.11)
We simplify this by introducing the parametrization

w? =4 sin® 3k, + 4u sin® %, which is valid for all & in

the range of integration of (7. 11); then
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in2 L 1/2
sin® 3k,
sin*ik, + usin®Lk,

J=aT [[ [ dk, dk,cos ik, (

| £ By, R |,
fky, k) =2 sink, - (det Z,(k,, k;)),

Z,= Q2 (k,) - Mo? - exp(ik,) L. (7.12)

L is the diagonal matrix with entries L,,=(5,,+35,,)
and in this representation of w?, A(w)=exp(ik,).

We can relate J (N) to the transmission properties of
the columns 1 to N, The incident and transmitted plane
waves are

X .= exp|— i(wt + k,j + kya) ]
»J <1,

x; ,=D exp[=i(wt + kyj + kya)] (7.13)

+ R exp[— i(wt = kyj + k,a)] N,

Using the equations of motion (7. 3) for a plane wave
with frequency w, we find

x;,,(6) 2+4psin?i0-m;w? -1

x,(6) 1 0
7.14
x,(6) ( )
%;.4(6)
Applying (7. 13) yields
exp(— ik, (N + 1) explik (N +1) D
exp(— ik, N) exp(ik,N) R
exp(- ik,)
=Ty vor Ty(ky, By) , (7.15)
1
where
2+ 4y sin® 3k, - m; w? -1
T {ky, k)=
1 0

This yields for the transmission coefficient, ¢,, in
analogy with (2.21),

'DN(k.l’ kz)’-lz ]f(kv kz)] = I tN(kl’ kz) ' .
Substituting in (7. 12) gives
J(N)=FkAT [ [ ak, dk, cosik,

in2l
% i sinzk,
sin®3k, + usin®3k,

(7.16)

1/2
] [t (ky, ) |2 (T.17)
We can compare this with Nakazawa’s result* for the
heat flow in the cylindrical analog of Lebowitz’s model
— 2 2 it
JN)=n2km, my2* AT j: de f_w
Y(w, 6)=2%(9) -

w?|det Y(w, 6)| 2 do,
(7.18)

When the mass sequence m, is periodic, the results
of the next section extend to show that the semiinfinite
matrix K(6)=M"/2Q2(6) M/ has only an absolutely

WM — iwAML .

J. Math, Phys., Vol. 15, No. 6, June 1974

continuous spectrum and so from Ref. 2 we see that
both J(N) and J(N) have strictly positive limits as N — w,
An examination of Theorem 1 in Ref. 5 shows that
Furstenberg’s theorem holds for any subgroup of
SL(2,R) which is generated by two noncommuting
matrices [% 7] (i=1,2). (See also Ref. 11.) Conse-
quently, for a d1sordered cylindrical system J(N) and
J'(N) will tend to zero as N — « for almost every choice
of masses in the columns. We can use Sec. 3 to find

the asymptotic behavior of ¢,(%,, k,) for large N. Equa-
tion (7. 15) gives

|2 sink, |

|6, (kg By) | = [1, - exp(ik,)] Tye+e T,

1\ |

X
) |

An extension of Theorem 8.1 in Ref. 7 shows that the
angle between the rows and the angle between the
columns of T, -+ T, converges to zero as N increases.
So for any k,, the angle between the vector T, :«+ T
(,f%,) and the vector (}) tends to zero. If k, #0, this
shows that |1,(k, k,)|™* grows exponentially with N, The
analog of (3. 15) is now as follows: when 2,#0, lim,

- (1/N) log | £, (ky, ky) | =¥(ky, ky). When k=0, £, is
identically zero. The analog of y(w) (3. 4a) is now y(k).

Theovem: For small 1k}, y(k) is continuous in k and

) _ 1 on)=n
am k) "8 (m (7.19)
where

1 =1
gR)=(R2+ ukiP K2+ u(l— ) k§>
(we assume m; 2 1, all 7).

Proof: Adapting the calculation of Sec. 3 to the family
of transfer matrices T (k,, k,) yields

(k) = f | c°i(09 +6") I’ dG(6,m) (7. 20)
where
G(a)= [ Glw(A, m)]dp(m),
tan ¢ =tan[¥(¢, m) + 1]+ [(m = (m))/sinn] w?

2cosn =2+ 4y sin® bk, - 4(m) (sin® 3k, + 1 sin® 3&,).
(7.21)
If a=[(m - (m))/sinn] w? then (3. 12) gives

7(k)=f: dp(m)- azf_:;: cos 28 cos?8dG(8,n) +0(n®).
(7.22)

This gives the result.

8. SPECTRUM OF PERIODIC CHAINS

We consider a infinite periodic chain whose basic cell
contains the masses m, -+ m,. It is easy to see that the
allowed bands for the chain are specified by the
algebraic condition

|Tr T(w)] <2, (8.1)
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where T(w)=T,+ T\(w) is the transfer matrix for one
cell of the chain, These bands form the spectrum of the
self-adjoint infinite matrix operator H=M"1/2p pM"/2
introduced in Sec. 1. H acts on the Hilbert space I? and
has a cyclic vector, viz. $=(1,0,0-+-). So H has a
simple spectrum whose spectral type (Ref. 19, Chap.
VI) is precisely the type of the measure 4, on [0, =)
determined by

(LB = [ % du,  (R>0). (8.2)
Theorem: The spectrum of a semiinfinite periodic
lattice is absolutely continuous.

Proof: We will evaluate the left side of (8. 2) for finite
periodic systems and then let the length tend to infinity.
We will see that there is a unique measure satisfying
(4. 2) and that it is absolutely continuous. We also
normalize the lightest mass to 1 so that all m, = 1. The
spectrum of H will therefore be in [0, 4].

Let P, be the projection on /* which projects any vec-
tor onto its first NA entries. Then H,=P,H P, is the
operator introduced in Sec. 1 corresponding to a

periodic lattice with N cells. For each 2> 1, the opera-

tors H} converge strongly to H* Suppose that a chain
containing N cells has normal modes with frequencies
wj, a=1:+NA, The corresponding displacements are

u(a, jA + p) =d,(w,) sin[(A + p)K,],
K,=ma(NA+1)?, 1<p<A, 0<js<N-1.

{8.3)

d,(a) are certain constants depending on a. Using the
transfer matrix method (8. 2) can be a solution to the
lattice equations only if

Tr T(w¥)=2cosAK,. (8.4)

The normalization condition for (4.3) is
1 A
1= |u(a) = 5 ;2} ld(a}|? [N ~cos2K,(p-1)]. (8.5)

So
NA
(¥, HE¥)=2N" 2, F(w?) ¥+ O(NF)
a=1
with
A
Flw?)=2; dy(w). (8.6)
p=1

Each d,(w) is a cofactor in a certain determinant and so
F(w?) is a bounded continuous function. The spacing of
the wave vectors K|, in a long finite chain is very nearly
7(NA)™. Rewriting this in terms of the frequencies «?
and letting N — » gives

dw?
provided that dK/dw? makes sense. The integral is over
the values of w? for which |tr T(w)] <2, i.e., the
allowed frequency bands. Using (4. 4) in the limit N — «
gives

(8.7

AW, H*) = 24772 f w?* F(w?) d(w?)

2cos AK =Tr T(w?) = g(w?), (8.8)
So
-}f—z} =(24)7 g’ (&%) (4-g%/®
= (2A) " I(w®). (8.9)
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Any singularities occuring in this ratio are integrable
and so

(8, H*®) =77 [ W(w?) F(w?) w** dw? = [ x*p(x) dx.
(8.10)

p(x) is an integrable function over the spectrum of the
chain. Since H is bounded we also have

(¥, FED) = [ f(x)p(x)dx

for any polynomial f and consequently for all mea~
surable functions f. Spectral theory now tells us that
p(x)dx is unigue and consequently the spectrum of H is
absolutely continuous.

(8.11)

9. DISCUSSION

_ The expression for the heat flux J(N) in (1.7) and for
J(N) in (2. 16) [or (2. 23)] differ essentially in that (1.7)
contains an integral over all w while the integration in
(2. 16) is restricted to the spectrum of the homogeneous
chain with unit masses. (The difference in integrands is
presumably due to the nature of the coupling between
the system and heat baths in the two models. ) It seems
intuitively clear that the reason why frequencies out-
side the spectrum do not contribute to f(N) is that all
such modes would be damped out in the homogeneous
stretches of the side chains when S — «. Indeed the
integral in (1.7) will reduce to an integral only over the
spectrum of the chain when we take a chain of length
N+2Sinwhichm;=1if 1<j<Sand N+§+1<j<2§
+N. Using expansions similar to those in Appendix C,

it is easy to see that limg_ J(N + 25) becomes an inte-
gral over [0, 4] involving only the determinants K, ,, etc.
There does not, however, seem to be a compact ex-
pression for this flux.

In any case, as we have seen, both J(N) and J(N) ap~
proach nonvanishing limits when N — <« in periodic
systems and go to zero in random systems, The latter
result follows from the behavior of the integrands
Jy(w) and #2(w) which, by Furstenberg’s theorem, vanish
for almost all chains as exp[~ Ny{w)] as N — = for fixed
w, with ¥(w)>0 for w#0. The difficulty with using
Furstenberg’'s theorem for the evaluation of the asymp-
totic form of J(N) or J(N) (the latter ought to be easier
since the integration is over a finite range) is that the
approach to the limit in Furstenberg’s theorem, i.e.,
in (3.15), is not known to be uniform in w for w#0. We
need some such kind of uniformity to decide for certain
whether Fourier’s law is obeyed by random harmonic
systems.
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APPENDIX A

We show that the matrix Y(w)=@ - Mw? -~ A(w)U in
Sec. 1 is nonsingular for real w except at w®=0 and 4.
If w? <4, we write w=2sin{8/2) and if D{w)=det Y{w)
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vanishes we have

cos (K, ,+K, ,,)=K, ,+K,

()

2ol (A1)
siné(K, , - 2,71 =0

If 6 is different from 0 and 7, then K, , ,=K, , and (3.4)
implies K, K, ,,=1+K} , so that |cosé| >1. Equality
is only possible if =0 or 7, i.e., w?=0 or 4. When
w?=0, A(w)=1 and D=0. When w®=4, D need not
vanish and will only have a simple zero. If w? >4, we
consider a square matrix C with 2N +# rows and
columns:

C=%-Mu? (A2)

with & the usual tridiagonal matrix and M and diagonal
matrix with entries M ;=1if 1<i<Nand N+7
+1<i<2N+rand M,;=m; if i=N+j, j=1..-7. Then

det C=d(N - 21K, , - d(N)d(N - 2)(K, ., +K,,,)
+d(NPK;, .1 (A3)

sinh (N + 1)6
A= e
Also, using Rayleigh’s theorem,*® we can find lower
bounds on the eigenvalues of the matrix M-1/2¢ M/?
and so prove that when N is large

|detC | = (W) d(2N)m -+ m,. (A4)

So lim,_,, exp(-2N9) |C| = |D(w)! >0. The only zeros
in D(w) then are cancelled by the zeros in the
numerator of (1.24).

when w? =4 cos K36.

APPENDIX B

We show that for an infinite harmonic chain with m,
=1 except possibly when N >j> 1 that if u,=0=14, at
t=0 except when N > j=> 1 then |u(t)| falls off as t™*/2
when N =j>1. We check the case when (0)=0 but u(0)
#0. Then

u(H)=(2m? fc expliwt) (& -Mw® = a(w) L)' u(0) dw. (B1)

C is a contour obtained as the limit of semicircles in the
upper half plane with radius R and centre - i¢ (¢ very
small and positive). The integrand may have some poles
in the upper half plane and has a cut along the real axis
from -2 to + 2. The poles contribute exponentially de-
creasing terms and the cut a term of fype

fc1 w? (4 ~ 0?) [P(w)+iQ(w) (4 -wP)/2]" expliwt)dw. (B2)

P and @ are polynomials in w and the integrand has only
the singularity due to the branch in the square root. C,
is a contour enclosing the interval (-2, 2). We can
easily check that if f and f’ are integrable f: flw)
exp(iwt) dw falls off at least as +™! and that [2 f(w) (4

- w2 exp(iwt) dw falls off at least as ¢!/2, This
proves the claim.

APPENDIX C

We give here the detailed computation for the heat
flow along an infinite isotropic chain containing a single
impurity. Using the Langevin equation approach of
Ishii®'!% and the method of Sec. 2 we find that the heat
flow across a segment of ¥ masses, m, -+ m,, embeded
in isotropic chains of length N is just
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J=N2kTmym, [} «*|b(w)]* |det Z(w)[* do.  (CD)
Z(w)=® — Mw? - a(w) L is the standard X matrix.
a(w) and b(w) are given by

(dy,, =iwrd)a(w)=d,~iwrdy,, (c2)

(dy —iwnr d) b(w)=1,
where d(w)=sin(p+1)6/sin if w?=2(1 -~ cosb).

We can use the methods of Ref. 2 to show that as
N~ = this reduces to an integral over the spectrum of
the infinite homogeneous chain (if any m ;<1 then there
are some localized modes with frequencies greater
than 2 but an explicit examination shows that these do
not contribute to J as N —«), This integral is only
tractable when »=1. In that case putting ¢ =(2N +1)6
and letting N —~ «, we get

J=@a ' ma2kT [ dww*(6) sin® 8

r -2
x ;" de|Fe, 9], (©3)
F(0, p)=acos2¢ +b sin2¢ + e~ if,
a=cos 28+ u®-vsin26, ©4)

b=sin26 + v (cos 28 +u?),
e—if=-v(1+u®)-2iusind.

Standard manipulations will reduce (C3) to (4. 6).
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Lattice Green’s function for the face centered cubic lattice
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We have proved that Green’s function G(I,m,n) at an arbitrary lattice site (I,m,n) in face
centered cubic lattice with nearest neighbor interactions is, in general, expressed in terms of linear
combinations of products of complete elliptic integrals of the first and second kinds.

1. INTRODUCTION

The method of Green’s function has proved to be very
powerful for quantitative studies of a variety of prob~
lems in solid state physics. Extensive investigations
have been made to evaluate analytically as well as nu-
merically lattice Green’s functions for different crys-
tal structures. For face centered cubic (fcc) lattice
with nearest neighbor interactions, a lattice Green’s
function at a point (I,m,n) is represented by the follow-
ing integral:

1 T T T
G(l,m,@:;—s-‘/o‘/o‘/o‘ dx dy dz

x coslx cosmy cosnz
E - i5 — COSx COSYy — COSY OS2z — COSZ COSx

(1.1)

where [ +m +n is zero or an even integer, § is an in-
finitesimal number and E is a real number between
-0 gand +«,

Iwata! has shown that the above function at the origin,
G(0,0,0), can be expressed in a compact form as a
product of complete elliptic integrals of the first kind.

In the present paper we show that G{I,m,n) at an
arbitrary site (I,m,n) is given, in general, by a linear
combination of products of complete elliptic integrals
of the first and second kinds. In the region where E>3
and E<-1, G(I,m,n) is real and given by a function
of K(k) and E(k) with real moduli, For 3>E>-1,
G(l,m,n) has a nonvanishing imaginary part and is ex-
pressed as a function of K(k) and E{(k) with complex
moduli, The method of analytic continuation for K (k)
and E(%), as described by Morita and Horiguchi,? is
applicable to the present case to evaluate G(I,m,n) for
the whole range of values of E,

In Sec. 2 we derive the recurrence relations for
G(l,m,n), which shows that the knowledge of a finite
group of Green’s functions, G(2p,0,0) (p=0 or a posi-
tive integer) and G(2,2,0) is enough to determine the
entire family of G(I,m,n). In Sec. 3 we present explicit
evaluations of G(2p,0,0) and G(2,2,0) for E>3, and
the results are easily transformed into expressions
valid for E<~1.

2. RECURRENCE RELATIONS FOR G/, m, n)

With the representation (1.1), the following relation
holds for G(I,m,n):

Gil+1l,m+1,m)+Gl-1,m=~1,n)+GUI+1,m-1,n)
+G(l~1,m+1,m)+G({I,m+1,n+1)
+G6{l,m-1,n=-1)+G{l,m+1,n-1)
+G6(I,m-1,n+1)+GI+1,m,n+1)
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+G(l-1,m,n=-1)+G({l+1,m,n-1)

+G(=1,m,n+1)=4EG(,m,n) - 465,00,00,,  (2.1)

where §,, is Kronecker’s delta. Furthermore, since the
number of nonequivalent lattice point in a cubic lattice
lie inside and on the surfaces of a space bounded by
three planes (0,0,1), (1,-1,0) and (0,1,-1), a portion
corresponding to 1/48 of the whole space, it is suffici-
ent to determine Green’s functions G(I,m,n) at these
lattice points. Then, it is readily found that a function
G(l,m,n+1) for a positive integer » can be obtained
successively from (2.1) if G(I,m,0) and G{I+1,m +1,1)
are determined. In other words, it is necessary to ob-
tain Green’s function at lattice points on the two adjacent
layers for z=0 and 1 parallel to the (0,0,1) planes, il-
lustrated by a shaded region including the axes y =0 and
x=vy in Fig, 1.

Now we derive a recurrence relation for G(I,m,0) by
adopting the procedure due to Morita® for two-dimen-
sional lattice. For simplicity we assume E> 3, and
hence can neglect a factor 76 in the denominator of
(1.1). When we integrate (1.1) with respect to z for
n=0, we get

G(l,m,O)z;lz-_/;j; dx dy

x coslxy cosmy
[(E - cosx cosy)? — (cosx +cosy)2]/2°
y

2.2)

]
[ J
[e]
L]
o
L
-O--
L]
(o]

o
*
o
L ]
o
[ ]
o]
?..
¢
M
9

FIG. 1. Lattice points for fcc lattice on the two adjacent layers
parallel to the (0, 0, 1) plane. @ denotes a point on the first
layer and O a point on the second layer. A square by dotted line
encloses 13 lattice point whose G{I, m, n) are related by Eq.
(2.9).
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Introducing a definition

[ cosmy
F,(E,x) —[ b [(E = cosx cosy)® - (cosx +cosy)?[1/2’

(2.3)
we rewrite (2.2) as
G(l,m,O):-ﬁlz j: dxcoslx F,(E, x). (2.4)

Let’s consider an integral for m #0

f(E,x)= fo" dy cosmy[(E - cosx cosy)? — (cosx + cosy®]*/ 2,

(2.5a)

which is expressed in terms of F,(E,x) as
T
fm (E’ x) = f dy
0

« cosmy|E? - cos?x — 2(E +1) cosx cosy — sin’x cos?y]

[(E - cosx cosy)? — (cosx + cosy)? |t/ 2
=(E? - cos’) F, (E,x) - (E+1)

xcosx[F_,,(E,x)+F,_ (E, x)]

mel
in2
o [Pl 0) +F

(E,x)+2F,(E,x)].

m=2

(2.5b)
Integrating (2.5a) by parts, we get

1 L4
nEn=-2 [Ta

sinmy[(1 + E) cosx siny + sinx cosy siny]
[(E - cosx cosy)? — (cosx +cosy)?[t/2

_(1+E)cosx
- 2m

X

[F . (E,x)=F, _ (E ]

P2
+51nx[

T e (B,%) = F L (E,x)]. (2.6)

Equating the two expressions for f,(E, x), we obtain
the following relation for F, (E,x)s:
(m+1)sin*s F, ,(E,x) + 2(1 +2m)(1 + E) cosx F,,,,(E, x)

- 2m(2E? - 2 +sin?y) F, (E, x)
-2(1-2m)(1 +E)cosx F,_,(E,x)

- (1 -m)sin?s F,_,(E,x)=0. (2.7
Then, by use of (2.4),
G(I+1+2(p+1),1+1,0)+G(+1+2(p—1),1+1,0)

=2/ dxcos(l +2p+1)x[1 - 2sin?x] F,,, (B, x).

(2.8)

Substitution of (2.7) into (2.8) with some rearrange-
ment of terms deduce the recurrence relation for
G(l,m,0),

G(I+2p+3,I1+1,0)+G(I+2p~1,1+1,0)
-2G(I+2p+1,1+1,0)

_4@+E)Qr-1)

; [Ga+2p+2,1,0)+G(1+2p,1,0)]
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4 AuE -13_)___.(1‘1) G(l+2p+1,1-1,0)
_2(ll—1) [G(+2p+3,1~1,00+G(I+2p~1,1-1,0)]

-M—;(ﬁ-‘—eﬁ[G(z+2p+2,z-z,o)+G(l+zp,z-2,o)]

—3(—’—1'-2—) G +2p+1,1~3,0)

+(—l-';—2—)-[G(l+2p+3,l—3,0)

+G(I+2p-1,1-3,0)]=0, 2.9)

where [ is a positive integer and p is zero or an integer.
Eq. (2.9) gives rise to a relation among Green’s func-
tion for 13 lattice points lying on the edges and inside a
square formed by four lines connecting the Ith with the
(I +5)th sites along the x and y axes (see Fig. 1), ex-
cept the square whose center is at the origin, i.e.,
1=01in (2.9).

We show below that proper application of (2.1) and
(2.9) makes it possible to obtain any function G(I,m,0)
or G(I+1,m,1) for arbitrary integers {,m, provided
that we know the functions G(2,2,0) and G(2p,0,0)
where p is zero or a positive integer. Suppose that
G(2,2,0) and G(2p,0,0) have been obtained. Then
G(1,1,0) is easily obtained from (2.1) as

G(1,1,0)=4EG(0,0,0)-1].

Moreover, with (2.2) we can always find
G({l+m,m-1+1,1) where [ changes from 1 to m for
a positive integer m by

26l +m,m-1+1,1)=4EG(l+m~1,m-1+1,0)
-Gl+m,m-1+2,0)=G{l+m-2,m -1,0)
-GUl+m,m~1,0)~G{l+m~-2,m~1+2,0)
26U +m=-1,m=1+2,1)=261+m~1,m~1,1)
-2G(+m=-2,m-1+1,1), 2.10)

Now, let’s place the center of a square determined
by (2.9) at the point (2¢,0,0) (¢#0) and move it to the
adjacent point along the y axis up to (2¢,2¢,0), so that
we can determined successively G(2¢ +2,2n + 2,0) for
n=0,1,2++c¢q in terms of the known functions G(l,m,0)
for I,m <2g+ 2. Similarly, by moving the position of
the center of the square from (2¢~1,1,0) to
(2¢-1,2¢-1,0), we can obtain successively
G(2q+1,2n’ +1,0) for n' =1,2¢ ¢4 g, in terms of the
functions G(2¢ +1,1,0) and G{I,m,0) for [,m <2g+1.
A function G(2¢+1,1,0) is in turn given from (2.1) by
G(2¢+1,1,0)=EG(2¢,0,0)-G(29-1,1,0) - G(2¢4,1,1)
where G(24,1,1) can be independently obtained from
{2.10). As the above procedure is valid for g =1 it
holds for any positive integer q.

3. CALCULATIONS OF G(20,0,0) AND G{(2,2,0)

In this section we shall derive the explicit expressions
of G(2p,0,0) and G(2,2,0). Let’s start with G(2p,0,0):

G(2p,0,0)= — // dx dy
™ Jo Jo
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cos2px
[(E cosx cosy)? — (cosx + cosy)Z [ 72"

(3.1)

We perform the integration over y in a straightfor-
ward manner and

G(2p,0,0) = F(12TE§ ];' dx cos2px K(k,),

where K(k,) is the complete elliptic integral of the first
kind with modulus given by k, = 2(E + cos?x)*/2/(1 + E).
If we replace K(k,) by a hypergeometric series and ex-~
change the order of integral and summation, we get

(3.2)

3 @

G(2p,0,0)= i) +E)"_0 @0,@), <1 +E)

X [ " dx cos2px(E + cos2x)", (3.3)
V]

where the standard symbol (m),=T(n +m)/T (m) is used.
We note that the integral in (3.3) gives rise to associ-
ated Legendre function P?(¢) as*

7[EQ + E)J/2

W), (3.4)

J; dx cos2px(E + cos?x)t = P(£),

with
t=(E+3)/[EQ+E)]/2,

The associated Legendre function is in turn related
to Jacobi polynomials P, ‘mm (£),*

Pr(g)= -1p (n+1), P22 (£). (3.5)

2% n=p

A successive application of recurrence formula for
Pit:#) leads to

P,‘.’.,',"’(s)=§ (—1)’(‘;.’) P&-isD(g), (3.6)

Thus by use of (3.3), (3.4), and (3.5), we have
«© 1 1)
G(ZP 0, 0)= 22(1 +E)mFEpf2 E ("1) ( ) E (1),,(1),,

n=0

x(_z_) TEQ+BPR o). (3.7)

1+E

Furthermore, using the identity for an arbitrary
inger g,
(l) 1 N fq L 1
(i—)" = TG0, Z:J; u (3)yen B) (3,
n n =
we can replace the summation over #n in 3.7 bya

hypergeometric function of Appell’s type,
F,(a,8,y,7,X,Y).* Thus

(3.8)

G(2p,0,0) = el +E)11.,,2E,,72p! j‘é fE{:quo Cri Fylu
+E W, p-j+1,i+1,X,,X),
(3.9)
where
Col=(- 1)4( f) ) (" ;" ) ORI ( ,j,)e)u. @)y
(3.9a)
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and

2

X* = -(1—+—E—)2 [E+%¢E1/2(1 +E)1/2].

(3.9p)

We note that it is possible to expand F,(@,8,7,7,x,y)
in a finite series of products of simple hypergeometric
function, if y+9" —~a - -1 is zero or positive integer,
as it is in the present case. Thus

Fq(ayey'y}')/’:x(l—y)’y(l"x))
=Zu>(v> (-y)"“@)& oF1(@, B+E;750),F (v + ¥/
k=0 & (V'k ’ 7 2. !

-B=1,8+k;y +ksy),
(3.10)

with y=y+% —~a - -1, The relation (3.10) is easily
shown if one expands the integral representation for
F,(a,B,7,7,x(1 —=y),y(1 - x)) in terms of products of
integrals for simple hypergeometric functions., Finally
it should be mentioned that a hypergeometric function of
the form ,F,(a - 3,b - 3;c;x) for positive integers a,b,c,
is reduced to linear combinations of ,F,(3,3,1;x) and
.F(3, - 3;1;x) after a successive application of Gauss’
relations.

Hence we conclude that G(2p,0,0) can always be ex-
pressed as a finite sum of products of the complete
elliptic integrals of the first and the second kinds,

K(k,) =n/2),F\(z,2;1k,%),
E(kt)z (77/2) 2F1(%, _%;l;k*2),
where the moduli 2, are calculated to be

1 ( 4E/2(1 + E}/2 (E_1)(E+1)1/2(E—3)1/2)

kj= T+E? G+ 57

£ 2

(3.11)

Next, we derive an expression for G(2,2,0). We re-
write G(2,2,0) in the following form

T
G(2,2,0)=G(0,2,0)—;§-£ dxsin®x F(E,x). (3.12)

A straightforward calculation of F,(E,x) from (2.3) is
carried out to give the following result:

F(E,x)= Sii% ((1 +4 Es)i(r;%i - (k) = (L + E)1 + &) E(k)
+ ?(_}}f& (2 k)) —Fy(E, ),
(3.13)
where

ko= 2(E + cos?x)!/2/(1 + E),
kh= {1 - k22,

w=[E-1-(E+DEV/[E-1+(E+1)R}].

and TI{?,k) is the complete elliptic integral of the third
kind. Substituting (3.13) into (3.12), we get
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4 gin?x

G(Z,Z,O):G(0,0,0)— -1;% £rdx(m K(k)

~ (1 +EY1+R) ER)+ d+E Ry H(u"’,k)) .

T+%
(3.14)
A similar calculation is made to obtain G(1,1,0)
A E~1+(E+1)E
c1,1,0= 2 [0 dx( R K
2k,
- 2 3.15

Eliminating the integral involving M{u2, k) from (3.14)
and (3.15), and applying transformations for K (k) and
E(r), we get

G(2,2,0)=(~2E?+ 4 E+1) G(0,0,0) +2G(2,0,0)

8(1L+E) (/2
- H1+E)+ =0 [ dxE(k,). (3.16)

The last integral in (3.16) is calculated in an analog-
ous way as we have derived (3.9) from (3.3). Thus,
fo /2 dx E(k,) =K(k,) K(k) +2E(k,) E(k)) - K(k,) E(k_)

-KE)ER,).
(3.17)

Expressions of G(0,0,0) and G(2,0,0} are given from
{3.9) and {3.10):

4

G(0,0,0) =20 1E) K{p,)K(E), {3.18a)
G(2,0,0)= . S (K(k VE(R.)
PN 21+ EYR2R? T
1

+ m E(k*) E(k_)

-0 _1;32)" K(,)ER.) - -(T-_*}?z—) K(p) E(k*»,

(3.18b)
where the moduli k, are given by (3.11).

So far we have tacitly assumed E > 3, for which the
moduli %, defined by (3.11) are real numbers, When
E<-1, p, are pure imaginary. In this case we shall
use a transformation

oFi(z,23;1;2)= (1 - z)*"zzFl(%,i%;l ,E_ii) , (3.19)
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so that the general expressions for G{(I,m,n) is valid
for E<-1 if we replace K(k,) and E{k,) respectively by
K(g,)/a, and a,E(q,), where

1 1-E)-1~E)}2(3-E)/2
o= g (1+ A=D1 BG o)

4(— E)Y/3(~1 ~ E)t/2 \ 1/2
R S g 5 ) ’

(3.20a)

q,=2[(= E)*/25 (=1 =-E)/2]/[1 = E+ (3 = E}!/?(~ 1~ E)*/2],
(3.20b)
4. CONCLUDING REMARKS

We have proved that Green’s function G(I, m,n) at an
arbitrary lattice point (I,m,#) in fcc lattice can be ex~
pressed in an exact form as a real function of products
of the complete elliptic integrals of the first and the
second kinds for £>3 and E<-1, As is easily seen
from (1.1), the function G(I,m,»n) is analytic in the
complex E plane with a branch cut along the real axis
between -1 and 3, so that the theory of analytic contin-
uation makes it possible to obtain the expression of
G(l,m,n) for the entire E plane. In our case, the analy-
tical continuation of G{I,m,n) is equivalent to those of
K{k) and E(k) in the complex % plane which has branch
cuts on the real axis from 1 to = and from ~1 to =,
Since K(k) and E{%) on any branch on the Rieman surface
is expressible in terms of K(k), K'(k), E{%), and E(%’)
on the prinecipal branch, it is sufficient to calculate K(g)
and E (k) with complex % on the latter branch, which is
numerically evaluated on computer. Actual procedure
of calculations for K{%) with complex k is described in
detail by Morita and Horiguchi in Ref, 2 for the case
of G{0,0,0). The method is easily extended to the pres-
ent case to compute G(2,0,0), G(2,2,0) to a good
accuracy.’

For other cubic lattices, we can also derive a general
formula to calculate G(I,m,n) in terms of complete
elliptic integrals of the first and second kinds.5
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The closing relation between two super-Hamiltonians is cast into a condition on the super-Lagrangian
by a functional Legendre transformation. It is shown that the ADM super-Lagrangian provides the
unique representation of the “group” of deformations of a spacelike hypersurface embedded in a
Riemannian space-time when the intrinsic geometry g; of the hypersurface is allowed as the sole
configuration variable. No such uniqueness exists for the super-Lagrangians of source fields. As an
illustration, the most general super-Lagrangian for a scalar field with nonderivative gravitational

coupling is recovered from the closing relation.

1. INTRODUCTION

Geometrodynamics, pure or driven by sources, may
be viewed as representing the “group” of deformations
of a spacelike hypersurface embedded in a Riemannian
space—time. In this paper, we show that pure geometro-
dynamics has a privileged position—it is the unique
representation of the “group” of deformations using the
intrinsic geometry g, of the hypersurface as the sole
configuration variable, This generalizes the proof given
in Ref. 1 that pure geometrodynamics is the only time-
reversible representation. Therefore, no irreversible
geometrodynamics exists!

While the representation requirement determines pure
geometrodynamics uniquely, it still leaves a considera-
ble freedom to the sources of geometry. We illustrate
this in the simplest case of a scalar field with nonderi-
vative gravitational coupling. There are infinitely many
ways in which such a field may evolve and we shall show
how to recover all of them directly from the representa-
tion requirement.

What do we mean by saying that a field dynamics
represents the “group” of deformations? In the Hamil-
tonian formalism, the field on a spacelike hypersurface

=X"(x) is described by a set of canonical coordinates
¢*(x) and conjugate momenta w, (x).? In pure geometro-
dynamics, the field ¢*(x) is the intrinsic geometry g;,(x)
of the hypersurface itself. In driven geometrodynamics,
other fields (scalar, electromagnetic, etc.) enter as
sources of the geometry g,; and are included among the
variables ¢#, We ask how the field changes when we de-
form the hypersurface ‘=X" {x) into a neighboring
hypersurface X" = X" (x) + 6X"(x). The displacement 6X"
is decomposed into normal and tangential components,
6N and 6NY,

5X'=n'6N + X 6N*, 1.1)

Here, n' is the unit normal to the hypersurface and

iEXL,, are the tangent vectors in the direction of
intrinsic coordinate lines x!, The field dynamics is
governed by a super-Hamiltonian 4 (x)[¢4,7,] and a
supermomentum //, (x)[¢*, 7] constructed from the
canonical variables ¢#, 7, of the theory. An arbitrary
functional F of these variables changes under the de-
formation 6N, 8N* by the amount

6F=[F,H JoN+[F,4, JoNt, (1.2)

The super-Hamiltonian // and supermomentum /4 ; bush
the field by means of the Poisson brackets (1.2) when
the hypersurface is pushed according to Eq. (1.1). In
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order that the dynamics of the field develops consis-
tently with the kinematics of slice deformations, the
expressions // and 4/, must close in the way which is
characteristic for the generators of the “group” of
deformations3:!;

Vv’,(x),ﬁj(x')]=ﬁ’,(x')é'j(x,x')—(x-’x'), (1.3)
W, ), HEN]=H (06, (x,x"), (1.4)
W) H G ]=H (005, (¢, ) = (x = x). (1.5)

This poses the representation requirement,

The supermomentum may be found directly, not using
Egs. (1.3)—(1.5) at all, when realizing that the tangen-
tial deformation 6N! is equivalent to the relabeling
x* —+% =x! +5N* of the hypersurface. The change of the
functional F under the tangential deformation should
thus equal to its Lie derivative with respect to 5N?,

[FH,.JoN'% =g, /F. 1.6)

Consider the simplest case of a scalar field ¢. Taking
for F the scalar field ¢ itself and then its conjugate
momentum 7 (which ought to be a scalar density), we get
from (1.6) two equations:

[0, H 0 JON" =8 i b(x) = ¢, (x)EN(x),
(1) H 0 JoN =8,y () = (1(x)ON* () ;.

Because 6N! is arbitrary, these are actually two func-
tional differential equations:

B — 1o, ), 1.7)
% ==,,(x)6(x,x') = 7(x)5 , (x, x").

The system (1.7) has the unique solution
Hix) =mx) ¢, (x). (1.8)

In the same way, one may find! the supermomentum of
the metric field,
H()=—2m ,(x). (1.9
Because the Lie derivative of a tensor density is always
linear in this density, the supermomentum is always
linear in the field momentum. Each of the two super-
momenta (1.8), (1.9), as well as their sum, satisfies

the closing relation (1.3). The supermomentum (1.9)
belongs to pure geometrodynamics, the total super-
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momentum (1.8) +(1.9) to geometrodynamics driven by
a scalar field.

The closing relation (1,3) is thus satisfied automati-~
cally. The next closing relation is also easy to take
care of. Long time ago, Dirac showed* that Eq. (1.4)
tells us merely that the super-Hamiltonian #(x) is a
scalar density. The task of representing the “group” of
deformations thus reduces to the task of constructing a
functional 4 (x) from the canonical variables, which is a
scalar density and satisfies the closing relation (1.5).

We say that the field ¢#, m, has a nonderivative gra-
vitational coupling, if the total super-Hamiltonian 4T’
of this field interacting with geometry falls into two
parts, # and #/'¥, the first of which depends only on the
geometrodynamical variables g,,, 7*, and the second of
which depends on the field variables ¢4, 7, and the
metric g;,, but not on the geometrodynamic momentum
wtis

/‘/(T)=7L/l—gu,7ru]+H(")[¢A;"A’g¢j]- (1.10)
Under such circumstances one may show! that the
geometrodynamical super-Hamiltonians #/ close into the
geometrodynamical supermomentum (1,9), and the
matter-field super-Hamiltonians 4/‘¥’ close to the
matter—field super-momentum H‘”’, according to the
same relation (1,5), Moreover, the Poisson brackets
may be restricted in the first case only to the geometro-
dynamical variables, and in the second case only to the
matter—field variables. The problem of finding the
geometrodynamical super-Hamiltonian thus nicely de-
couples from the problem of finding the super-Hamil-
tonian &/ ™ of the sources.

Finally, it is easy to show that the geometrodynamical
super-Hamiltonian must be purely local in the momen-
tum 7¥/, i.e., a function of the momentum 7#/(x) taken
at the same point x at which the super-Hamiltonian is
evaluated. This follows from the fact that the intrinsic
metric g4;(x) of a hypersurface X "(x) embedded in an
arbitrary Riemannian space—time changes under the
normal deformation §N(x) according to the formula’

5,2, (1) =K,, ()N (), (.11)

with Ky (x) characterizing the extrinsic curvature of the
hypersurface,®
V1 L

K”=Za X;. (1.12)
In Hamiltonian geometrodynamics, 6,g,;, is given by the
dynamical rule (1.2) with 6N' =0, and the comparison
with Eq. (1.11) yields the condition

4

%=[g,,(x),,q(x')]=K”(x)o(x,x'). (1.13)
Because of the 6~ function on the right-hand side of Eq.
(1.13), #(x) must be local in the momentum 7¢/(x),

A similar reasoning shows that the scalar field super-
Hamiltonian #¢®’(x) must be local in the scalar field
momentum 7(x). The change of an arbitrary space~time
scalar qb(XL) under the normal deformation 6N(x) is

0¢(x) = K(x)ON(x), 1.14)

with the normal scalar field velocity K(x) introduced as
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K () =nt()o, (X(2)). (1.15)

Because the same change may be determined from the
dynamical rule (1.2),

5, 0(x) =[o(x) 4T, Jon

= [¢(x) ’H(mx’ ]GN" = G?/ﬂ((::)x' oN¥ ]

we get by comparison

)

Therefore, 4%’ (x) must be a function of 7(x) rather than
a functional,

1.16)

The scalar field ¢ and the metric field *g;, are in this
respect exceptional. The super-Hamiltonian of any other
tensor field is necessarily nonlocal. Fortunately, this
nonlocality is of a simple kind. The super-Hamiltonian
additively splits into a local and a nonlocal parts. The
nonlocal part is fixed once for all by purely kinematical
considerations and turns out to be a spatial divergence
of a vector density linear in the field momenta. It deter-
mines how the normal and tangential projections of the
field behave under a “rotation” of the hypersurface. The
true dynamical meaning is carried only by the local
part of the super-Hamiltonian, which determines how
the field changes under a “translation” of the hypersur-
face. We shall investigate the dynamics of general ten-
sor fields in another paper. Here, we pay attention to
the only two fields with local super-Hamiltonians: the
scalar field ¢ and the metric field g,,.

2. LEGENDRE TRANSFORMATION

Rather than trying to determine the super-Hamiltonian
#H(x)[¢#A,7,] from the closing relation (1.5) directly, it
is easier to pass first to the super-~Lagrangian
[ (x)[¢4,K4] by the Legendre dual transformation and
determine / (x)[¢#,K4] from the transformed closing re-
lation. The Legendre transformation takes on a simple
form once we know that //(x) is local in the momenta
my (1),

¢4 (x), my (x) —~ ¢ (x), K4 (x), .1)
/AN _ k)
‘"A(x)_aKA(x)’KA(x)—anA(x)’ (2.2)
Hx) =7, (KA (x) - L (%), (2.3)
Lx) =7, (KA (x) = H (x). (2.4)
The Legendre formula

¢t (v 5 tixed T apAl) K2 tixed

helps us to transform the closing relation (1,5). Starting
from the definition of the Poisson bracket

W(x),;ﬁ/(x’)]fé/-/(x) oH () (e %)

54" 5Ty m
and recalling the locality of //,
o (x') _ 3 (x')

CENCONEIRCY

&(x',x"),

we get
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éﬁqf_A(zﬂ;')KA(xf) + 444 (x)[qb‘,;-é—;] %(x,x’)— (¢ — ") =0.

(2.6)

The supermomentum 4! is always linear in the field
momentum 7, =3/ /3K*. This has two important conse-
quences. First, Eq. (2.6) is linear in the super-
Lagrangian, Second, it does not change its form under
the velocity inversion

KA~ - K4, (2.m

Therefore, if [ [¢*, K4] satisfies Eq. (2.6), / [¢4, ~ K4]
also satisfies it., Furthermore, because Eq. (2.6) is a
linear equation for /, the even and odd velocity parts
of [,

L= [¢*, KA ]+ L[¢%, —KA]), (2.8)

satisfy Eq. (2.8) separately. This is the main simplifi-
cation achieved by the Legendre transformation: the
original closing relation (1.5) was quadratic in the
super-Hamiltonian and it therefore mixed the even and
odd momentum parts of 4.

3. PURE GEOMETRODYNAMICS

In Ref. 1, the complications associated with the
mixing of A* with /- were circumvented by assuming
that geometrodynamics is time-reversible, so that the
super-Hamiltonian may be chosen since the beginning
as an even function 4/* of the momentum. Within the
Lagrangian approach, we are able to remove this addi-
tional assumption and prove that geometrodynamics is
time-reversible from the closing relation (2.6) itself.®
This we do by proving that / *(x) must have the form

o BA[Y]
A (x)-—mlfu(x),
where A[® g ] is an arbitrary functional of the three~
geometry °G =g, /Diff(/® }. The super-Langrangian
{3.1) is dynamically irrelevant, because it satisfies the
Lagrange equations

b (aL &) )
8N(x') 0K, (x)
identically. The evolution of geometry is then governed

by the even part /* of /. The Lagrange equations (3.2)
with / =/ * remain invariant under the time-reversal

SN(x) =~ = 6N(x), K, ,(x)—~ =K, ,(x), (3.3)

which means that pure geometrodynamics is reversible.
The actual structure of L"[gi K j] is then determined
from the closing relation (2.6).

(3.1)

6/ (x') _
og,(x)

(3.2)

Let us first cast the closing relation (2.6) specialized
to pure geometrodynamics into an adyantageous form

8/ (x) 3 ()

o e LT o )

8yy;(x,x) = (x ~—x")=0.

(3.4)
We have arrived at Eq. (3.4) by using the identity
Hix)o  (x, x') = (x == x') =209 (%)), (x, x") = (x ~— %"} (3.5)

which is satisfied by the geometrodynamical super-
momentum (1.9).

We solve Eq. (3.4) by expanding / into a power series
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[ = E “gistreeint] MK, (3.6)

and comparing the coefficients belonging to different
powers of K,,. The comparison is easy once all spatial

LN

" derivatives are shifted to the 5-functions, as we have

done in Eq. (3.4) by means of the identity (3.5). One
can also see directly that Eq. (3.4) does not mix the
even {n=0,2,4,°+°) and 0dd {(n=1,3,5,++°) coefficients
(M Giydre < *indn, corresponding to the fact that /* and / -
satisfy Eq. (3.4) separately.

The coefficients ‘P Gi/1* * *Infn are some functionals
M Ghaire * *idn[ g, ] of the metric g,,. Because 4 is a
scalar density, K,; is a tensor, and 7% is a tensor den-
sity, / must be a scalar density and all coefficients
W Gy *in/n must be tensor densities. Because K, is a
symmetrical tensor, the coefficients G * *indy are
assumed to be symmetrical in each pair i j, of indices
and also symmetrical with respect to an interchange
i,4, 14,7, of pairs, Finally, we shall often omit the
superscript ‘", because the order of the coefficient
m@Gidye - 14, is indicated by the number of its indices.

A. £ regained

Put K,,=0 in Eq. (3.4), collecting thus all terms
which do not contain K,

GH ()8, (%, &) = GH ()8, 0 (', %) =0. (3.7)

The consequences of the distribution equation (3.7) are
best extracted when we multiply it by two scalar test
functions, a{x) and 5{x’), and integrate over x and x'.
When integrating by parts, remember that 6(x,x’) is a
scalar in the first and a scalar density in the second
argument, and that G¥(x) is a tensor density. After
discarding some divergences, we obtain the equation

[ #xal@p 64, +bGH,,)=0. (3.8)
Because afx) is arbitrary,
2b ,G¥|, +bGH,, ,=0. 3.9

But b(x) and b ,(x) at a given point x are also arbitrary,
so that

G, =0. (3.10)

Going backwards, Eq. {3.10) ensures that Eq. (3.8)
and therefore the distribution equation (3.7) are satis-
fied. Equation {3.10) is thus the only conclusion we may
draw from Eq. (3.7).

Next we collect those terms in Eq. (3.4) which are
quadratic in K,,, getting

____75@”(95) K{j(X)Kkl(x') + BGHHIM U)K (1)K (%) By ua(X, X')
081 (x') (3.11)
- (e x")=0.

Equation (3.11) must hold for an arbitrary K ,(x). To
follow its consequences step by step, write K, j(x)
formally as a product of a scalar k(x) and a tensor
K,;(x),

K,,(x) = k(K (). (3.12)

Keep first the tensor f, ;{x) fixed and consider the
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scalar k(x) to be arbitrary, Later on, allow the tensor
K,,(x) to vary again.

We introduce the abbreviations

Alx,x') =8H™(x)5,,,(x,x"), (3.13)

Hm™(x) = GH* m(x) K, () Ky, (%), (3.14)
N (0GH () 8GH () = 1=

B(x,x') = (5&;(95’) 5g”(x)) K, (0K, ). (3.15)

Equation (3.11) then assumes the form
Alx, s k()k(x) ~ Alx' , k(%' )R(x’) + Bx, x" e (x)k(x') = 0.
(3.16)
Noﬁce that H™ is symmetrical, and
B(x',x)==Bl(x,x'). (3.17)

Equation (3.16) holds for an arbitrary scalar k(x)
and some distribution coefficients A(x,x'), Blx,x’) with
the symmetry (3.17). According to the Lemma 1 proved
in the Appendix, the coefficients A{x,x’), B{x,x’) must
satisfy the relations

AW (x, %" ) =Ax)6(x, ),
~2A9(x,x") = B{x,x'),
with
AW (e, x")=2(Ax, ")+ Alx', %)),
A(x)Efd%c' AW {x, x'),
For A{x,«’) given by Eq. (3.13), the relation (3.18)
gives
H™(x)5) (0, 57 ) + H™ (6" )6 ) 00 (7, x) = H™ ()5 (v, %')
{3.20)

Multiply Eq. (3.20) by two scalar test functions, a{x)
and b{x’}, and integrate it over x and x’. Recalling that
Hmn is a tensor density, we again discard some diver-
gences and obtain

[ @&« 2a(py,, H™ + by H™ ) =0,

Because a(x) is arbitrary, and also b),(x) and b,,(x)
=3(),,,(*¥) + b),,,(x)) at a given point x are arbitrary, we
conclude that

(3.18)
(3.19)

Hm =0, (3.21)

Returning to the definition (3.14) of H™ and using now
the arbitrariness of K,,, we see that Eq. (3.21) really
means that

GH ¥t mn(y) =0, (3.22)

Equation (3.21) implies that the coefficient A(x,x’)
given by Eg. (3.13) vanishes. According to Eq. (3.19),
the coefficient B(x, x’) must then also vanish. Because
B(x,x) has the form (3.15) and K,,(x) may again be
considered as an arbitrary tensor, we apply the Lemma
2 proved in the Appendix and conclude that

5GH(x)  8GH(x")
Ggm (x') - ‘Sg”m

=FHr () 5{(x,%"), (3.23)

where Fi/* jg symmetrical in 4j and k! and antisym-
metrical in the interchange ij-— %I of pairs. One can

check that Egs. (3.22) and (3. 23) are the only two
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consequences one may draw from Eq. (3.11),

The closing relation (3.4) has such a structure that
once an odd {even) coefficient ‘G vanishes,

; (3.24)

all subsequent odd (even) coefficients ™2G, (™G +e.
are forced to vanish as well, Indeed, when Eq. (3.24)
holds, the only term of the order » +1 remaining in Eq.
(3.4) is

Gy s iydy =0

Hij(x)5| ,j(x, X’) had Hij(x’)an'j’ (x’ s x) = 09 (3 . 25)
where
Hiizm2ygidies clyging HK*;-’;‘ . ‘K‘mﬂnd' (3.26)

Equation (3.25) has the same form as Eq. (3.7) and it
thus leads to the same consequence,

Y, =0. (3.27)

The term H¥ in Eq. (3.27) depends, however, on an
arbitrary tensor K,,, whereas the term G'/ in Eq. (3.10)
was K, ;-independent, This allows us to conclude from
Eq. (3.27) that the coefficient ™®G must vanish,

(m2) Gidye » *dpunlpen = 0,

We can see that by substituting the expression (3.26)
into Eq. (3.27),

R A WRLS TR
ntlins

+ (1) Gl ipintnadm1ti K, L e0oK
i1dy

in.fﬂKiwpxjnﬂ.U = 0 L4

and realizing that K, and X

1 /1 are both arbitrary at a
given point x,

Because the coefficient ‘¥ G vanishes according to
Eq. {3.22), all subsequent odd coefficients must vanish
and /" thereby reduces to the term linear in K,. The
coefficient G¥ of this term is subject to the conditions
(3.10) and (3.23). Equation (3,10) tells us that G¥ is
divergence-free. Equation (3.23) prescribes a definite
form to the “functional curl” 5G*(x)/8g,, (') - 6G¥ (x’)/

bg;;(x) of G¥[g,.].

In relativity, one often generates a divergence-free
functional G*(x)[g,,] by taking a labeling-independent
functional A[*G ] and varying it with respect to the
metric g;,; this is how the Einstein tensor density
arises from the Hilbert action. Also, if

6A[gy]
GH (x) = —<all 3,28’
()= 2% (3.28")
is divergence-free (the divergence being taken as if

G were a tensor density), the functional Alg,,] must be
a labeling-independent scalar density, and therefore a

‘functional of the 3-geometry ¢, rather than a functional

of the metric g,,." It is not true, however, that all
divergence-free tensor densities G¥(x)[g,,] constructed
invariantly from the metric tensor g,, are variational
derivatives of labeling-independent functionals A[sg l.A
counterexample is provided by the (symmetrical) tensor
density
Bi=ehiRd (3.29)

introduced by York.® If G* is a functional gradient, Eq.
{3.28), its functional curl must vanish,
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5GU() 8GH (') _-
68y (¥') ~ 8g,,(x)  °

(3.30)

It is easy to check that the functional curl of pi/ does not
vanish,

To prove that geometrodynamics is time-reversible,
we must show, according to Eq. (3.1), that the coeffi-
cient G¥ is a functional gradient. This is not clear at
this stage, because Eq. (3.23) taken by itself does not
say that the functional curl of G¥ vanishes, but only that
it has a certain structure. Fortunately, as shown by
Teitelboim,? Eqs. (3.10) and (3.23) taken together imply
that an undetermined functional F¥ *¥(x)[ g ] on the
right-hand side of Eq. (3.23) must vanish, which leads
to the desired result.

One arrives to Teitelboim’s conclusion by proving
first the following:

Lemma: When (1) G (x)[g,,] is a symmetrical tensor
density constructed invariantly from the metric tensor
and (2) G¥|,=0, then

5G4 (x)  5GH (x’
I= ds ’ —
J (égk,(x') og,, )

)> Byymg,(x)=0. (3.31)

The assumption (1) leads to the transformation formula

5GH (x)
bgkz (x’)

2%
=8yym GV (x), (3.32)

which takes care of the first term of I. The second term
may be rearranged into

85G* (x*)

_ ’ "o [é) fdsx' le (x')gﬁnm gg; (x')
f dsx Ggij X £6Nm gk, (x )— 6gij(x)
58sxm Zurlx’)
+ [ ' G¥ (x") ~=2 ! . 3.
[ @' ¥ (x )—L——B—Gg”(x) (3.33)
Varying the Lie derivative of g,,, we get
08oxm g (x’) , ,
T og, 0 6LON™(x) 5, . (x'x)
(3.34)

+64,6N™ (1) 80’ x) + 817 5N () 6(x', %).

The last integral in Eq. (3.33) is then evaluated,
yielding ~8,,m G'(x). The first integral on the right-
hand side of Eq. (3.34) vanishes,

[&x G*(x)8ym g,,(x) = [ dx G* (5N, +5N,;,)
=2[dx GMoN,, =2[d* (G*6N,),, - 2 d°x G*, 5N =0,

because (G¥5N,), is an ordinary divergence and G¥,,
vanishes by assumption (2). Collecting all terms of I
together, we see that I vanishes.

When we substitute into Eq. (3.31) the form which
Eq. (3.23) prescribes for the functional curl of G¥, we
get

FHHN,, =0, (3.35)

Because 5N,,, at a given point x is arbitrary, F!/¥ must
vanish. Equation (3.23) then ensures (disregarding the’
global problems which might arise if the space of func-
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tions was multiply connected) that Gt/ is a functional
gradient (3.28). Because of Eq. (3.10), A depends only
on 3¢. This finally shows that / - has the desired form
(3.1).

B. £* regained

Turning to the even part of the super-Lagrangian,
we collect in Eq. (3.4) all terms linear in K;;, getting

At (x, 2" )K, (&) ~ A¥ (¢’ x)K, , (x) = 0, (3.36)
with
5G(x)
iJ 4 LA 17 Bl (4 ’
Atd(x,x") 58,67 4GY ¥ (x")5, . (0, %), (3.37)

Varying Eq. (3.36) with respect to K;,(x"),
A (x, x")5(x’ &) = At (x', %) (x,x") =0,

and integrating the resulting equation over x’, we learn
that A%/ (x,x"”) must be proportional to the §~function,

AY(x,x")=F(x) 6(x,x"),
Fid(x)= [d3 A (' ,x).
For the coefficient (3.37), Eq. (3.38) gives

8G(x)
6g”(x') -

Equation (3.39) was analyzed in detail in Ref. 1. We
shall repeat here only the main results.

(3.38)

Fii(x) 6(x,x") +4GH* (x') 6y, (x", ). (3.39)

First, we see that G(x) must be a function of the
metric tensor g,,(x) and its first and second partial
derivatives, because otherwise the variation of G(x)
with respect to g; ,(x’) would yield higher derivatives
of the 6-function than the second ones, Because G{x) is
a form-invariant scalar density, we know!° that it may
depend on g;,(x) and its derivatives only through the
metric tensor g,;(x) and the Riemann tensor R,,,, (x).
In a three-dimensional space, the Riemann tensor is
expressible by means of the Ricci tensor R,,(x) and the
metric tensor g,,(x), so that finally

Gx)=G(g,;(x), R, (x)). (3.40)
Varying Eq. (3.40) with respect to g,,, we get
5G = (¢H +%R‘Iklj¢kl + %R§¢” + %R£¢Izi)5g”
+%(¢ikgﬂ +¢ilgdk+¢1hgil+¢ilgik (341)
- Z(b”gkl - 2¢klgij)6g”|“,
with
¢”=8G(g,,, RM)’ ¢U=aG(gﬂ:Rk[). (3.42)

ag“ oR,,

The variation of G may be also determined from Eq.
(3.39), with the result

6G=(F# +4GH*  )og,,

+8G”k’”6g”u+4Gi”’6g“m. (3.43)
Because 0g;;, 8g;;),> and 6g;;; = (8815 1m + 0g51x) mAy
be chosen at a given point as arbitrary and mutually
independent quantities, the comparison of expressions
(3.41) and (3.43) yields three sets of equations. The
first set,
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GH Rl = X (pirglt + pitg it + pirgi! + ¢jlgik

.44
— 20t gt ~ 241 glY), (3.44)
obtained by comparing the coefficients of 6g,,,,, deter~
mines the “supermetric” G *! in terms of the “poten-
tial” G. The second set,

Gii®, =0, (3.45)

obtained by comparing the coefficients of dg,,,, im~-
poses then a condition on the potential G through the
supermetric G/ #, This condition fixes the potential
and through it the supermetric up to two arbitrary con-
stants. The third set of equations, obtained by com-
paring the coefficients of 6g;,, then turns into an
identity.

The condition for G is obtained when substituting the
supermetric (3.44) into Eq. (3.45),

¢i!lk_¢ik|j+gif¢kl”_gdk¢j1”=0. (3.46)
Contracting Eq. (3.46) in the indices ij, we get
akz”=0, 6k15¢k1+¢g‘kl‘ (3.47)

According to its definition (3.42), #'/ is a tensor den-
sity constructed invariantly from the metric tensor and
its first and second derivatives. So is ¢*!, which is in
addition divergence-free. Thanks to a theorem due to
Lovelock!, ¢*' must be a linear combination of the
Einstein tensor density g'/2(R*' = $Rg*!) and the metric
tensor density g'/2g*'. Using the full Eq. (3.46) again,
we learn that ¢/ must be actually proportional to the
metric density,

o1 =(2k) gt 12gt, Kk =const. (3.48)
Substituting Eq. (3.48) into Eq. (3.44), we get the
supermetric

Giikl = (16K)'1g'l /2(gilzgjt +gi1gik - Zg”gk’). (3. 49)

Returning to the definition (3. 42) of ¢*/, we may inte-
grate Eq. (3.48) for G, picking up a second constant A,

G=(2)"1g (R = 22). (3.50)

Linear terms in Eq. (3.4) thus determine the super-
Lagrangian up to the terms quadratic in K;,. Collect now
the terms containing the product of three K, in Eq.
(3.4). Because the supermetric (3.49) is purely local
in the metric g,,, 6/ (x)/dg, (x’) is proportional in the
third order to the 6~ function, and the first expression in
Eq. (8.4) gives no contribution after the commutation
{xx"). We thus get

Hi(x)6 ), (x,x') ~H(x') §,,..(x",x)=0,
with

Hii=Ghhtazislsii g, K, K, .,
11 fpdy T igdy

The argument given in Sec. 3A then shows that the
coefficient ‘G and all further even coefficients °'G,
)G, ... must vanish. The even part of the gravitational
super-Lagrangian is thérefore quadratic in the velocity
K;, being equal to

[*=GUR K K,  +(2c)'g /*(R -2)), (3.51)

with the supermetric (3.49). Remembering that K|, is
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the —2 multiple of the extrinsic curvature, one recog-
nizes in the expression (3.51) the ADM super-Lagran-
gian. ** This completes the proof of the statement that
the Einsteinian geometrodynamics is the only represen-
tation of the “group” of deformations of spacelike hyper-
surface embedded in a Riemannian space—time using the
metric g;, as the sole configuration variable.

4. SCALAR FIELD DYNAMICS

The closing relation (3.4) determines the gravitational
super-Lagrangian completely—up to the constants x and
A which are interpreted as the gravitational constant and
the cosmological constant, and up to the trivial part /-
which has no influence on dynamics and may be thus
safely discarded. This shows the uniqueness of Einstein-
ian geometrodynamics. The uniqueness breaks down
when we pass from the metric field to its sources. The
closing relation still ensures that the source-field
dynamics may be consistently interpreted as taking place
in a single Riemannian space—time, but there are many
alternative dynamics compatiable with this requirement.
We illustrate the situation on the scalar field (which is,
as we have seen, the only field besides the metric field
possessing a super-Hamiltonian local in the field mo-
mentum). We recover from the closing relation (2. 6)
itself all different ways in which the dynamics of the
scalar field with nonderivative gravitational coupling
may procede.

The field-part #/ (*’ of the total super-Hamiltonian
satisfies the closing relation (1.5) separately, with the
Poisson brackets being confined to the scalar field
variables ¢ and 7. Pass to the super-Lagrangian / ¢,
performing the Legendre dual transformation (2.1)—
(2.4) in the variables ¢,

& (x), 1(x)—~ ¢ (x), K(x),

k=T [ O =K =4 <00,

(4.1)
The scalar field super-Lagrangian / ‘*’ may depend,
besides the scalar field amplitude ¢ and the associated
normal velocity K, only on the undifferentiated metric
tensor g,,. We know that / ‘®’ must be a scalar density
with respect to the spatial transformations, This
severely limits the manner in which the derivatives of ¢
may enter into / ‘®’. Indeed, / ‘®’ must have the form

L@ =g"2L(,4,K), (4.2)

where L is an arbitrary function of the three scalars
¢, K, and

b=giip o . 4.3)

Higher derivatives of ¢ than the first ones cannot enter
the super-Lagrangian / ‘®’, because the formation of a
scalar density would require the use of covariant deri-
vatives. This would introduce the differentiated metric
tensor into / ‘®’, contrary to the assumption of the non-
derivative coupling. The scalar ¢ is the only scalar
which can be formed from the first derivatives of ¢.

The scalar field supermomentum is given by Eq. (1.8)
and the transformed closing relation (2. 6) takes the
form
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8L (x)
8¢(x’)

The variational derivative of L is

8L(x) __aL(x) 8d(x) +8L(x) 5(x)
6d(x") ~ 3p(x) 6d(x’) ~ S9(x) 6¢(x")

oL(x)
aK(x)

K(x') + ¢ (x5, (x, %) = (x - 2')=0. (4.4)

aL(x) aL(x)
~36(x) 3y(x)

Substituting it into Eq. (4.4), we get
A¥(x)d (x,x') —A‘(x’)é' Jfx', %) =0,
with

b(x,x") +2 520" (x)8 ,(x,x").  (4.5)

(4.6)

oL

Al=¢r ( 4.7)

+23%).

Multiplying the distribution equation (4.6) by a test
function a(x’) and integrating it over x’,

aAl | +2a A=0,

we learn that A* must vanish, because aand a , ata
given point x are arbitrary. From Eq. (4.7) we get the
equation

oL

oL
3K + 25—5 =0, (4.8)
which tells us that L must have the form
L=L(s,y-K?. 4.9)

An arbitrary function L of two variables, ¢ and i,
thus generates a permissable dynamics through the
super-Lagrangian (4.2), (4,9), with ¢ given by Eq.
(4.3). We see that the scalar field super-Lagrangian is
highly ambiguous.,

From the super-Lagrangian (4.9), we can pass to the
standard space —time Lagrangian L, The action con-
tamed in the coordinate cell with the edges d,

de d(z)X d(a)X may be expressed through the
space—tlme Lagrangian %L as

L
L% audoX do X de, X d g X",
where ‘,,,, is the space—time Levi=Civita pseudoten-
sor. f&dapt the cell to a given hypersurface, generating
d;yX Dby the edges d;,x’ of a coordinate cell on the
hypersurface,
diX =X, 0, (4.11)

and taking d(o,XL to be perpendicular to the hypersurface,

(4.10)

(1)

doyX"=6Nn*. (4.12)

The action contained in such a cell may be expressed
through the super-Lagrangian / ®) as

[ (x)6N(x) d® = L(x)0N(x) €, d¢ x*d g x1d qyx™, -
(4.13)

where ¢, is the Levi—Civita pseudotensor on the
hypersurface. We have

L
46(, o X:X);X;:eklw
Comparing the two expressions for the action, (4.10)

(4.14)
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and (4.13), and taking into account the formulas (4,11)~
(4.12), we see that

‘L=L, (4.15)

Knowing that K(x) is the normal scalar field velocity
(1.15) and ¢ , is the derivative of ¢ along the hypersur-
face, ¢ ;= ¢ X,, we express ¥ —KZ in terms of space—
time tensors,

YK =(g"X X5 =n'n)d &  =*g"b & (4.16)

In this way, we recover the space—time Lagrangian

tL=L(p,'g%d, 0, (4.17)

The closing relation (4.4) ensured that L depends on

" K and ¢ only through the combination § - K%, which is a

space—time scalar. This illustrates the connection be -
tween the geometrodynamical and space—time ap-
proaches. The ambiguity of the scalar field dynamics,
given by an arbitrary function L of two arguments, is
easily understood from the space—time viewpoint. The
space—time Lagrangian (4.17) is the most general
space—time scalar which may be formed from the scalar
field ¢ and its derivatives without involving the deriva-
tives of the metric tensor.
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APPENDIX

We prove here two lemmas which were needed in Sec.
3A.

Lemma 1: Let the equation
A, x")R(x)(x) = A(x’, x)k(x"Ve(x") + Blx, x"Ye(x)k(x') =0
(A1)

hold for an arbitrary field %2(x) and some distribution
coefficients A(x, x’) and

B(x,x’)==B(x', x). A2)
Then

A (x, x') = Alx)8(x, 1), (A3)

~2A(x, x")=B(x,x'), (A4)
with

AW (x,x) =3 (A, 2" ) £ Alx, ), (A5)

Alx)= fd3x' A®)(x, x7),

Proof: Put k(x)=1 in Eq. (A1) and get Eq. (A4). Sub-
stitute B(x,x’) given by Eq. (A4) back into Eq. (A1),
take the variational derivative of Eq. (A1) with respect
to k(x"), and put k(x) =1. Obtain the relation

A‘”(x’, x)é(x, xu) —A""(x,x')é(x’,x”) =0,
Integrate it over x and arrive thus to Eq. (A3).
Lemma 2: Let the equation

BAB (x, x"Ye, (%) b (x") =0 (A6Y
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hold for an arbitrary field &, (x) and some distribution
coefficients

BAB(y, ') == BBA(x’, x). (A7)
Then

BAB(x, x') = F*2(x) 8(x, x"), (A8)
with

FAB (x) = _FBA(x) — fdsx/ BBA(x’ x;). (AQ)

Proof: Take the second variational derivative of Eq.
(A6) with respect to k,(x’) and &, (x"). Get

BCD(x, x")8(x, x")8(x", x™) = BPC(x', x)8(x’, x")b(x, X”');
(A10)
Integrate Eq. (A10) over x’” and x. Arrive thus to Eq.
(A9).
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Within the Schrodinger-Infeld-Hull factorization scheme, it is shown that, by suitable
transformations, the “accelerated” or “v-step” ladder operator can always be brought to a simple
canonical form, ie., the vth derivative operation. Thus, one obtains a closed form expression of the
eigenfunctions involving a Rodrigues’ formula. The necessary and sufficient condition that this
Rodrigues’ formula generates classical orthogonal polynomials is found to be equivalent to the
factorizability condition. Consequently, a closed form expression of any matrix element (diagonal or
off-diagonal) on the basis of the eigenfunctions of any factorizable equation is easily derived from the
calculation of one unique particular integral. In most cases, this last integral is known analytically.
The Kepler problem is reinvestigated as an example. As a concluding remark, further applications of

the method are considered.

I. INTRODUCTION

Recently, using an “accelerated” ladder operator
procedure, we have been able to obtain closed form
expressions of the vibration' and rotation—vibration?
intensities of diatomic molecules for a Morse—Pekeris
potential and, further, as a particular case, explicit
expressions of the off-diagonal hydrogenic »* inte-
grals. 3'%'% Nevertheless, the application of our proce-
dure to the calculation of the intensities for other nu-
clear diatomic potentials (Manning— Rosen, ®* Rosen—
Morse™) results in intricate expressions of the “ac-
celerated” ladder operators. When trying to overcome
these difficulties, we have found that, by suitable
transformations, it is possible to reduce the “one-
step” ladder operator, when it is a linear function of the
quantum number, to a simple canonical form, i.e., the
derivative operation acting on a new function. Such
transformations had been previously investigated by
Duff® when he considered the Truesdell’s F equation. ®
Furthermore, as outlined by Duff, ® the treatment of
equations leading to ladder operators which are not
linear in the quantum number, can be amenable to the
resolution of equations which correspond to linear ‘“one
step”” ladder operators. Thus, a unified treatment of all
Infeld—Hull'® factorizable cases (types A to F) can be
undertaken.

In the present paper, we focus our attention on the
calculation of closed form expressions of the matrix
elements of a Hermitian operator in terms of a simple
matrix element. After briefly recalling the theory and
introducing the notations (Sec. II), the transformation
leading to the canonical form of the ladder operator is
explained. Then, once the “one step” ladder operator is
transformed into the derivative operation, the cor-
responding “v step” or “accelerated” ladder operator,
is of course, merely the vth derivative and, consequent-
ly, leads to an expression of the eigenfunction involving
a Rodrigues’ formula. (Sec. III). While investigating the
conditions under which this Rodrigues’ formula gen-
erates orthogonal polynomials, we found that there is
an equivalence between these conditions and the fac-
torizability condition of the original second-order dif-
ferential equation. From this last analysis, closed form
expressions of the eigenfunctions of general Infeld—
Hull type A to F factorizable equations in terms of the
orthogonal polynomials are derived (Sec. IV), and the
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corresponding closed form of matrix elements of a
Hermitian operator @ are obtained in terms of one
unique matrix element (Sec. V). In other words, the
full matrix, i.e., the set of all diagonal and off-diagonal
matrix elements of an operator @ on the basis of the
eigenfunctions of a factorizable equation can be built up
by calculating one unique particular integral in which is
concentrated the specificity of the @ operator: The
change of the operator only changes the expression of
the integral. The Kepler problem is reinvestigated as
a type F illustrative example (Sec. VI).

Il. GENERAL CONSIDERATIONS

Many problems of fundamental interest in quantum
mechanics lead to the resolution of differential equa-
tions of the Sturm—Liouville type. Without restricting
the generality of the problem, by an adequate trans-
formation of variable and functions, these equations can
be reduced to the standard form!® (see Appendix A)

(;—; +'r(x,m)+>\) U(x)=0 (1)

with associated boundary conditions (x, Sx <x,)

U(x,)=U(x,)=0

[ lu 2ax=1, @

where m=m,, m,+1, m,+2,... is assumed to take
successive discrete values labeling the eigenfunctions.

When such an equation (1) subjected to the boundary
conditions (2) is factorizable, it can be replaced by each
of the following two differential equations®1°:

H, H, U7=[\-L(m)] UZ, (3)

Hr-m-l- H:m-l Ué": [7\ - L(m+ 1)] U_’g",
where!!
H: =Rk(x m);—(—i—- (4)
m b

dx

S is the quantum number associated with the eigenvalue
A and L(m) is a function which does not depend on .

From the comparison of Egs. (1) and (3) one gets the
necessary and also sufficient condition’® to be satisfied
by k(x,m) and L(m) allowing the factorization of Eq. (1),

Copyright © 1974 American Institute of Physics 716



717 Hadinger, Bessis, and Bessis: Expressions of matrix elements and eigenfunctions 717

i.e.,
dk dk
2 2 ar i
B(x,m+ 1) =R (x,m)+ dx(x,m +1)+ dx(x,m)
=L(m)-L{m+1). (5)
Particularly, when the ladder operator H: [Eq. (4)] is

a linear function in m, i.e.,
k(xa m) :kl(x) m+ ko(x); (6)

the necessary and sufficient condition [Eq. (5)] of
factorizability of the original equation (1) becomes

(2m + 1) (%-{1- + kﬁ) + 2<%;1 + k0k1>

=L(m)~- L(m +1). (n
As it will appear later, this particular linear case (6)
is of fundamental importance.

As stated by Schrédinger, *2 Infeld and Hull, '° when the
condition (5) is fulfilled, the eigenfunctions U7 are
solutions of the following pair of difference—differential
equations:

H; UZ=N, UTY,
Hon Ug, (8)

N, =[x = Lim) ]2,

Un=N

T mel

The operators H% in the equation (8) may be considered
as ‘“one step” ladder operators which generate the
eigenfunctions, step by step, downward or upward, and
allow the determination of any solution Ug from the
knowledge of the top or bottom eigenfunction U§, i.e.,
the “key” function which is the solution of a first order
differential equation. One has to distinguish two cases
depending on the problem under consideration.

A. Class | problems

L(m) is an increasing function of m. The eigenvalues
Ag are

Ag=L(S+1). 9

The “key” eigenfunction U is solution of the first order
differential equation

Hy,, US=0. (10)

B. Class Il problems

L(m) is a decreasing function of m. The eigenvalues
Ag are

A =L(S). (11)

The “key” eigenfunction UJ is solution of the first order
differential equation

H; U$=0. (12)
In both cases, the necessary condition for the exis-
tence of quadratically integrable solutions is
|m - S| =v=integer. (13)

The mutually adjoint ladder operators [Eq. (4)] are de-
fined so that they preserve not only the quadratic inte-
grability but also the normalization of the eigenfunctions
UJ' (m =S zv). Each function of the whole discrete set
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is completely characterized by the integer value of v
which fixes its rank starting from the key function
U$ (v=0).

Infeld and Hull!® have considered six factorization
types, namely A, B, C, D, E, F. In surveying these
six cases, one finds that cases A, B, C, and D cor-
respond to ladder operators H;, which are linear func-
tions of m while for the two last cases, E and F, Hj
are nonlinear in m. Nevertheless, following Duff’s sug-
gestion, ® it is shown (see Appendix B) that a connection
can be established respectively between types E and A
and between types F and B, and that, by a suitable
transformation of variable and function, we can always
deal with ladder operators H% linear in m.

This is why, in order to obtain the explicit expres-
sions of the eigenfunctions, it is sufficient to consider
only the fundamental case where H? is linear in m. In
the next section, it is shown how, for this fundamental
case, one can obtain a Rodrigues’ formula in the ex-
pression of the eigenfunctions. Thus, the closed form
expressions of the eigenfunctions, and then of the cor-
responding closed form expressions of matrix elements,
will be derived, in a straightforward manner, from
this Rodrigues’ formula.

1. EIGENFUNCTIONS AND RODRIGUES’ FORMULA

As previously shown!~®, starting from the one step
ladder operators equation (4), one can define the cor-
responding “accelerated” or “v step” operators //%
which directly generates any U5*® function from the key
function U$

1
Ne

For a class I problem

US™(x)= = A} U(x). (14)

v

v d
U =11 H. .= I1 m+i)+ — .
v m+i i=l <k(x’ l) dx) (15)

i=l

For a class II problem

Hi=T
4 .=

t

+ v . d
! Hbii= I <k(x, m+1-i)— 21;) (16)

/N, is a constant which depends on the class considered.

Now, one can question if, by a suitable transforma-
tion, it is possible to introduce, instead of the “ac-
celerated” ladder //% [Egs. (15) and (16)], the “canonical
accelerated” operator which is the vth derivative
operation acting on a new function so that the relation
(14) becomes the Rodrigues’ formula of this function.

First, in order to force the “one step” ladder opera-
tor [Eq. (4)] to be a derivative operator on a new func-
tion, one has to determine a function which satisfies
the following proportionnality relationship:

20U~ L (g, (0 U320, (1)

where g,(x) may depend on the class under considera-
tion and the signs (+)‘and (=) stand respectively for
class I and class II problems.
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Let us consider a class I problem. The corresponding
one step equation is [see Eq. (8)]

1 -
U?(x) = r Hm-l-l

m+l

Um(x). (18)

When introducing a function g(x) defined on the same
subspace (x; <x <x,) as U(x}, from Eq. (17) and the
expression (4) of the ladder operator, one can write

1

mel

£0) UZ (3) = &(x) (k(x,m 1)+ -dix) Urix),  (19)

and in order to obtain the relationship (17), the function
2(x) has to satisfy

(k(x, m+1) - Ean) glx)=H;,, g(x)=0. (20)

That is, g(x) must be a solution of the first order dif-
ferential equation generating the key function U § [Eq.
(10)] and corresponds to the value S=m, i.e., one can
write

gmu(x):(vg)s =m* (21)
Then, Eq. (19) becomes
Enal¥) U= 7o =2 [, () UF"()] (22)

m+l
It will be of the required form (17} if one introduces in
the left member the function g, (x) instead of g,,,,(x).

Let us assume that the ladder operators are linear in
m, i.e.,

HE: =mk(x)+ k(%) ¥ El% » {23)
The corresponding key function is

US (x) = expl(S + 1)K, (x) + Ky(x)], (24)
where

K%)= [ kyx)dx, Kyx)= [ ko(x)dx, (25)
and from (21) and (24)

Zmn (%)= exp[(m + DK, (x) + K,(x)]. (26)

Consequently,

(8 (%)/2,(x)] = exp[K,(x)]
Then, when introducing the new variable'® y which is
defined by

dy = explK,(x)] dx, ' (27)
one obtains the required “canonical one step” relation-
ship

£d) U= 7= 2 [ ) U0, (28)

where x has to be considered as a function of v [Eq.

@nl.

Finally, as wanted, by introducing instead of U(x) the
product function g{x) U(x) of the new variable y which is
defined by (27), the one step ladder operator Hf re-
duces to the simple derivation operator d/dy. Con-
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sequently, the “accelerated” or “v step” ladder opera~
tor 4} [Eq. (15)] which directly generates any product

£,Ug from the new pseudokey function g, US reduces to
d’/dy® and, since m =S -v, one gets

1

PR I o FRUL (29)
§ /Vu gS-—v dyv §Ts
where
No=H Npu, (30)

i=1
and N,,,, is defined by (8).

The expression (29) can be considered as a Rodrigues’
form of the eigenfunction U. Actually, it can be trans-
formed to the usual Rodrigues’ formula involving a
weight function w(x) and the vth derivative of a product
w(x) [h{x)]*. Indeed, using (24) and (26), one can write

Un(x) = /vl US(x) expl- vy (x)]
1 dv )
x(m = (e [b0) }), (31)
where dy is defined by (27) and
h{x) = exp[2K,(x) ). (32)

For class II problems, with only slight modifications,
the same procedure still applies.

Finally, class I and class II eigenfunctions are
represented by the same expression (31) involving
formally the same Rodrigues’ formula with identical
function A(x) [Eq. (32)] but with respectively inverse
weight functions w(x), i.e.,

v=8~-m,
w(x) = exp[(2m + 1)K (%) + 2K(x)],

U (x)=exp[(S + 1K, (x) + K,(x)],
Ny= n1 [LS+ 1) = L(S+1-1)]'"2,

class I (33)

v=m~S,

w(x) = exp[— (2m + 1)K, (x) = 2K(x)],
U (%) = exp| - SK; (x) = K,(x)],

o= HLIL(S) - Lis + D2,

class II (34)

where the function L(m) is defined by the factorizability
condition (5). It should be noted that, when calculating
the K,(x)} and K (x) functions, one can neglect to take into
account the integration constants; Indeed, it is easily
seen that their introduction only changes the value of the
normalization constant'4 of the eigenfunction U,

Briefly stated, when the ladder operators H; are
linear in m (and even nonlinear in m, since one can use
the transformation of the Appendix B) the formula (31)
constitutes a straightforward finite algorithm to obtain
any eigenfunction from the only knowledge of the ladder
operator (23) and one elementary quadrature [Eq. (25)].
Nevertheless, for calculating matrix elements in closed
form, one has rather to work out the Rodrigues’ formula
in terms of orthogonal polynomials as it is shown in the
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following section.

IV. CLOSED FORM EXPRESSION OF THE
EIGENFUNCTIONS

As has been shown in Sec. III, the expression (31) of
the eigenfunctions of Eq. (1), when it is factorizable,
involves a Rodrigues’ formula. Now, one could question
what kind of function is generated by this Rodrigues’
formula and if it does not correspond to an orthogonal
polynomial.

When writing x as a function of y [see Eq. (27)], i.e.,
w(x)— W(y), h(x)—~H(y), the Rodrigues’ formula in (31)
becomes

Fy)= ﬁ,%y—) ;;‘;— W) [HOY, (35)

and, as is shown in the Appendix C, the necessary and
sufficient condition for F (y) to be the Rodrigues’
representation of an orthogonal polynomial is

d(H aw

a\W Zly— =c, = const, yrd =a, = const. (36)

Then, it is interesting to deduce and examine the cor-
responding condition to be satisfied by the functions
ko(x) and &,(x) of the linear ladder operator (23) and,
hence, by the original equation (1).

Let us first consider a class I problem. Replacing in
(35) H(y), W(v), and y by their expressions [see Egs.
(27), (382), and (33)], one readily gets

2m+1) l:de + (%) 2]

+2(
e ()

Hence, using (25), one can write the required conditions
to be satisfied by %,(x) and %,(x), i.e.,

+——Q—1) =¢,,
dx dx (37)

(2m+1)<%—1- kﬁ) +2 (fidfﬂ-+k k) =c,,
dk
—d

2(dx

These conditions (38) are actually the necessary and
sufficient conditions (7) allowing the factorization of the
original equation (1).

(38)

+ kf) =a,

It is easy to show that this result holds for a class II
problem. Indeed, when passing from class I to class II,
the only change occuring in the Rodrigues’ formula (35)
concerns the weight function W(y) which is now replaced
by 1/W(y) [see Eqs. (33) and (34)]. Consequently, the
only corresponding change occuring in the condition (36)
and then in the final result (38) is the change ¢, —~ -¢,.

Finally, its results that the eigenfunctions of any
factorizable equation (1) can be expressed in terms of
the key function and well-known's orthogonal
polynomials.

Now, let us explicit this general result for all Infeld—
Hull factorizable types. ¢

A. General type A

The required eigenfunctions satisfy the following
factorizable differential equation

(a'z a¥(m+c)m+c+1)+d*+2ad(m +c+})cosalr+p) |

dx® sin®a(x + p)

The corresponding ‘“one step” ladder operators are

H: =(m+c)acota(x+p)+ ;i-na?x_+p_)q: ?d%
and

L(m)=2a%(m + c).
Then,

k,(x)=acota(x +p),

d

kq(x) =ac cota(x + p) + smax+p)’

one obtains
K,(x)= [ acota(x +p)dx =In[sina(x + p)],

K,(x) =cIn[sina(x +p)] +d/a In{tan[a(x + p)/2]}.

Consequently,

dy=sina(x + p)dx
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) Ulx)=0 (39)

and

y =~-(1/a) cosa(x + p),

h(x)=sin® a(x + p) =1~ a%?,
For a class I problem the weight function is

w(x)=[sina(x + p)P™2=1 ftan[a(x + p)/2]P¢/2

=(1- ay)m»,cd/z-d/a (1+ ay)rm-cd /2+d/a

Keeping in mind that, for a class II problem, the weight
function is 1/w(x) and using the general expression (31)
together with the results of Sec. 1(a) of the Appendix C,

one gets the eigenfunction'* U7 expressed in terms of a
Jacobi polynomial, i.e.,

UT(x) = (—g—}}vﬁ—!— US(x) [sina(x + p)]
X pla-v=v) [cosa(x + p)], (40)
where ’

U$(x) ={sin[a(x + p)/2]}** 1/ {cos[a(x + p)/2]}*** /2,
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Sa=s+c+§+d/a,
class I _ 1
v:S—m?B"S+C+2'd/a’ e
/Vv:a”(v! 1 (25+20+2-—u)> ,
u=1

a=-(S+c+ 1+d/a),
B:—(S+c+%—d/a),
N,=av (v! i (= 28—2c—u)>”2.

class II
v=m-—=S

u=1
B. General type B

The required eigenfunctions satify the following
factorizable differential equation:

(;g:? - d?exp(2ax) + 2 ad(m + ¢ + 1) exp(ax) + x) U(x)=0.
(41)

The corresponding “one step” ladder operators are
B, = dexplax) - a(m + ¢) ¥ -

and
L{m)=-a?(m+ c)?,
Then
k(x)=-a, Ekyx)=d exp(ax)-ac;
one obtains
K, (x)=~ax, Kyx)=(d/a)exp(ax)-acx
Consequently,
dy = exp(-ax)dx and y=-—(1/a)exp(-ax),
h(x) = exp(~ 2ax).
For a class I problem the weight function is
w(x)=exp[- (2m + 1 + 2ac)ax + (2d/a) exp(ax)]
=(=ay)Pmi?ac exp(- 2d/ay).

Keeping in mind that for a class II problem, the weight
function is 1/w(x), and using the general expression
(31) together with the results of Sec. 1(b) of the Appen-
dix C, one gets the eigenfunction'* UF expressed in
terms of a generalized Laguerre polynomial, i.e.,

Ug(x)=(a"v!/N,) US(x) LE (B exp(ax)),

where

(42)

US (x) = exp{4a ax - 18 exp(ax)],

@==-25-2¢c-2, PB=-2d/a,
class I
— — 1/2
v=S-m /\/v:a"(v! ﬁl(—28—2c—2+u)> ,

us

a=2S+2c, B=2d/a,
class II
v=m-S

» 1/2
N,=2a? (v! I (28 +2c +u))
u=1

C. General type C

The required eigenfunctions satisfy the following dif-
ferential factorizable equation:
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a2 (m+cYm+c+1) _b2x2

dx? x2 4

+b(m - ¢) +>x> U(x)=0.

(43)
The corresponding “one step” ladder operators are

m+c +bx d

s e
and

L(m)=-2bm +Db/2.
Then

ki(x)=1/x, kyx)=c/x+bx/2;
one obtains

K, (x)=1nx,

Ky(x)=c Inx + (b/4) x2.

_Consequently,

dy=xdx and y=31x2,
hx)=x*=2y
For a class I problem the weight function is
w(x) =x2m*1*2¢ axp(bx®/2)
= (2y)™*°*/2 exp(by).

Keeping in mind that for a class II problem, the weight
function is 1/w(x), and using the general expression (31)
together with the results of the Sec. 2(a) of Appendix C,
one gets the eigenfunctions** Ug expressed in terms of

a Laguerre polynomial:

Un(x) = '/vi 20! U3(x) x° L (62), (44)
v
where
U§(x)=x°"1/2 exp(- Ba?/2),
a=S+c+%, B=-b/2,
class I
v=S-m Nv:[(_Zb)uU!]1/2’
a=-(S+c+1/2), B=b/2,
class II
v=m-—S

No=[(2b)?v! /2,

It should be noted that the particular case b=0 leads
to L(m)=0, i.e., although the ladder operators still
exist, the class as well as the key functions are no
longer defined. Nevertheless, the set of the eigenfunc-
tions can be generated from any available solution used
as a pseudokey function.!” Then, when formally applying
our procedure, it is seen from the results of the Sec.
2(b) of Appendix C that the orthogonal polynomial gen-
erated by the Rodrigues’ formula in (31) reduces to a
constant. In fact, in that case, since the original equa-
tion (1) reduces to the well-known differential equation
of Bessel functions, explicit expressions of the eigen-
functions are obtainable elsewhere!s: The use of the
ladder operators may enable to find again known prop-
erties of Bessel functions.
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D. General type D
The required eigenfunctions satisfy the following dif-
ferential factorizable equation:
(Zi‘fz—_(bx+ d)? +b(2m + 1)+x> U(x)=0. (45)

The corresponding “one step” ladder operators are

d
+ —_
Hm_bx+d¢dx

and
L(m)=-2bm.

Then
B, (x)=0, Ryx)=bx+d;

one obtains
K\ (x)=0,

Consequently,

Kq(x)=3bx®+dx

dy=dx and y=x, Rx)=1.

For a class I problem, the weight function is
w(x) = exp [(bx? + 2dx)].

Keeping in mind that, for a class II problem, the weight
function is 1/w(x) and using the general expression (31)
together with the results of the Sec. 3(a) of Appendix C,
one gets the eigenfunction' U expressed in terms of an
Hermite polynomial, i.e

UR() = - (= 0)*/% U3 H, (- b} + /)], (46)

v

where
U$ (x) = exple(bx?/2 + dx)],
N,=l(=€2b) 0172,

and the sign e=+ 1 stands for class I problems
(v=S —m) while e=~ 1 stands for class II problems
(v=m =S).

It should be noted that, for the particular case b=20,
as it can be shown from the results of the Sec. 3(b) of
Appendix C, the Rodrigues’ formula in (31) generates a
constant and Ug becomes the exponential function. In-
deed, in that case, the original equation (1) merely
reduces to the differential equation of this function.

E. General type E

The required eigenfunctions satisfy the following
factorizable differential equation:

( S(S+1)
dx? " [(1/a)sina(x +p) ¢

-2aq cota(x+p)+)\(m)) Ug=0. (47
The corresponding “one step” ladder operators are
q_d
Ht=Sacota(x+p)+ 5 ?E

and
L(S)=a?8% - 4% /52,
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The ladder operators H} are not linear in the quantum
number S. Nevertheless, since there is a connection
between factorizable type E and type A equations, as it
has been suggested by Infeld and Hull, !° we first intro-
duce the transformation of function and variable which
is given in Appendix B, i.e

dX =adx/sina(x + p),

U(x)=[(1/a) sina(x + p) /% //(X).
We take

X =Inftan[a(x + p)/2]}.

One obtains
(£ -2
dx® ~ a?cosh®’X

X [2a% - a(m)~2ag sinhX]-—(S+§)2) Yr(x)=0
For a class I (type E) problem,

A(m)=L(m+ 1y=a%(m + 1) = ¢?/(m + 1),
For a class II (type E) problem,
A(m)=L(m)=a?*m? - ¢®/m?

Then, when introducing artificial factorization, °i.e.,
an artificial shift of the eigenvalue, //(X) becomes a
solution of the factorizable type A equation and one can
make use of the results of Sec. IVA. It should be noted
that when U(x) is solution of a (type E) class I problem
(or a class IT problem) the corresponding eigenfunction
(/(X) is a solution of a (type A) class II problem (or a
class I problem).

Finally, one gets the required closed form expression
of the eigenfunctions®® of the general type E factorizable
equation (47):

UB(x) = /\/u Us(x)[sma x+p)P
X Pa-o59 [cothia(x + p)], 49)
where
U (x) =[sina(x + p)]-@+® /2

X exp{-ifa-B)/2]a(x+p)},
and, following the class of the original type E problem,

a==S—-1+ig/a(m+1),

class 1 .
v —S B==S=1-ig/a(m+1),
No= <v' nl(:zs+1+u)>”Z
u=.
class II a:S—lq/a;m, B:S+zlq/£am,
v=S~-m [N, = (v! 1 (28 +1~ u))

USisa pseudokey function which depends on the value
of the “artificial parameter” which is ig/a(m + 1) for
a class I problem and —ig/am for a class II problem,

F. General type F

The required eigenfunctions satisfy the following
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TABLE 1. Explicit expressions of the eigenfunctions!® UZ(x) = (1//V,) Z7.44,6, ().

Type A &, Reference for
parameters
ARy
A <;)£1)1.,(r;{(i;?£4(_0;)}ﬂ(& f/;—l-:{-)l) @)vv! {sinla(x + p)/2]} 2*1/2-v2i {cos[a (x+ p) /2] }B1 /2-v Sec. IVA
)
B ( )( Jr?ﬁﬁj)w ®Y (@)%! expl(a/2 +)ax — (8/2)e™] Sec. IV B
)i
¢ ( )v'(l‘()all(‘lxi 11;)+ P} @’ (2)01 (31202 g5a?/2 Sec. IVC
iR (9)4
D ]('d[)zv _(]?)/g]!! {(~ eb)? /2 (x+d/2)! exple (bx?/2 +dx)] Sec. IVD
if v—~j is even; otherwise is zero
® (:}) v1((—2)i)fll"r(¢(ya++11)—rv(fjﬂ;1é(?x?ﬁlfvj l ) @)1 [sina (v+ p)]-H@B /21001 eyl ia (e + p)[ (@ — B)/2+ 1} Sec. IVE
v\ T@S+2+v) [ 24 Y +1+ m
F <j>v!1"(2s+2+j) <m31) vl (S eex/ meD) Sec. IVF

differential factorizable equation:
( d®  S(S+1) 2¢q

aZ x2 x

The corresponding “one step” ladder operators are

+\(m ) U™ (x)=0. (49)

S q d
*-—.—. — —
Hy= x * S q:dx
and
L(S)=-¢*/S".

Since the ladder operators are nonlinear in S, we first
introduce the transformation given in Appendix B, i.e.,

aX = %ﬁ » Unx)=x2[)(X).
We take
X=Inx;

one obtains
d2
(EF +A(m) exp(2X) - 2q exp(X) - (S + %)2) {(X)=0,

where, for a class I (type F) problem (g is supposed to
be real)

Am)=L(m+1)==g*/(m+1)2,

Then, when introducing artificial factorization, *° //(X)
becomes a solution of a factorizable type B equation,
and one can make use of the general results of Sec.
IVB.

Finally, one gets™
UB(x)=(v!/N,) US(X)LESH [-2gx/(m+1)],  (50)
where

US(x)=x5** explgx/(m +1)],

No= (v' 1 (zs+1+u))”2
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V. CLOSED FORM EXPRESSIONS OF MATRIX
ELEMENTS

Finally, we have now at our disposal (Sec. IV) closed
form expressions of the eigenfunctions UZ(x) of any
factorizable equation (1) in terms of orthogonal poly-
nomials. When introducing the classical expressions of
these polynomials [see Sec. (II) of Appendix C], one
can write

m 1 >4 5
UM(x)= ij; 1 @;(x). (51)
The expressions of the functions ¢ j(x) as well as of the
coefficients A, are gathered up in Table I for type A to
type F factorizable cases.

Now, let us consider the general matrix element of a
Hermitian operator Q(x), i.e.,!®

@=C C Mo 8,8, (52)
where
Mo (8,8 = [*(UF (0)*Qx) UF.(x) dx.

C is the normalization constant of the eigenfunction Ug.
Using the expression (51), one obtains the closed form
expression

’

’ ’ = > > A B
o 8,50 220 53 03 A, 4, (53)
= [ $70) Q) ¢, (x) dx. (59)

Owing to the particularly simple dependance upon j of all
the ¢,(x) functions (see Table I), i.e., j appears always
as a power index, the ¢, integral (54) will have a
simple dependance upon the j and k index. Further-
more, in most cases of interest in quantum theory, we
experienced that the analytical expression of ﬂ ;, Can be
found in Tables.'® Subsequéntly, formula (53) defines an
analytical closed form expression of any matrix ele-
ment, hence, an easy and quick algorithm of
computation.

Finally, to calculate any matrix element of an opera-
tor Q(x) between eigenfunctions of an factorizable equa-



723 Hadinger, Bessis, and Bessis: Expressions of matrix elements and eigenfunctions 723

tion, one can use the following recipe:

(1) Find in Sec. IV to which type the reduced equation
(1) belongs.

(2) Look, in Table I, at the adequate type entry and
pick up the corresponding expressions of ¢, and A,.

(3) Find in Table!® or calculate, the fundamental
integral ¢,, [Eq. (54)].

(4) Use the contraction formula (53) and the expres-
sion (52), this is, introduce the adequate normalization
constants of the eigenfunctions.

VL ILLUSTRATIVE APPLICATION

Let us consider, for instance, the determination of a
closed form expression of hydrogenic radial ¥ matrix
elements.

After setting ¢,,(*)=v" R, (¥), the radial Schrodinger
equation is

da? 2Z  l(1+1) _
(&+ 2 - WD) 1) rem=o. (55)

It is easily seen (Sec. IV) that Eq. (55) is a type F
(class I) factorizable case which corresponds to the
following values,

g=-2Z, S=1, x,=xm)==Z%/(m+1),

and, when introducing the usual radial quantum number
n=m + 1, one obtains the quantification condition

v=m-~-S=n=-~1-1,

Now, let us consider the determination of the »¥ matrix
elements.

Taking out from Table I (F entry) the ¢,(¥) function,
the fundamental integral g ik [Eq. (54)] is immediately
written as

Jpp=n=1=1)w =V =1)!

><f0°° exp[— Zr(1/n+1/w)] v (¥ 2eKds+k) gy
One recognizes namely a I" function and gets
' 141"+ K+3+f+k
gik:(n—l— DIn -1 -1)! (‘Z—('n—_rn—,))
X(I+U+K+2+j+k)!.
Using formula (53) together with the expressions of the
A, coefficients (Table I), one obtains

(nl|7E|w )= 4
n=1-1 n—l—l) ( 1)1
x 3 - =
2
iy o o1\ 1V
CECTTNER)
hzo k n

% 2nn’)f*k (I+V +K+2+j+h)!
(

n+n 20+ 1+)(20 +1+k)
where
’ nn' I+ + K+3
2427\%/% (m) I+n)1 +n)!.
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When explaining the normalization constant (" and A/,
(see Sec, IVF), one finds again our previous results.*

Furthermore, if needed, from Eq. (50), the hydro-
genic function is seen to be, as expected,

d&,,(”) :/r-lR,l,(”)

=(C/N,)n=1=1) 7T exp(— Zv/n) LZ}1 (2Zv/n).

VIil. CONCLUSION

Summarizing our approach to the resolution of fac-
torizable Sturm—Liouville equations, we have intro-
duced a suitable change of variable and function which
reduces the one step ladder operator to a canonical
form that is the derivation operation. Consequently, this
results in a very simple expression of the “accelerated”
or “v step” ladder operator which becomes the vth
derivative and, when applied to the key or any avalaible
pseudokey function, generates any eigenfunction U
(v=1S-m]) in a standard canonical closed form invol-
ving a Rodrigues’ formula. Furthermore, we have
pointed out the equivalence between the factorizability
condition of the original equation and the condition under
which this Rodrigues’ formula generates orthogonal poly-
nomials, Consequently, the calculation of eigenfunctions
or/and matrix elements becomes straightforward. From
a practical point of view, the use of our results gathered
in Table I, together with the preceeding manufacturing
recipe (Sec. V) gives a closed form expression of any
matrix element of an operator @ between eigenfunctions
of any factorizable equation in terms of one unique inte~
gral which, in most cases, is obtainable from Tables.?®

Such a procedure works nicely, for instance, for
calculating rotation—vibration intensities of diatomic
molecules, since, for several nuclear potential func-
tions (Morse—Pekeris, Rosen—Morse, Manning—Rosen,
Tietz potentials -++) the diatomic nuclear equation is
still factorizable if an adequate expansion technique is
used to include the rotation-vibration coupling.?® Re-
sults of this study will be given in a forthcoming paper.
The same treatment is indicated when considering
screened Coulombic potentials (Hulthen, long-range
Yukawa potential) and does not involve more complica-
tion than the hydrogenic case. Moreover, directly from
the results of Table I, it appears that the integral of the
product of three eigenfunctions of a factorizable equation
is easily obtainable in a closed form. As a particular
example, one finds an easy to compute explicit ex-
pression, involving factorials, of the well-known inte-
gral of the product of three spherical harmonics, i.e.,
of the Slater—Condon coefficients which play an im-
portant role in atomic calculations. The same treatment
is adequate for other functions: The determination of the
associated integrals and of their selection rules is hope~
fully undertaken.

As a last point, in order to overstep the bounds of
applicability of this powerful and elegant method which
is the Schrodinger—Infeld—Hull factorization method,
it is worthwhile to question how our method works with-
in the perturbation scheme. This aspect, as well as the
connection of our method with other theories, is to be
considered.
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APPENDIX A

Consider a one-dimensional differential equation of
the Sturm—Liouville type:

[du (f ) +gq(u, m) + )\p(u)] P(u)=0, (A1)
It can be transformed into the standard form?®
(6;% +'r(x,m)+>t> U(x) =0, (A2)

The transformation connecting Eqs. (A1) and (A2) is
U=(fp)/*P, dx=(p/N*'*du. (A3)

Indeed, the possibility of such a transformation implies
that the functions f(u) and g(u, m) are never negative and
plu)/f (1) exists everywhere.

APPENDIX B
The general form of type E and type F factorizable
equations is

(dz Lp S+ 1)
dx® F(x)F

The corresponding ladder operators H§ are not linear
in S.

—g(x)+>x(m)) Ug(x)=0. (B1)

One has to search for a suitable change of variable
and function in order to transform (B1) into the re-
quired standard form:

(d‘f(z + G(X) + x(m) F(X) + bS(S + 1)) LX) =0;
(B2)

when setting
x=9X), Ux)=¥X) /X)),
Eq. (B1) becomes

(B3)

v e 65 -5)]
+ Y <-‘\II’-:- _%," ‘—f- +bs(“;:1) —g+>\(m))} =0. (B4)

In Eq. (B4) one has introduced the shortened notation

d? U
W/ T

In order to obtain a differential equation in //(X) not
containing the first derivative //, one has first to
choose the function ¥(X) and ¢(X) so that

2V /¥=¢" /¢
Subsequently
[P =g =52 (85)

Hence, when taking into account the relationship (B5),
Eq. (B4) becomes

£+ [ 4wy
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bS(S+1) _ _
(——fz +2r g) \I/‘*] =0, (BS6)
Therefore, if one chooses
[(¥(X) 2= (x) (B7)
One obtains
dXL"’/ +{/ (\Ir a‘—if(\lf’ ¥?)
+‘If4[x-g(x)]+bS(S+1))=0, (B8)

where g(x) is to be considered as a function of X and
¥(X) is given by (B7).

Finally, the suitable change of variable and function
is defined by

x|
f(x)
APPENDIX C

(I) Let us consider the Rodrigues’ formula

X = Ux)=[F0r? yx). (B9)

F(y)= {we) [H» M

W(y) dy (C1)

Our purpose is to show that the following condition

(H (v) dw(y)
W(y) dy

d?H(y)
Ty

) =c¢, =const,
(c2)

=a, =const
is the necessary and sufficient condition for Fv(y) to be

the Rodrigues’ representation of a polynomial.

Indeed, it is easily shown that the condition (C2) is
satisfied when (C1) is the Rodrigues’ formula of the
“classical” polynomials.

Reciprocally, let us assume that the condition (C2) is
fulfilled. One can write

B AW _ e
W dy 4 0 (C3)
H=a,y*+ay + a,,
and from (C3) one gets
1 aw c,y+ ¢
- GyTC |
W dy ay* +ay +a, (c4)

Different cases have to be considered depending upon
the effective degree in y of the H polynomial, i.e.,
upon the values of the constants.

1. Firstcase a, # 0

(a) When a? — 4a,a,#0, one can introduce the linear
change of variable

_ 2a, 4
u= |a§—4aoaz|”2 (y+ 2a2)

The first order differential equation (C4) becomes

1L aw_ _¢(_u
W du a \1-#

(CH)
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(2¢,a, — ¢,a,) ( 1 )
ay(@ - da,a,) P \1=u2/)’
and one gets

W=(1-u)*(1+u),

(C6)
H=-[(a® - 4a,a,) /4a,] (1 - u?),
where
c 1 2c.a, - c,a
g=-2 4 - _n_z_x]_17_>
2a, 2a, ([a";-4a0a2 1z) )

1 2¢c,a, — C,a
=S .
= 22, 2a, \[a®-4a.a, 1&2>
Hence, from the expression (C6) of W and H, one finds
that the Rodrigues’ formula (C1) generates a Jacobi
polynomial P{**® (u), i.e.,

F,=v! (& - 4a,a,)"'? P{**®(u),

where u is defined as a function of v by (C5) and the
parameters a and B are given by (C7).

(C8)

(b) When a2 - 4a,a, =0, if one introduces the following
change of variable:

u=y-+a,/2a, (C9)
The first order differential equation (C4) becomes

Lﬂ:&l+(&_ﬁ%>%

W du a, u a, 2a;/u
and one gets

—gc1/a - ED__ 4,4 l:l = 2

W=u1/02 exp [ (az _LLZaS)u »  H=ayu®. (C10)
Since (cf. for instance, the Appendix of Ref. 8)

ar R, ] N1 pen=k L1/t k-l( l)

dt,,[te J=(=)"n! ¢k et/tLE 7 )
where L%(x) is a Laguerre polynomial. 4

Finally, one gets
c ca,\ 1
—(=)p! gtutr®|-(o 4%\~

F,=(-)"v! ddu LUI: (az 2a§>u]’ (C11)
where

a=-c,/a,~2v~1 (C12)
and u is defined as a function of y by (C9)
2. Second case, a, =0 and a, #0

(a) When ¢, #0, one can introduce the change of

variable

u=-{(c,/a%) (a;y + a,). (C13)
The equation (C4) becomes

1 aw a,c c,\ 1

& L& 4 L) 2

W odu — 1+< 2 +a1>u’
and one gets

W=u*e™, H=-(d/c,)u, (C14)
where

a=ayc,/@+cy/a,. (C15)

Hence, the Rodrigues’ formula generates Laguerre
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polynomial L%(u) and
F,=v!a}L%u) (C16)

(b) When ¢, =0, if one introduces the change of

variable

u=ay +a,, (c17)
Eq. (C4) becomes

LdW _ ¢ (1)

W du  a \u/f
and one gets

W =wuc’a1 ,

and, in fact, the function F, reduces to a constant value,

i.e.,

T(v+cy/a+1)
T(c,/a, +1)

where a=c¢,/a,.

F,=a? =v! a?L¥(0), (C19)

3. Third case, a, =a; =0

(a) When ¢, #0 and introducing the change of variable

u=(=2a,c,Y*2(c,y + ¢,), (C20)
one gets
W=exp(-u®), H=a, (C21)

and the Rodrigues’ formula (C1) generates Hermite
polynomials H (u), i.e.,

F,=(=)" (= c,a,/2)"'*H (u) (C22)
(b) When ¢, =0, one gets
W=expl(c,/a)y], H=a,, (C23)

and the function F reduces to a constant value, i.e.,

F,=ck. (C24)
Finally, when the condition (C2) is fulfilled, it has been
shown that the Rodrigues’ formula (C1) generates
classical orthogonal polynomials and, a straightforward
way, explicit expressions of F, can be obtained in terms
of the well-known explicit expressions of the poly-
nomials.

(II) Explicit expressions of the orthogonal polynomials?!®;
1. Jacobi polynomial:

T(a+1+)
vi(v+a+B+1)

S e\ Tw+a+B+1+7) oy
x5 (]) (u = 1),

PLa,B)(u) —

2" (a+1+7)

2. Laguerre polynomial:

2 +1+v ;
L =2 =) (v—l;g?r(aﬂ)ﬂ) w
. 3. Hermite polynomial:
(v/2] o 1 )
H (u)=v! ]Z=<; (=¥ =T (20)7%4,
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We solve the Einstein field equations for the interior of a static fluid sphere in closed analytic form.
The model sphere obtained has a physically reasonable equation of state, and a maximum mass of
2/5 the fluid radius (in geometric units). As the maximum mass is approached the central density
and pressure become infinite, while for masses greater than about 0.35 times the fluid radius the
velocity of sound in portions of the fluid exceeds the velocity of light, indicating that the fluid is
noncausal in this mass range. In the low mass limit the solution becomes identical to the

Schwarzschild interior solution.

1. INTRODUCTION

Exact solutions to the Einstein field equations in
closed analytic form are difficult to obtain due to the
nonlinearity of the equations. In particular the problem
of constructing a static model sphere of perfect fluid
(e.g., a neutron star model) is usually solved by nu-
merical methods using the Tolman—QOppenheimer—
Volkoff (TOV) equation!:?'® with an equation of state
specified; this is a straightforward procedure, but
yields results expressed in cumbersome numerical or
graphic form.?

The small number of analytic solutions which have
been obtained are valuable and interesting because one
may study their properties in complete detail and with
comparative ease, especially their behavior at high
field intensity or high pressure and density. The analyt-
ic solutions are thus complementary to the numerical
solutions obtained with realistic equations of state.
Indeed in the pioneering work on neutron stars by
Oppenheimer and Volkoff? appeal was made to qualita-
tively similar closed analytic solutions obtained by
Tolman for an understanding of such features as a maxi-
mum mass and infinite central densities. Similarly the
classic interior solution of Schwarzschild for an incom-
pressible fluid has provided insight into the effects of
relativity on qualitative features and order of magnitude
quantitative features of white dwarfs and neutron stars.*
Indeed the density of the heaviest neutron star models
is roughly constant throughout most of the star, making
the Schwarzschild interior solution a surprisingly good
approximation considering its extreme simplicity.

The following questions are particularly interesting
regarding analytic solutions for a static fluid sphere:

(1) Does a maximum mass occur?

(2) Can the central density and pressure become
infinite ?

(3) Can the velocity of sound exceed ¢, thereby violat-
ing causality ?

(4) Can the average polytropic index y become less
than 4/3, making the solution unstable to radial
oscillation ?

In the present work we generate a closed analytic
solution to the Einstein equations for a fluid sphere by
specifying the metric term g,,=e". All of the functions
involved in the solution are algebraic, and a physically
reasonable equation of state results. The solution has
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the following properties, corresponding to the questions
noted above:

(1) A maximum mass occurs, and is equal in geomet-
ric units to 2/5 the fluid radius. This may be compared
to the Schwarzschild interior solution, in which the de-
mand that the Schwarzschild radius not be exterior to
the fluid leads to a maximum mass of 1/2 the fluid
radius.®*

(2) The central pressure and density both become in-
finite as the maximum mass is approached. This may
also be compared with the behavior of the Schwarzschild
interior solution, in which the central pressure becomes
infinite when the mass reaches 4/9 the fluid radius, the
density, of course, remaining constant.®*

(3) The velocity of sound exceeds ¢ in portions of the
fluid when the geometrical mass is about 0. 35 times
the fluid radius. Thus the demand of causality provides
a more stringent upper limit on the mass than occurs
in (1) or (2) above.

(4) The average polytropic index y remains greater
than 4/3 for all masses less than about 0. 35 times the
fluid radius.

A further remarkable property of the present solution
is that in the low mass limit (« the fluid radius) it is
identical to the Schwarzschild interior solution and also
to one of Tolman’s analytic solutions. This is despite
the fact that the Schwarzschild interior solution has no
equation of state and, for example, cannot support sound
waves. It thus appears that the present solution is in
several respects superior to the Schwarzschild solution
for illustrating some of the peculiarly relativistic quali-
tative features of a fluid sphere.

2. SOLUTION BY QUADRATURES OF THE
EINSTEIN EQUATIONS

The Einstein equations for an ideal fluid are*

Guuz_BW[Wuuu—P(.guu_uuuv)J’ (21)

where G, is the Einstein tensor, u, is the 4-velocity

of a fluid element, and g,, is the metric. (We set ¢ and
the gravitational constant « equal to 1 by choice of units
and specify a zero cosmological constant.) For a static
spherically symmetric system an appropriate metric is

ds® =e"'"dt? - M dr? - v3(d6® + sin8de?). (2.2)

It then follows that the field equations may be written
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asl,4

i e s A T (2. 32)
A1 v

Bmp=— 5 —e (?'F?)’ p=p7), (2.3b)
af1

8mp="3—eM5~ ") p=plr), (2.3c)

where a prime denotes differentiation with respect to 7.
It is well known that (2. 3a) may be solved by quadra-
tures in a number of ways; e.g., Tolman' specifies
various conditions on the functions v and A that simplify
the equation and allow immediate integration, while
Adler, Bazin, and Schiffer? note that x may be obtained
if v is given. Once v and A are obtained, p and p follow
directly from (2.3b) and (2. 3¢). It is rather remarkable
how simple the explicit solution of (2.3a) can be made.
We define

yr)=e""? =gy, (2.4a)
(r)=e?=~1/g,. (2. 4b)

Then (2. 3a) may be written as a linear first order equa-
tion for »

g Ry try =riy7) -2y

iy +ry’) Tzr(y-f-ry’) ) (2.5)
This has the solution
1(7) = exp[~ F(r)] { | exp[F(»)] g (») dr’ +C},
FO)= [ frar, fn= "2 = )
-2y
gr)= W’ C =const.

It is clear that (2. 8) combined with (2. 3b) and (2. 3¢)
represents all solutions for static spherically symmet-
ric fluid bodies. There is of course no reason to expect
that all such solutions will be physically reasonable and
have, for example, a positive p and p distribution. Only
a subclass of these solutions, corresponding to certain
functions v(7), will be physically reasonable in this
sense, and a still smaller subclass will correspond to

o
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physically reasonable equations of state. A judicious
choice of ¥(7) is thus necessary for a physically inter-
esting solution.

The solution (2. 6) may be rewritten in many forms by
transforming the independent variables v and 7 defined
in (2. 4); for example, rewriting (2.5) in terms of »?
leads to a solution analogous to (2.6), from which
Tolman’s solution number 4 may be most easily ob-
tained. Alternatively the dependent variable » may be
transformed; the choice of p=1logr leads to an analogue
of (2. 6) from which Tolman’s solution number 5 may be
obtained.

3. SPECIFIC ANALYTIC SOLUTION

We now wish to find a solution of (2. 6) that is both
simple and yields physically interesting results. The
solution (2. 6) for 7(») will be particularly simple if f=g,
since in this case the integral in (2. 6) will be exp[F(7)].
This is accomplished by demanding that »y’ - 7*y” vanish
or

Hr)=A +Br?, 3.1)
in which case
) =1 +Cr¥/(A +3Br%)?/3 (3.2)

The constants A, B, and C are specified by matching the
solution to the exterior Schwarzschild solution for a
mass m,, at radius r,. We then obtain as the solution
the following algebraic functions:

y=exp(v/2) =(1 - 3¢ +3¢ey*)(1 - 2¢)* /%, (3.3a)
T=exp(—=A)=1=2ey?(1 = €)2/3(1 ~ 3¢ +3ey?)?/3,
(3.3b)
p=(e/4md)(1 = €)?/3(1 - Je +Jey?)~2/3
x[3 —2¢e92/(1 - 3¢ +3ey?)], (3.3c)
b =(¢/473)
x[exp(=A)(1 = Fe +ey?)™ = (1 = 3 +3ey?) /],
(3.34d)

where €e=m,/7, and y=r/7,. The mass distribution,
defined as m(7r)=[1 -~exp(=A)]r/2, is

m(r) =mgy* (1 — €273 (1 = 3¢ + ey?)2/3, 3.4)
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In Figs. 1 and 2 we have plotted p(») as well as the
equation of state p vs p for this solution for the values
my=3 km and »,=10 km, characteristic of a heavy neu-
tron star. Unlike Schwarzschild’s solution with p
=const, the density peaks sharply at »=0, and the
equation of state is physically reasonable. It is evident,
moreover, that p and p will in general be positive
functions.

4. PROPERTIES OF THE SOLUTION

For a fixed radius the sphere described by (3.3)
has a2 maximum mass. We observe that the central
density p(0) is a function of € =m,/7,.

3¢ [ 1-—€\2/3

p(0)~7m—1,2;<1—_'§?> (4.1)
so that for fixed 7, the mass m, is a function of p(0).
This function has a maximum value when dp(0)/de is
infinite, which occurs for

2
€=73,

My = 27,. (4.2)

This may be compared with the larger value of 37,
obtained with the Schwarzschild interior solution by
demanding that the Schwarzschild radius not be exterior
to the fluid.*

From (3.2c¢) and (3. 3d) it is evident that both p(0) and
p(0) become infinite at the same value of €=2/5. The
Schwarzschild interior solution has the similar property
that the central pressure becomes infinite when €=4/9,
a less stringent mass limit than given by the present
model. *

A further interesting property of the present solution
is that for € > 0. 35 the derivative of p with respect to p
exceeds unity in parts of the fluid. This may be shown
by calculating dp/dp = (dp/dy?)/(dp/dy*?) and evaluating
it as a function of ¢ and y. We may interpret this to
mean that the speed of sound, given by dp/dp, exceeds
the velocity of light and the fluid becomes noncausal.
We thereby infer a yet more stringent maximum mass
of about 0.357,. This is in fact comparable to the value
obtained for realistic models of neutron stars.*

Let us now procede to the low mass limit m,<< 7,.
The constant density solution of Schwarzschild® has

exp(v/2) = [3(1 - 2¢) - $(1 ~2¢y?)] (4.3)
and Tolman'’s solution (number four) has!
exp(y) =(1 - 3¢) +ey?, (4.4)

Both of these solutions and the present solution have the
following common limit functions for small e:

exp(v)=1-3c+€y?, exp(~y)=1~2¢y?,
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p=3¢/4mr?, p=%pe(1-1?). (4.5)

The Schwarzschild solution has p=const for all values
of €. For the present solution however we may expand
p to second order in € to obtain

p=1(3e/4mrd)(1 + € = Zey?), (4.6)

We then may use this and the expression for p above to
eliminate y* and obtain an approximate equation of state
for small €

p=5(p—e/amri). 4.7

Note that ¢ is contained in this relation explicitly. The
same is true of the implicit exact relation contained in
(3.3c) and (3.3d). The solution of Tolman has an equa-
tion of state that also depends explicitly on the mass
and radius of the fluid. )

5. CONCLUSIONS

Using a quadrature solution of the Einstein equations
for a static fluid sphere we have obtained an interesting
analytic solution with the following properties: (1) The
structure of the fluid is expressible in terms of alge-
braie functions. (2) The fluid has a density that peaks
in the center, and a maximum value of mass of about
0.35 the radius, dictated by causality. (3) The present
solution, one obtained by Tolman, and the Schwarzschild
interior solution are the same for asymptotically small
values of mass/radius, but equations of state exist for
our solution and Tolman’s solution; these equations of
state depend explicitly on the value of the mass and
radius of the sphere.
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A formulation is presented for the study of semiboundedness of coupled boson—fermion model field
theories. Euclidean-boson fields and ordinary fermion fields are employed. Expansion steps used to

derive estimates are presented.

. INTRODUCTION

There is a great deal of interest at present in dis-
covering techniques for treating boson—fermion model
field theories parallel to the use of Euclidean boson
fields in studying purely boson models. We address our-
selves here solely to the question of semiboundedness
of the energy (as the first problem usually encountered
for any model) although there is no reason to exclude
further applications of the machinery discussed. There
are three superrenormalizable models available, Y,,
Y,, and the generalized Yukawa model in one space
dimension (hereafter called GY,). The treatment of ¥,
and GY, is in some sense just practice for the tackling
of ¥,. Four-dimensional theories so far appear
impregnable.

Glimm obtained semiboundedness of the energy for
Y, in Ref. 1. Schrader extended this result to show the
linear dependence of the bound on the volume.? One of
the authors showed the semiboundedness of the GY,
energy.® There are studies under way attempting to
study boson—fermion field theory models by eliminating
the fermi fields initially, using the closed form expres-
sion involving a Fredholm determinant, similar to the
corresponding expression in the variational approach
to field theory.*® Here we continue the development
initiated in Ref. 3. A unified treatment of Y, and GY, is
obtained, ® whose basic line is here presented. Whether
these methods, or the methods in Ref. 5, will be suc~-
cessful in studying ¥; must be decided in the future.
Other paths of evolution, or unifications, cannot be ex-
cluded, such as the work of Gross.” We are enthusiastic
about the usefulness of the present program since it
captures for boson—fermion models analogs of all the
techniques used by Glimm and Jaffe in obtaining semi-
boundedness for ¢%, including localization.®

Il. FEYNMAN-KAC FORMULA
Any Hamiltonian we consider is of the form

H=H,p +Hor +G(¢0) + [dx [dyQ(x,y, $) Wx)y(y) (1)

=H,p +Kg. (2)

There are volume and momentum cutoffs in the interac-
tion and renormalization terms in the G(¢). Subscripts
F will often denote expressions in terms of Foch space
operators. Using the Trotter product formula, we have

(0|exp(~HT)|0)

:%i.ILKOHeXp(—HOBT/n) exp(- KFT/")]"|0>F- (3)
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[ 0) denotes the Foch vacuum. We introduce a total
Hilbert space #/, the tensor product of Euclidean boson
Hilbert space #/gp and / the Foch fermi Hilbert space

IL/:HEBX/‘/F (4)

and Euclidean boson fields ¢(x, ). We also introduce
dummy variables into the Fermi fields

Plx, £) = P(x). (5)

These dummy ¢ variables will only be used to define a
time ordering operation. (One may alternatively say we
are developing a Euclidean Fermi field theory —transla-
tion invariant but not rotation invariant—with the zero
operator generating time translations. The Fermi kinet-
ic energy terms are included in the interaction; in form,
they and the interaction terms do not appreciably differ.
This may be contrasted with the boson situation where
the energy contains 7’s and the interaction does not.)
Ky is replaced by K(#) by substituting the time dependent
fields for the (¢ =0) Foch field:

Ke=Hoe(0,9) +G(p) + [dx [dyQ(x,y, &) B(x) ¥ (»)
K(#) = Hyp (9(2), p(8)) + G(o(2))

+ [ax [dyQlx,y, o) Tlx, ) ¥ly, 1). (6)
Equation (3) becomes
(0| exp(- HT)[0)¢ = T(O| exp- [ "Ki(¢)at]|0). 1)

Here |0) is the vector in // that is the product of the
boson Euclidean space vacuum with the Fermi Foch
space vacuum. T indicates a time ordering in the ¢
variables in the ¢(x¢) and ¥(x£). All of our efforts are
directed to finding techniques for estimating the right
side of Eq. (7). ’

I1l. THE DUHAMEL EXPANSION

The process we have for removing parts of the ex-
ponent is the Duhamel expansion. We decompose K(/)
into two parts:

Kt)=K,t), K({t)=K,(t)+R,(1), i=1,2, ..., (8)

where K,(t) and R,(¢) are functions of ¥(t), $(¢), and ¢(¢)
¢(t)=all the fields at the fixed time ¢. Often in applica-
tions the K,(¢) and R (¢) are picked to have no explicit
time dependence. The Duhamel expansion assumes the
form

T(OIexp[—fOTK(t)dt]RIO)
:?(-1)”[()%1;" St [t
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n n ti.
xT7(0| E1Ri(ti)ex[)[—j=20 ft,-J 1K].(s)ds]RfO), (9)

where #,=0and ¢, = 7. [The K(¢) in (8) and (9) is not
necessarily the same as in (6), but may be a similar
expression such as one of the K i(t) arising in an induc-
tive procedure. | An example of this expansion for P(¢),
is found in Ref. 9 and for GY, in Ref. 3.

If space—time is divided into regions and a separate
Duhamel expansion is developed for the interaction in
each region, then the different Duhamel expansions can
be combined into a sum of single Duhamel expansions
such as (9). This is a primary device for localization.

IV. THE PULL THROUGH EXPANSION

The “pull through” operation was introduced in Ref.
10. Like the Duhamel expansion it is purely algebraic
and applies alike to Fermi and boson fields. An opera-
tor in some R (¢,) in (9) is decomposed into creation and
annihilation operators which are “pulled through” until
they either annihilate on the vacuum, contract on the
exponent, contract on some other R (¢;), or until the
operator being pulled through has moved far enough to
collect some desirable time factor, exp(—uf), and then
stopped. This last operation is not used for bosons. It
is possible to iteratively use pull through operations
and Duhamel expansions, to generate an inductive
procedure.

After any number of applications of the two operations
above one has an expression

(0|exp(~ HT)|0)p :Za)Ta
where a typical term T, has the form
T,=[Tat, ["dt, - [dt, (0| Ry exp(~K,)|0)

(10)
with
K, :Z_i, ft;“‘Kj(s)ds (11)
and
Ry = [dm++dx, fdy, -+ +dy, #n, taq) -+ Wy L)
X oW Voybyiasy) Qal My e oo s Xy Yy v v s Vg 058). (12)

Summation over Fermion field indices is always implic-
it. As many of the time integrations as possible are in-
cluded in @,. Time variables arising from contractions
from the exponent in which both fermions are contracted
fall in this category. Combination of terms in 7, is also
advantageous; in the pull through procedure it is possi-
ble to construct time and space locally averaged boson
fields as in Ref. 8 which would appear in Eq. (12).

V. ESTIMATES AND DEFERMIATION

When the algebraic operations of the last two sections
are completed, estimates are required for K j(s) and
R,. Assume estimates of the form

K s}z Cyuo,s)

and

(13)

[Qulx, 9, .. )1 <duld, b1y .yt (14)
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where |f(x,,...,%,)|, is the inf of },7|a;! over q;
satisfying

=% a,.j@l g%

with [g,(x)|,=1. The “defermiation” step is then the
estimate:

<0]eXp(_HT)]o>Fs§[Tal, (15)
| 7o)< [at, - [2a1,00]do(0)
xexp -2 [ Cy(9, $)ds |0). (16)

In (16) only boson fields remain, and all the techniques
for estimating such a purely boson expression are
available. Unlike the algebraic operations discussed
above the defermiation can be performed just once in
the procedure, it is a decisive step.

In Ref. 3 is an illustrative use of a Duhamel expan-
sion, pull throughs, the estimates of Eq. (13), defer-
miation, and estimation of Eq. (16). There is one im-
portant technical imp2ovement here over Ref. 3, the use
of Ii, estimates for @,. The estimate procedure in Ref.
3 is adequate to obtain semiboundedness for ¥, or GY,
in a finite volume, but yields an incorrect volume de-
pendence. The present procedure behaves correctly
under localization and therefore is the correct one to
use for obtaining the volume dependence and attempting
Y,.

The statement that the estimates behaves correctly
under localization is easiest to explain in the case when
all the K, contain only the fermion kinetic energies (a
heuristic example). Then in estimates (15) and (16) the
terms involving only contractions between operators
lying in the same space—time squares contribute to the
sum ¥ .| T, an expression of the form

> T |<0/1D,(9)]0),

nonoverlap

17

where D,(®) are corresponding estimates for the
squares A. When the K, contain other than just energies
the localization property imposes conditions on the form
of estimate (13)—the right side must be a sum of ade-
quate estimates for the individual squares cut at {=s.
Localization methods as used in Ref. 2 are valuable to
achieve this.

VI. DISCUSSION

We say a few words about the treatment of ¥, and GY,.
In these models in each unit space time block the
Duhamel expansion may be performed just once—no
induction is necessary. The interaction terms are in-
cluded in the K; with an upper momentum cutoff on the
fermions increasing with i. (Alternate developments are
possible.) The pull throughs are used to exhibit the re-
normalization cancellation. Additional pull throughs are
required also; those for GY, are slightly different from
those in Ref. 3 since II; estimates are used. In parti-
cular each vertex (basic interaction term not in the ex-
ponent) must be connected to at least one other vertex
by a fermion line, however the number of contractions
is to be limited. In any expansion in which no fermion
operators other than the kinetic energy appear in the
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exponents, the whole procedure could have been per-
formed using Osterwalder—Schrader fields.*

It is interesting to consider what special properties
of fermions are used in the above program. One could
have derived the same formulas for a boson  field, ex-
cept Eq. (14). The fermion nature has been used so far
in three ways (two of these ways only implicit in this
paper):

(1) To derive Eq. (14) one has used that |y(f)I<ifl,.

(2) To derive in Eq. (13) a useful estimate for the Y,
or GY, scattering terms the free Nyi/? factor in N, es~
timates with fermions is useful.

(3) To derive in Eq. (13) a useful estimate for the Y,
or GY, creation and annihilation terms, employing as
in Ref. 1 a partial dressing for the fermions (see Ref.
3), the sign of a term arising from the anticommutativi-
ty is crucial. This sign is available in other models and
other dressings.

Possibly to treat Eq. (13) for ¥, more properties will
be discovered, though this may not be necessary. In any
case the exchange of boson commutativity for these
three properties, a three for one deal, may not be a bad
trade.

We feel that the approach of this paper provides suffi-
ciently powerful machinery to consider an attack on the
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Y, problem and that it may be as close as one can come
to realizing for fermions a Euclidean formulation for
performing estimates.
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The energy levels of a pair of coupled anharmonic oscillators are studied. The technique employed is
to find two approximately canonical coordinate momentum pairs. Particular emphasis is placed on
the qualitative dependence of the coordinate and momentum operators on the quantum numbers.

. INTRODUCTION

Quantum mechanics deals with operators rather than
numbers as classical mechanics does,. In this sense it
its a technically more difficult subject. Perhaps though
in a deeper sense it is much harder because it is harder
to have a good intuitive feeling about what an interaction
means in quantum mechanics.

Newtonian mechanics is already somewhat removed
from common sense. For thousands of years it seemed
obvious that the exertion of effort produced velocity or
displacement rather than acceleration. The quantum
statement that when I exert effort I produce some col-
lection of matrix elements is an abstraction that I really
cannot make, Thus my intuitions in quantum mechanics
are wholly objective. They never follow from direct
personal involvement, I have tried with some success to
train myself to think about matrix elements, but the only
success I have is in treating them as abstract quantities.
quantities.,

I shall be primarily concerned with finding energy
levels. A solution to this problem consists in diagonal-
izing the Hamiltonian. Less formally, the Hamiltonian
is a function usually a polynomial of various coordinate
and momentum operators. Somehow the matrix elements
of these operators enter the off-diagonal elements of
the Hamiltonian with different signs in such a way as to
cancel each other out.

There are two sets of equations to be solved in a
quantum mechanics problem. The commutator equations
necessary to insure the operators x and p are a canoni-
cal pair and the equations necessary to make the off-
diagonal Hamiltonian matrix elements vanish. The first
equations to solve are the diagonal commutator equation
and the equations that insure the vanishing of the Hamil-
tonian matrix elements adjacent to the principal
diagonal.

I have found that in one-dimensional oscillator equa-
tions this type of solution can generate a step-by-step
procedure that yields an accurate solution and offers a
good insight into the dependences of the matrix elements
on the parameters of the problem. ! In the present work
we explore the lowest order solution of this type for a
coupled problem.

The most primitive understanding of a quantum prob-
lem is to see just which operators enter a particular
Hamiltonian matrix elements with what signs to permit
this cancellation without any regard for the magnitudes
of the operators. At a more quantitative level one may
attempt to determine the dominant behavior of the var-
ious coordinate and momentum operator matrix ele-
ments. A definitive solution to a problem results from
a specification of how the more delicate dependences of
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the coordinate and momentum operators are to be sys-
tematically determined and finally what they are.

Here I have divided the quantum problem into two
parts. The first discussed above is to operate with a
mathematical intuition to determine the proper form for
the coordinate and momentum operators. The second
part, which I do not discuss here, would be to relate the
calculated matrix elements to physically observable
properties. The problems that I would like to solve—
field theory—is sufficiently complicated so that I can
only consider simple models at the present time and the
physical interpretation of my current results is not of
great interest to me,

I have tried to adopt this point of view and to instruct
my intuition accordingly. I think the effort can be of
some help in gaining a qualitative feeling for what hap-
pens in quantum mechanical problems. I would like to
emphasize one feature of the quantum problem which
seems of central importance to me, Most wavefunctions
extend over all of configuration space. Thus a wave-
function responds to all of a potential not to its values
in some region. A specific number may be related to
values of the potential in a region of configuration
space, but the qualitative character of a wavefunction
and the solution to a quantum problem depends on an en-
tire potential. It enforces a uniformity condition in the
mathematician’s sense of uniformity on arguments about
quantum mechanics. Specifically a perturbation must be
uniformly small or it is not small.

I would like to consider this notion in relation to per-
turbed harmonic oscillators from the problems of a
single oscillator to the problems of interacting scalar
fields. A typical theory of this type has a potential with
an harmonic part together with so-called perturbing
terms. The perturbing terms involve powers of the field
or coordinate operators higher than the second. The
first claim is that the anharmonic terms are not uni-
formly small. In fact, over most of configuration space
the anharmonic part of the potential is larger than the
harmonic part. Thus such theories are never weak cou-
pling theories. Attempts to estimate the numerical
values of some quantities, e.g., the ground state ener-
gy of an anharmonic oscillator, may be carried through
successfully with a weak coupling technique, but no gen-
uine insight into the character of the solution can be ob-
tained this way.

A much.more severe problem can occur in a problem
with many degrees of freedom or a field theory with an
infinite number of degrees of freedom. In these cases
the theory becomes effectively a strong coupling theory
no matter what number multiplies the potential. This
follows because not only are most of the off-diagonal
matrix element of the Hamiltonian larger than the diag-
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onal ones but because they are also much more numer-
ous than the diagonal ones. Thus any field theory of this
type is automatically a strong coupling theory. The
harmonic term is really the perturbation.

To gain a real understanding of such a theory, the an-
harmonic terms should be treated first. In the following
exercise I consider the oscillator with Hamiltonian H

H=5(P?+ P2 +x2+x32) + Ax? + Bx2x2 -+ Cxi,

The choice is the simplest one in which the two an-
harmonic oscillators interact. With just A or C different
from zero the oscillator would decouple. The technique
I shall employ is to assume that the various coordinate
and momentum operators only have matrix elements
that connect states in which one quantum number is
changed by unity., This is certainly not a correct repre-
sentation of the situation. The only justification for this
procedure is that for a single uncoupled anharmonic os-
cillator it is apparently a good first approximation, 2

In the next sections some elementary algebra of quar-
tic polynomials is studied. In Sec. III the assumptions
are used to formally determine energy levels and ma-
trix elements, The real concern in the solution is to try
and view the quantum problem as an infinite set of alge-
braic equations and to throw away most of them, In the
ensuing set one tries to see how cancellations can be
made to occur in off-diagonal positions of the
Hamiltonian,

Il. POSITIVE DEFINITENESS OF THE POTENTIAL

The fourth degree potential V is given by the homo-
geneous polynomial

Vix,,x,)=Ax?+4Bxx, + 6Cx%2 + 4Dx x5 + Exl,

In this section the condition that V be positive for all x,
and x, are considered. It is clear that A and E must
both be positive. If there is any value of (x,,x,) for
which V is negative, then it is also negative and has an
arbitrarily large negative value by considering the se-
quence of points (Ax,,Ax,).

Let the ratio of (x,/x,) be £. The polynomial
P=t*+ 4B/A)E+ (6C/A)e%+ (4D/AYe + E/A

must be positive for all real values of ¢, If &, B, 7, &
are the roots of P, then the relations

a+B+y+5 == (4B/A)
af+ay+abd+py+ B85 +16=6C/A,
aBy+ afd+ayd+py6=—4D/A,

apfys=E/A
hold. The quantities
g=(B/A)Y - (C/A),
c=D/A)-3(BC/A% +2(B/AY,
b= (E/A) —4(BD/A? + 3(C/A)?

are functions of the differences of the roots; they are
invariant under the translation £ ~ £+ A, They are
called ¢, ¢, and b because ¢ is quadratic, ¢ cubic, and
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biquadratic in the roots. Explicitly they are given by
g=i:(a?+F+V¥+06%) ~&(ap+ay+ad
+ By -+ B6 + ¥5)
=&[(a+B-y=06)*+(a-B+vy=-5)
+(a=~B—v+5)?,
c=3(-a*=-F -y -8+ a’B+ay+a® +af+ Py
+ B8 + ay®+ ByR + 20 + ad?+ 6% + 6
—2aBy =206 =20 ~2pv5)
=—(a+B-v=-06)(a-B+y=0)a-B-r+d),
b=7(a?f + oV + a2+ By + 6%+ 262 - a?By — 25
- Y5~ afy - aps — Fro - afy’ - ay’s - Br*6 — apb?
— ayd? - By6%+ 6 pys)
=F[(@=P*(r=06)2+ (@ =2?(B-06)*+ (a = 5)*(B- ¥F].
If the polynomial P has a double root, the discriminant
of P given by
d=(a = B?*(a="*(a-08)(B=-7)*B~0)*(y-0)

must vanish. The discriminant d can be expressed in
terms of the coefficients of P or more compactly in
terms of the invariants ¢, ¢, and b:

d= (24b)3/54 - &[27@c)? - (12¢)° +3(129)(245)]?
There are three possible configurations for the roots of
P:

(1) all real roots,
(2) two real roots and a complex conjugate pair,
(3) two complex conjugate pairs.

In order that P always be positive, it is necessary that
all the roots be complex. The transition between the
three cases occurs when d=0. This is because a com-
plex conjugate pair becomes a real double root at the
transition between the three cases. A simple calcula-
tion shows that

(1) dla,b,c,d)>0 ifa,b,c,d are real,
() dla,b,c+id, ¢ —id)<0,
(3) dla+ib, a-ib, ¢ +id, c —id)> 0.

Thus in order that P be everywhere positive it is nec-
essary but not sufficient that d> 0. Cases (1) and (3) can
be separated by considering the expression

V126 — 12¢,

In case (1) where the roots o, B, yand § are real, b can
be written as

0<12b

=z [{a =By =8+ (@ —1*B-8)*+ (a-08)*(B~7)]

=&{(a=-B+y=06)+(a=-B-y+6)[(¢ = B+7~0)
—-(a=-B-7v+3)
+(a+B=y=08)+ (@ —B=—y+0)?[(a+B-r=0)
—(@=B—y+8)P
+[(@+B-ry=08)+(a~-B+y~0)]
x[(@+B=-y=-8)-(a-B+y-0)I}

=5 {(a=B+y=08)2=(@~B=y+8)2P+[a+B~y-5)
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—(@=B-y+06)*P+[(a+B-y-08)-(a=-B+v-5)]}

=&[(a+B-y=-08)+(a=-B+y-06)+(a-B-y+5)!
—{a+p-ry-06)(a~p+y-0)°
~(@=B+y=-8)*(a-B—y+6)
-(@=B-y+08)?(a+B-v-0)?
=L[(@+B-y=08)2+ (x=B+y=-6)+(a—B—y+0))
~E[(a+B=y=0)2(a—B+y=062+(a=B+y=-05)
(@=B=y+0)+{a=B-r+8)*(a+B-v~-05)7]
=(12¢)* - &[(a+ -y =05)?
X(@=B+y=-08)+(a-B+y=-08)*(a-B~r+0)?
+(@~B=v+6)2(a+B~v-05)2.
It follows that
(124)?= 12620
so that
0> V12b - 124.

On the other hand, for two pairs of complex conjugate
roots a +iB, a—iB, y+id, y—id, 12b is given by

12b=[(a - )2+ (B + %) + 12 5%
and 124 is given by
12g = (a - )2 - 2(8* + 8%).
The term 12b can be rewritten
12b=[12¢ + 3(B + 69 ]2 + 12562

so that if 12¢ > 0, v12b= 12¢. If, on the other hand,
12¢ <0, then v12b= 0= 12¢; hence the inequality

Vi2h - 12¢>0

is always valid and the sign of v12b — 12¢ distinguishes
between cases (1) and (3). The necessary and sufficient
conditions for a stable potential are

d>0, Vi2b-12¢>0.

IIl. APPROXIMATE SOLUTION

The oscillator under consideration has the Hamilto-
nian H given by

H=3(p2+p2+x3+x2) + Ax? + 2Bxx2 + Cxl.

The invariants ¢, ¢, and b of Sec. II for this quartic
polynomial are

g=-3(B/A), ¢=0, b=C/A+}(B/A).
The discriminant d is given by
d=256(C/A)[(C/A) - (B/A)*}12=0

and is indicated is nonnegative. The other quantity
needed to test the potential, v12b —~ 124 is given by

V12b - 12g = V12(C/A) + 4(B/A)? + 4(B/A)

This quantity has its only root at
VC/A+B/A=0

so the requirements for a positive potential are C >0,
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A>0, and

B/A>-VC/A.

In this simple case this requirement could have been
derived much more directly

The assumed form for the oscillator operators is
(pl)n'm',nm = mnmén'-l,ném’m = wn-l mén'*'l,nbm'm’

(p2)n'm’nm: icnmén‘ném’-l m= icn m-lan‘nﬁm'ﬂ m?
() rminm = PumOnect O mtm + Ot mO e nd

nm> n*~tn"m'm n=lm~n'+*ln”" m'm?

+d 0,1, 0

(xZ)n’m'nm:dnmén’nam’-lm nm=1"nn “m'+lm*
The six commutators of these operators are calculated
and listed in the Appendix.

For our purposes we consider only the diagonal ele-
ments of [ p,,x,] and [ p,,x,]. These are

[pl’xl]n mnm— Zi(an-l mbn-l m -anmbnm)’
[pzsxz]nm,nm: 2’i(C" m-ldn m=1 " Cnmdnm)'

In addition to these diagonal matrix elements the com-
mutators have 20 off-diagonal matrix elements that are
not explicitly equal to zero. There are 10 conjugate
pairs. These matrix elements may not be set equal to
zero in the approximation I am considering. The quanti-
ties a, b, ¢, and d would be overdetermined. The qual-
ity of the approximation depends in part on the size of
these nonvanishing off-diagonal matrix elements of the
commutator compared to unity the value of the commu-
tator diagonal matrix elements,

The diagonal equation can easily be summed to give:

The failure of x, and x, to commute makes the Hamilto-
nian non-Hermitian. This can be remedied by choosing
3B (x2x2 + x2x?) or more practically by ignoring the diffi-
culty because the numerical results of the nonhermitic-
ity of lower order than I will consider here.

The Hamiltonian may be expressed in terms of the
function a,,,,b,, ,c,., and d, .. This result is recorded
in the Appendix. Within the limits of the approximation
I am considering, it is adequate to neglect differences
between the values of function a,, whose indices n and m
differ by less than 4. The same assumption will be
made for the function b,,, c,., and d_,. This assump~

tion leads to a greatly simplified Hamiltonian:
Hn'm’nn
:Ab:m(én‘nﬂi + 6n’n-4)6m’m + Cd:man'n(am’mﬂ + 6m’m-4)
+2Bb2 a2 (6, ..0

nm nm\“nn+2

+6

+6_, ,.0

m'm+2 nn+2¥m'm-2

+ 6n‘r|-26 o

m'm+2 n'n-2 m'm-2)
+ (- za2, +3b%, +4Ab% +4Bb2 42 )

nmnm
X (8102 + Oigen)0 i + (= 32 +d2, +4Cd: +4Bb2 42 )

nm - nm
X8,10,(8maz + O

m'm+2 m’m-z)

2 2 2 2 4
+ (anm + bnm + Cnm + dnm + 6Abnm

+8Bb2 42 +6Cd )5, . 5., .

nm-nm

In this Hamiltonian the term proportional to
8 imOnmsalpm, and o 8,,.» Mmay not be set equated to

m'm” n'nkd m'm+2° n'n+
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zero consistently with the requirements that A, B, and
C are not zero and the implications of the diagonal com-
mutator equations. The terms proportional to 6_, ,.0

n'nt2" m'm
and 5,,.,..,0,, may, however, be equated to zero in this
approximation. If this is done, the pair of equations

- 302+ $b%+ 4Ab* + 4Bb%d2= 0,
—3c?+ 3d%+ 4Cd* + 4Bb*d* =0

results. The diagonal commutator matrix elements can
be used to eliminate a and ¢ and give the equations

32A0°+ 32Bb*d® —n? + 40 =0,
32CdS + 32Bb2d* —m? + 4d*=0.

The situation is simplified if the harmonic terms 4b* and
44° are dropped. If the variables S=#""3 (324)Y%p and
5=m"Y? (32C)Y¢d are introduced the equations become

B+op06%-1=0
55+ 7% ~-1=0,

where 0=BAY3CY3(m/n)¥3 and T=BAV3C¥3(n/m)¥2,
The relation o7=B?/AC is obvious.

1)

It is not possible to give an exact and simple solution
to this pair of equations. In order to bring out the qual-
itative features of the energy levels and the coordinate
and momentum operator matrix elements, I will use an
approximate solution to these equations. Since the exact
8 and 6 would themselves give only an approximate so-
lution to the eigenvalue problem, there are two levels
of approximation. In the following paragraphs I deal with
B, and 5,, an approximate solution to the equations for
B and 5. I can check numerically and determine how
good or bad an approximation S, and §, are to g and 5,
and these figures are reported below,

An approximate solution B,, §,to these equations is
given by

1+ 7Y124 gl/s

1+ oY/124 TVE
So= T ove s o7

Bo= 1+ 7764 gV3 ’

The approximation 8,5, is valid asymptotically in the re-
gions o and 7 separately large or small to lowest non-
vanishing order. The equations for 8 and 6 may be
solved by Newton’s method if §,8, is the first trial solu-
tion. The results are too complicated to carry out alge-
braically. Numerically work indicates that the maximum
error (8= B,)/B, or {6 ~5,)/6, is about 35% where B and
5 are the exact solutions of Eq. (1).

The energy levels can be given in terms of 8 and § by

B, =2V 3{(An )/ (8 + 4)/4F]

+ (CmH) Y[ (8% + 4)/45%]}.

energy to this form. If 3, and §, are substituted for 8
and 6, the energy is accurate to better than a factor of
2.

The quantities o and 7 are dimensionless since A, B,
and C have the same dimensions. Only the ratio of {(m/%)
occurs in ¢ and 7. The energy depends on the quantities
(AnY)Y? and (Cm*)Y? multiplied by dimensionless func-
tions; functions of o and 7. I believe this is a feature of
an exact solution to the eigenvalue problem.

The expression for E given above is only valid to low-
est order in each of the four regions,

I: 0 and 7 small,
II: 0 small 7 large,
II: o large 7 small,
IV: 0 and 7 large.

By using Newton’s method more accurate approxima-
tions of 8 and 6 can be achieved in each of these asymp-
totic regions and the energy can be calculated to greater
accuracy. This gives the following results for the
energy:

I B, =1.25[(34n")"* + (GOm*)?]
+35(2AC)V*Bm*m?)V?,
I: E,,,=1.25(4n"° +1((B°/A) 2o,
I: £,,=1.25GCm")"° + H{(BY/ OV n*m]',
IV: Enm= 2(%Bm2n2)1/3.

An examination of the off-diagonal portions of the
commutator and the Hamiltonian indicates they are
small compared to the diagonal portions so that the ap-
proximation furnished by the exact solution of (1) is a
reasonable one,

IV. CONCLUSIONS

It is possible either by exactly solving the cubic
equations (1) for B and 6 or approximately by using the
approximate solutions 8, and 5, to give momentum and
position operators that simultaneously satisfy the diag-
onal commutator equations and the first off-diagonal
Hamiltonian equation. This is the first step in a step-
by-step procedure to solve the two-coupled oscillator
problem.

In higher orders of the approximation additional terms
more remote from the diagonal would be added to x and
p, and further commutator and Hamiltonian equations
would be solved. I do not yet know the order in which
this is to be done. My experience with the single oscilla-
lator suggests that the dependence on m +m’ and n+n’
should be the same for the additional terms, but they
should rapidly decrease with |m’ -=m| and In’ =n’|

The equations satisfied by 8 and 6 are used to reduce the I leading to the convergence of the approximation.

APPENDIX

The operators p,, p,, x,, and x, are given in III, The calculated values of the six commutators of these operators

are listed below:

[plxl ]n‘m'nm = iﬁm'm[ (an*l mbnm - anmbn*l m)én’-2 n + Z(an-l mbn-l m anmbnm)én‘n + (an-l mbn-2 m=CGpa2 mbn-l m)an’*2 m]’
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[pZ’xz]n’m’nm = 2.6rl’r|[(cn mﬂdnm - Cnmdn m+1)6m'-2 m+ z(cn m=1%n m-ldn m=1 Cnmdnm)6 + (cn m= l n m=2 cn m-2dn m-l)ﬁm“z m],

[pupz]n'm‘nm (anm n+lm an m+lcmn)6 ‘m+1 n’n*l + (an m-lcn m-1 =G, m n+1 m-l)

X 6m'm-16n’-1 nt (a ~1m+1Cnm = Bp-1mCn-1 m)6 ’m*lé wipt (a n=1mCn-1m-1=%n-1m=1Cr m'l)ém'm-lén'n-l’

[p l’xz]n'm'nm = i(an m*ldnm _anm n+l m)Gm’m*lén'nﬂ + l(an m=1 dnm-l anmdnﬂ m-l)

d

X 5m’m- J nn+l + Z(an'-l mdn-l m = Gper m+1d )6 'm+1 nn-1 + Z.(an-.l md n m-l)ém'm-lén’n-u

n=lm=1

—8p-1m-1
[pz’,xl]n’m‘nm = l(b mCnstm = bn m*lcnm)am’mdbn’n*l + 7’<bn m=1Cn m-1 " bnmcn+1 m-l)
X 6m’m lén‘nﬂ + 1’(bn-1 m-n=lm -b n-1 m+lcnm)6m’m*15n'n-l + l(bn-l m=1Cn m-1 = bn-l mcn-l m-l)ém'm-lén'n-l’

[xl’xz]n'm‘nm = (bn m*ldn - bnmdnﬂ m) 'm*lén‘nﬂ. + (bn m-ldn m=1 bnmdnﬂ m-l)
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Consider the system of stochastic functional differential equations

dx =f(t,x)dt +o(t,x,)dz(t), x,, =

®

where o is a n Xm matrix, column vectors of o, f are continuous, and z(t) is a normalized

m -vector Wiener process with

E[G()—z() - () —z(sYT =]t —s]|

By developing a comparison principle, sufficient conditions are given for stability and boundedness
in the mean of solutions of (S). The main technique here is the theory of functional differential

inequalities and Lyapunov-like functions.

1. INTRODUCTION

Stochastic differential systems provide a mathemati-
cal model for sophisticated dynamical systems in
physical, biological, medical and social sciences. In
many circumstances, the future state of a system de-
pends, not only on the present state but also on its
past history. Stochastic functional differential equations
give a mathematical formulation for such systems in
which the stochastic increment (in the sense of It5) of
the system may depend on the influence of its hereditary
effects.

The problem of existence and uniqueness of stationary
solutions of functional differential equations has been
investigated by Ito and Nisio.! In a recent paper
Kolmanovskii? has studied the problem of stability in
the mean. In that paper, an attempt was made to form-
ulate the asymptotic stability criteria by employing
Lyapunov functionals.

The notion of Lyapunov function, together with the
theory of functional differential inequalities provide a
very general comparison principle by means of which a
number of qualitative properties of solutions of func-
tional differential equations may be studied in a unified
way. For more details see the book of Lakshmikantham
and Leela.? It is natural to expect such an extension to
stochastic functional differential systems.

In this paper, we wish to extend this comparison
principle to stochastic functional differential systems.
In Sec. 2, we define various notions of stability and
boundedness in the mean. In Sec. 3, we develop general
comparison principle based on functional differential
and integral inequalities. In Sec. 4, we give sufficient
conditions for stability and boundedness in the mean.
These results include some of the results of Ladde,
Lakshmikantham, and Liu.* At the end, we provide
examples to illustrate the applicability of our results,

2. NOTATIONS AND DEFINITIONS

Let R™ denote the n-dimensional Euclidean space with
any convenient norm e Ii. We also denote by the same
symbol Il = |l the norm of a matrix. R* and R stand for the
nonnegative real and real line respectively. Let (2,7, P)
be a complete probability space. By E[x/K] we shall
mean the conditional mean of x, where K C 7 is a sub o-
algebra of 7. Given any 7> 0, let ("= C[[-7,0],R"] de-
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note the space of continuous functions with domain [- 1,
0] and range in R". For ¢ c(", we define ¢,
= SUP_ ¢ a0 Il P(S).

Let ()T denote the transpose of a vector or a matrix.
Suppose x < C[[ - 7,%),R"]. For any >0, we shall let
x, denote a translation of the restriction of x to the
interval {t - 7,¢]; more specifically, x, is an element
of Cn defined by x,(s)=x(t +s), =T<s<0, Let S[C"] and
S[C*] denote the system of all (" and C* valued random
variables, where (*=C[[ ~ 7,0],R*].

Consider the system of stochastic functional differen-

tial equations of the type
dx=f(t,x,)dt +o(t,x,)dz(t), %y, = bo5 2.1)

where x, fe R?, oft, *) is a nXm matrix, and z{t) is a
normalized m-vector Wiener process with

E[(z(@) = 2(s)) (z() = 2(s)F 1 =1t = 5],

where I is an identity matrix,

We assume that the functions f, o, and ¢, satisfy the
following assumptions:

(a,) the m column vectors of o(t, $) and f(¢, ¢) belong
to C[R*X(C",R"];

(a,) for all (¢, ), ¢, ) cR*%XC",

7, 8) = £, 9l < [ 211 6(s) = p(sMdK 4 (s)

and
llott, ) = ot Pl < [ lgls) = ls)lldk,(s)

where dK, and dK, are bounded measures on [-7,0];

(a;) ¢,(s), se[~7,0]is a sample continuous stochas-
tic process, i.e., ¢,< S[C"] independent of z(¢), for
te R* and satisfies the relation

su-p-'rsssoE[”‘750(3)”4]s C,
for some constant C> 0,

Under these assumptions, it is known! that the solu-
tion x(8) = x(t,, ¢,)(#) of (2.1) is

(1) sample continuous on [t, — 7, ),
(I1) strictly stationary process, i.e., x(t) and z(t)

are strictly correlated,

Copyright © 1974 American Institute of Physics 738
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() EQlx@)iI*]< €, sup Elllg,(s)lI*]ec,
=-TSg%Q
for some C,, C,>0.

We shall now formulate the definitions of stability and
boundedness in the mean of the trivial solution of (2.1).

Definition 2.1: The trivial solution of (2.1) is said to
be:

(i) equi-stable in the mean, if for each €>0, ¢,c R*,
there exists a positive function 6 =5(#,,¢) that is con-
tinuous in £, for each € >0 such that the inequality

sup E[ll¢o(s)] <5
-7sg<0
implies
Elllx(ty, o) <€, for ¢=t,y;

(ii) uniformly stable in the mean, if the § in (i) is
independent of #,; ’

(iii) quasi-equi-asymptotically stable in the mean, if
for each € >0, #,c R*, there exist 6,=6(¢;) >0 and T
=T(t,,e) >0 such that for ¢>{,+ T and

_Ts;ugo E[ll ()] < 6,
implies
Ellx(t,, d) D] <€;

(iv) quasi-uniformly asymptotically stable in the
mean, if 5, and T in (iii) are independent of #;;

(v) equi-asymplotically stable in the mean, if (i) and
(iii) hold simultaneously;

(vi) uniformly asymptotically stable in the mean, if
(ii) and (iv) hold together.

Definition 2.2: The stochastic system (2.1) is said
to be:

(i) equi-bounded in the mean, if each a =0, f,c R,
there exists a positive function f=B(¢,, @) that is con-
tinuous in /, for each @ such that

_sup Elllgg(s)ll] < e
implies
Elllx(ty, po) O] <B, t21y;

(ii) uniformly bounded in the mean, if the o in (i) is
independent of £,;

(iii) guasi-equi-ultimately bounded in the mean, if
given o =0, ¢, R*, there exist numbers N and T
=T(t,,a) such that

sup E[ll¢o(s)l]< a

~rSg%0
implies
Elllx(ty, do)DII<N, t=t,+T;

(iv) quasi-uniformly-ultimately bounded in the mean,
if the number 7 in (iii) is independent of #,;

(v) equi-ultimately bounded in the mean, if (i) and (iii)
hold at the same time;

(vi) uniformly ultimately bounded in the mean, if (ii)
and. (iv) hold simultaneously.
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Consider now the comparison functional differential
equation

ur:g(t,u)+G(t,ut), utozoo 2.2)
where ge C[R*XR*,R], Ge C[R**X(*,R] and G(t,0) is
nondecreasing in o for each t e R*.

Relative to the comparison functional differential
equation (2.2), we need the corresponding definitions in
our discussion which may be defined analogously. For
example, the definition of equi-stability runs as follows:
The trivial solution #=0 of (2.2) is said to be equi-
stable, if for each e >0, {,& R*, there exists a positive
function 6 =5(¢,,¢) that is continuous in ¢, for each ¢ >0
such that lo,!,< 6 implies u(t,, o)) <e,tzt,

Definition 2,3: A function b(r) is said to belong to the
class X, if be C[R*,R*], 5(0)=0 and b(r) is strictly in-
creasing in 7.

Definition 2.4: A function a(t, ») is said to belong to
the class CK, if ac C[[ - 7,)XR*,R*], a(t,0)=0 and
a(t,r) is concave and increasing in # for each < R*,

3. COMPARISON RESULTS

In this section, we wish to prove some comparison
theorems for stochastic functional differential system.
This is achieved by employing the notion of Lyapunov
function and the theory of functional differential and
integral inequalities analogous to the deterministic
case,® These results play an important role to study the
qualitative behavior of (2.1). Note that these results are
extension of corresponding result.?

Let the function Ve C[[-7,©)xR",R*], V,, V,, V,_
exist and are continuous for (¢,x)eR*XR", the calculus
introduced by It6° shows that

dv(t,x,¢)=LV(t,x,¢>)dt+g-o(t, d)dz(t), (3.1)
where
AV , oV 13 3%y
LVlt,x, 0)=p+ 50 0)+5 2 5z bu6:9),

{3.2)
¢cCn, and (b, )=0v07.

Here and after, we shall assume that Eq. (2.2) and
the function V satisfy the following hypotheses:

(#,) g< C[R*XR*,R], g(t,u) is concave and nonde-
creasing in u for each fe R*.

(H,) Ge C[R*X(*,R], G(t,0) is nondecreasing in o for
each < R* and for any o< S[C*], G(t,0) satisfies the
relation

E[G(t,0)] < G(t, Eo),
where Eo=E[o(s)], se[~7,0].

(H,) Let »(4,,0,)(t) be the maximal solution of the func-
tional differential equation (2.2) existing for ¢ = ¢, ¢,
€ R*,

(H,) Assume that g(f,0)=0=G(t,0).

(H,)) Ve C[[~7,9)XR", R*], 3V/at, aV/ox, 3°V/dxdx
exist and are continuous for (¢,x)c R*XR", Further-
more, for (¢, #(0), p) e R*XR"X (",

(3.3)
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g;’ ~olt, ) < KO+ [ N ol (3.4)
and
LV(t, ¢(0), ¢) < glt, Vit, p(ON) +G (¢, V,), (3.5)

where K ¢ C[R*,R™], 1 <u<4, and L is the operator as
defined in (3.2).

(H;) Assume that the hypothesis (H;) holds except that
the inequality (3.5) is strengthened to

ALV, ¢(0), ¢) + V(E, $0NA (t) < g(t, V(E, 6(0)A(R))
+G(t,A,V,), (3.6)

where A(#) is continuously differentiable positive func~
tion for [~ 7,%) and A,V, =A(t+s)V{t +s, ¢(s)) for s
e[~r,0]. '

(H,) For (t,x)c R*XR",
bl xl) < V{t,x) < alt, lixlD),
where beK, b is convex, and a € CK.
(H,) For (t,x) € R*XR",
bllx s Vt,x)<alt,lix]l),

where ae CK, beK, b is convex, and b(u)—~ = as
u—o,

We shall state and prove the following main compari-
son theorem,

Theovem 3.1: Let the hypotheses (H,), (H,), (H,), and
(Hs) be satisfied. Assume that, for the stationary solu-
tion process x(t)=x(t,, ¢,)(¢) of (2.1), E{V(¢,x(¢) exists
and E[V({t, +s, ¢o(s))]< 0y(s), se[-7,0]. Then, we have

E[V(t, x(ty, d) D] < 7(ty, 0)(), t>t,. 3.7

Proof: Let x(t) = x(¢,, ¢,)(f) be any stationary solution
process of (2.1) with initial data (¢, ¢,). By the hypo-
thesis (H,) and the calculus introduced by It5,% we have

av (¢, x(t),x,) =%—‘;(t,x(t))dt +%(t, x(t)) o ft, x,)dt

14 8%y
+3 Zj}ﬂm(t,x(t))bu(t,xt)dt

+a—V—(t,x(t)) ¢ U(t>xt)dz(t)
ox

=LV(t,x(t),xt)dt+%’(t,x(t))- olt,x,)dz(t).

This together with the hypotheses (H,), (H,), (H,) and
the existence of E[V(t,x(2))] yields the inequality

E[V(t, ()] - E[V (5, d5(sN] < [, [g(s, EV (s, 2(s)))

+Gl(s,EV )]ds. (3.8)
Set
m{t) =E[V({t,x()], m(t,)=E[V(,, o)1,
then in view of (3.8), we have
m(t)Sm(to)+ft:[g(s,m(s))+G(s,ms)]ds. (3.8%)

Define
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m(to)+fti[g(s, m(s)), +Gls,m))ds,  for t>1,
ult) =
m(t), for te[t,~7,t,],
so that
m() <ult), for te [t,—71,), (3.9)
and
w () =g(t,m@) +G(t,m,), forit={,. (3.10)
From (3.9), (3.10), and nondecreasing property of g
and G in % and ¢ respectively, we get
w () < g(t,ul®)+Glt,u,), fori=ty, (3.11)
and
my =, < 0. (3.12)

From an application of Theorem 6.9.4 in Ref. 3, we
deduce that

u(t) <v(ty, 0,)(8), t=1t,.

The assertion (3.7) is now immediate in view of (3.9)
and the definition of m(f). The proof is complete,

The following variant of Theorem 3.1 is often more
useful in applications.

Theovem 3.2: Let the hypotheses of Theorem 3.1
hold except that (H,) is replaced by (Hg). Then

AQ,+S)E[V(, + s, 0y ()] < a,(s)
implies V
E[V(t, x(N]< Ry, 9o) 1), =1, (3.13)

where R(t,,,)(t) is the maximal solution of the differen-
tial equation

v'=[~Ar0+g(t, 0A) + G, A0 ) /AW, v, =4, 3.14)
existing for t= {,.
Proof: Setting
W(t, 6(0) =V, $ONAW), te[-T7,»),
we see, because of (3.6), that

LW(t, ¢(0), ) =AMLV, ¢(0), $) + A" ()V(E, $(0))

<glt,w(t, () +Gt, w,).
This shows that W(¢, x) satisfies all the hypotheses of
Theorem 3.1 and, as a consequence, we have

E[w(t, x()] < 7(ty,0)@), t=1t,, (3.15)

provided that
Wty + 5, dols)) < 0y(s).

Here 7(t,,0,)(t) is the maximal solution of (2.2). It is
easy to verify »(t,, 0,)(t) = A(DR (L, ) (£) with $,(s)A(,
+s)=0,(s). This implies because of (3.15) and the
definition of W(t,x), the desired inequality (3.13).

Remark 3.1: Theorem 3.1 is analogous to Theorem
8.1.4 in Ref. 3 for determinstic case. However, it is
required that u, u, are “separated” on the right-hand
side of 8.1.16 in Ref. 3, i.e.,

g(t,u,u)=g(t,uw)+Glt,u).
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Furthermore, our results are obtained by employing
integral inequalities, so we require monotonicity in u.
However, if (2.1) is a system of diffusion equations,
the differential inequalities can be employed to discuss
such results. For more details see Ref. 4.

Remark 3.2: The drawback of Theorem 3.1 is the
assumption that E[V(t, x(t))] exists for each tc R*. Under
certain conditions, one could show that this assumption
holds. For example, let V(t,x) < a(t, ixll), where a
e C[R**xR*,R*] and a(t, ) is concave in « for fixed
te R*. Then we would have

0< E[V(t, x))]< alt, E[lx@]),
in view of the property (III) of the solution process x(f).

Remark 3.3: Observe that the nondecreasing nature
of g{t,u) in « can be dropped, if the inequalities (3.3),
(3.4), and (3.5) are equalities, However, we do require
nondecreasing nature of G(¢,0) in g, in order to insure
the existence of the maximal solution for (2.2). See
Ref. 3 for more details.

Remark 3.4: The restriction E[G(f,0)] < G(t, Eg) for
oc S[C*] on G(¢,u,) is natural. However, the class of
functionals G(t,,) having such a property is nonempty.
For example,

G(t,0)= A(t)f_: o(s)dK(s), for c=S[(*],

where dK is a bounded measure on [ - 7,0]. One can
easily see that

E[G(®), ) ]=x() f_j Elo(s)]dK(s),

whenever E[o(s)] exists for se [ -7,0].

4. STABILITY AND BOUNDEDNESS IN MEAN

In this section, by employing the comparison theo-
rems developed in the preceding section, we shall pre-
sent various results giving sufficient conditions for
stability and boundedness in the mean.

Theovem 4.1: Assume that the hypotheses (H,), (H,),
(H,), (), (H,), and (H,) hold. Furthermore, the sys-
tem (2.1) possesses the trivial solution. Then:

(i) equi-stability of the trivial solution of (2.2) im-
plies equi-stability in the mean of the trivial solution of
(2.1);

(ii) quasi-equi-asymptotic stability of the trivial solu-
tion of (2.2) implies quasi-equi-asymptotic stability in
the mean of the trivial solution of (2.1);

(iii) equi-asymptotic stability of the trivial solution
of (2.2) implies equi-asymptotic stability in the mean of
the trivial solution of (2.1).

Proof: Let x(t,, ¢,)(t) be any stationary solution pro-
cess of (2.1). By the hypothesis (H,), we have

0 < E[b(llx(ty, ) DI < E[V(, x(ty, $p) (1))

< alt, Elllx(t,, o)D),

which implies that E[V(¢, x(t,, ¢,)(t))] exists, in view of
the Remark 3.2. Hence, by Theorem 3.1, we have the
following inequality,
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E[V(t, x(ty, )N < 7, 0)(2), t=1¢,, 4.1)
whenever

E[V(to_'_sy ¢0(S))]50'0(S), SE[—T,O]. (4.2)

Let us first prove statement (i), Let ¢>0 and ¢, R*
be given, Assume that the trivial solution #=0 of (2.2)
is equi-stable. Then given b(e), {, € R*, there exists a
positive function 8, =5, (#,,€) that is continuous in £, for
each € such that |o,l,< 5, implies

ulty,, o)) <ble), t=4,, (4.3)

where u(t,, 0,)(#) is any solution of (2.2), We choose
o,(s)=alt, + s, E[ll oo(s)I]).

Since ac CK, for fixed se [to - 'r,td], we can find 5(t,
+s,6)= 8, >0 that is continuous in #, for each €, such
that

E[ll (] <8,
implies a(t, +s, E[llpo(s)]) < 8,
Our aim is to choose 6 which is independent of s
e [~ 1,0]. From the continuity of E[l|¢,(s)li] in s and
(4.4), we can find n,, for fixed se [~ 7,0] such that

E[lloo(0)1]1<8,, for 6e(-n,,n)N [-7,0].

This is true for each se [ - 7,0]. Consider the collection
of open sets in [ - 7,0] defined by

U={0,:0,=(-n,n)n [-7,0], for se [-7,0]}.

It is easy to verify that it is an open covering of [- 7,0]
and hence by Heine—Borel theorem, we can extract a
finite s.ubcoyer corresponding to Mays T s oo ,nsn for
some fixed integer n. Take the correspbnding nimbers
8g 5 05 5.0., 0, and set

n

4.4)

S1 S2

6=min{6sl,682, vee ’53,.}'
Then, we have

sup E[ll¢,(s)l]< 6

-rss%0
implies a(t, +s, E[llpo(s)ll) < 6,. (4.5)
Now, we claim that if
_sup Elllgg(s)ll] <5,
then
Elllx(ty, o] <€, t= 1.

Suppose that this is false., Then there would exist a solu-
tion x(t,, ¢,)(#) with

sup Elllgo(s)l] <6 and £, >4,

-rss=0
such that

E[llx(ty, ¢ )] =e. (4.6)
This, in view of the hypothesis (H,), gives

B(ENx(ty, 0o) G < E[V(E, x(ty, 96)(E )] (4.7

The relations (4.1), (4.3), (4.6), and (4.7) lead us to
the contradiction

b (E) < E[V(tl N x(to, ¢0)(t1))] = T(to, co)(tl) <b (6) .

This proves the conclusion (i).
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Now, we shall prove the conclusion (ii). Let e>0,
t, € R*, be given. By quasi-asymptotic stability of (2.2),
given b(e) and f,€ R*, there exist numbers 5%(¢)) =6°>0
and T(t,,e)=T >0 such that
u(ty, 0)(8) <ble), t=t,+T, 4.8)

whenever |0,|,< 6°, Choosing 0y(s)=a(t, +s, E[il ¢o(s)1]),
we can find, as before a §,=5,(f,) >0 such that

sup E{ll¢,(s)I] <6,

-ThgE0

and alt, +s, E[llg,(s)l]) < 6°

hold at the same time. We claim that
_1§;‘1:20E[l|<1>0(s)”]S 8o
implies E[llx(O)ll] <e, for t=t,+ T. As a result, we
have, because of (4.1), (4.8), and (H,),
b(EN=@I] < E[V(, x(2))]
< 7(ty,0,)(#) <ble), t=t,+T,
which implies, arguing as before that
E[llx@®l]<e, t=t,+T,
whenever

sup E[llgo(s)ll]< 8.

This proves (ii).

The proof of (iii) follows from the proof of (i) and (ii).
Thus the proof of the theorem is complete.

Theovem 4.2: Let the hypotheses (H,), (H,), (H,),
(H,), and (H,) be satisfied, Then:

(i) equi-boundedness of solutions of (2.2) implies the
equi-boundedness in the mean of solutions of (2.1);

(ii) quasi-equi-ultimately boundedness of solutions of
(2.2) implies the quasi-equi-ultimately boundedness in
the mean of solutions of (2.1);

(iii) equi-ultimate-boundedness of solutions of (2.2)
implies equi-ultimate boundedness in the mean of solu-
tions of (2.1).

Proof: Let x(t,, ¢,)(t) be any stationary solution pro-
cess of (2.1). By following the proof of the Theorem
4.1, we have the inequality (4.1).

Let a =0 and {,< R* be given and let

sup Elll¢y(s)ll]<a.
~T<s<0

Define
= + N
o, _f‘usgoa(to s,a)
Assume that the solutions of (2.2) are equi~bounded.

Then, given a, >0 and f,€ R*, there exists a positive
function

Bl(to,d)=[31 >0

that is continuous in #, for each a such that loyl < a,
implies

u(to’ ao)(t) <By, t=ziy, (4.9)
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where u(t,, 0,)() is any solution of (2.2). Since b(u) ~
as u—, we can find a B(¢,, ) =8> 0 satisfying the
relation

B, < b(B). (4.10)

Now let oy(s)=alt, + s, E[ll ¢,(s)ll]) so that |o,},<a,.
With the B obtained in (4.10), we claim that the solutions
of (2.1) are equi-bounded in the mean. If this is not
true, then there exists a solution x(¢,, ¢,)(t) with

sup Efllo(s)ll]< @
TRk Q

and £, > t, such that
E[”x(to’ ¢o)(t1)”]= B. (4.,11)

This together with (4.1), (4.9), (4.10), and (H,), we
have

b(B) < E[V(t,, x(t,)] < 7(ty, 0,)(¢,) <b(B),
which completes the proof of (i).
To prove (ii), let @ >0 and f,c R* be given and let

_sup Ellgy(s)li] < .

Define

a,= sup alt,+s,a).
TR 3K0
Assume that the solutions of (2.2) are quasi-equi~-ulti-
mately bounded. Then, given a, >0 and ¢, R*, there
exist positive numbers N, and T=T(t,,a) such that

ult,, 0,)(t) <N,, t=t,+T, 4.12)

whenever |0yl < a,. Since b(u) = as u~~c, it is
possible to fine N> 0 such that

N, <b(N). (4.13)

As before, choosing oy(s)=a(t, + s, E[ll po(s)lI]), we can
conclude, because of the relations (4.1), (4.12), and
(4.13),

E[V(, x{ty, o)) <B(N), t>1,+T.

From this and (H,), it is easy to deduce that E{llx()I]
<N for ¢t=¢,+ T, whenever sup_.c,<o Ellld,(s)l1 <.
This proves (ii).

The proof of (iii) follows from the proof of (i) and (ii).
Hence the theorem is proved.

In Theorem 4.1, the assumption that the trivial
solution of (2.2) is asymptotically stable, in general,
may not be valid. In such cases, the following result
which is based, on the comparison Theorem 3.2, is
useful to discuss the asymptotic stability of (2.1). We
state the result in the following.

Theorem 4.3: Assume that the hypotheses of the
Theorem 4.1 hold except that (H,) is replaced by (H,).
Then:

(i) equi-stability of the trivial solution of (3.14) im-
plies equi-stability in the mean of the trivial solutions
of 2.1;

(i) equi-quasi-asymptotic stability of trivial solution
of (3.14) implies equi-quasi-asymptotic stability in the
mean of the trivial solution of (2.1);



743 G.S. Ladde: Differential inequalities

(iii) equi-asymptotic stability of the trivial solution of
(3.14) implies equi-asymptotic stability in the mean of
the trivial solution of (2.1).

Proof: Let x(t,, ¢,)(t) be any solution of (2.1). As be-
fore, by the hypotheses (H,), E[V(t,x(t,, d,)(t))] exists
for ¢ = {, and hence by Theorem 3.2, we have

E[V(t, x(ty, do @] < Rt (®), t=1,,

whenever E[V(, +s, ¢y(s))]< 0,(s), where R(t,, P, )(#) is
the maximal solution of (3.14). We now follow an argu-~
ment similar to the proof of Theorem 4.1 to complete
the proof of the theorem.

Also, one could formulate the result corresponding
to uniform notions by assuming V(¢,x) is decrescent and
the corresponding notion of the comparison equation
(2.2) or (3.14) is also uniform.

5. EXAMPLES

In this section, we shall give some examples to dem-
onstrate the usefulness of our results.

Example 1: Relative to the system (2.1), assume that

(a) ¢(0) °f(t; ¢) = 0’

60 ott, ) <LO(1+ [lo@Neds),

and
i 21 Lsbys(t, )< A(t)f_: 1 p(s)lIZds

for (t, $(0), p) € R*XR"X(",
where I is the identity matrix,

b(t, o) =0lt, §)+ 07, ),
Le C[R*,R™], 1< p<4, and xe L*[0,=).
(b) 60)+fit, §) < ~all 62, a>0,
$0)ott, )< L() (1 + f_jnqb(s)u»as)

and
P@ (0
P J.,

for (¢, $(0), ¢) € R*XR"X(", where P(t) is a polynomial
in f. Then taking V(t, x)=llx|]?, we see that

RIRILIULN exp(as)lg(s)lizds,

LV(t, $(0), 9) < x(@)f V(s +1, $(s))ds,
when (a) holds, The comparison equation is

w =20 ult+s)ds
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and consequently =0 is stable, Hence, by Theorem
4.1, it follows that the trivial solution of (2.1) is stable
in the mean. If on the other hand, (b) holds, we get

LV(t, 6(0), ¢)
Pl(t) 0
s—aV(t,¢(0))+?®- exp(as)V(t+s, p(s))ds
so that
r=—autZ8 [ (as)ult + s)d
w'=-aut+gry _7xpsu s

is the corresponding comparison equation. It is easy
to see that #=0 is quasi-asymptotically stable. As a
result, Theorem (4.3) gives quasi-asymptotic stability
in the mean of the trivial solution of (2.1).

Example 2: Consider the stochastic functional differ-
ential equations

dx = =f(t)x (t)dt + F(x(t - 7))dz(t), (5.1)
where 7> 0, fe C[R*,R*] and Fe C[R,R], F satisfies the

Lipschitz condition with Lipschitz constant K and F(0)

=0, Furthermore, assume that

lim inf (—1— (5.2)
teoo t= to t

By taking V(t,x) =x2, A(f)=exp[2[tf(u)du], it is easy to

see that

AWMLV(t, (0), o)+ A’ (IV(E, 9(0)) < K2V (t - 7, x(t = T))A(R).
5.3)

The comparison equation is ' = — 2f(¢)u + K?u(t - 7).
Consequently, #=0 is asymptotically stable, in view of
(5.2). Hence, by Theorem 4.3, it follows that the
trivial solution of (5.1) is asymptotically stable in the
mean.

:f(u)du) >I§—2 .
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It is pointed out that integrals over arbitrary ranges and indefinite integrals may often be obtained

very simply by the methods of contour integration.

By resorting to Fourier transforms Glasser!® has
evaluated integrals of the form

b w" dw
Inm= [D (w2+A2)"‘ (eBw+1) (1)

where »n and m are integers. The difficulty overcome by
Glasser lies in the fact that D is arbitrary. We shall
show here that such integrals may be evaluated through
contour integration as a matter of routine. In essence
this procedure is not new but seems to have been re-
peatedly forgotten and rediscovered. The first reference
of which the author is aware is in Whittaker and Watson?
in the form of a problem for the student. Later discus-
sions have been couched in complex terms. Accordingly,
we shall here present the matter stripped to its essen-
tials and then point out some rather obvious generaliza-
tions which do not appear to have been noted.

Given the integral

I=[° flx)dx &)
we consider the contour integral
I= ff(z)ln[(z -b)/(z -a)ldz (3)

with a contour which consists of the two lines joining the
branch points at z=>5, z=a and the circle at infinity.

Now provided f(z) is a single-valued function in the
interval of integration, the integrand of Eq. (3) takes
the values

[in(x - a)/(x = b) + 7] flx)
and
[In(x = @)/ (x = b) = 7] f(x)

on the upper and lower lines a-b, respectively. Ac-
cordingly, provided f(z) is single valued everywhere and
without poles in the interval of integration, we have

I,=2m fabf(x)dx + fr A2)In[(z - b)/z -a]dz
= 2miXsum of residues of f(z)In[z-b)/(z-a)] (4)

where the second integral represents the contribution
from the great circle I'. It inay be noted that: (1) This
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procedure may be generalized immediately to cover in-
tegration over any number of segments. Furthermore,
the weight accorded to each interval need not be the
same. This is clear from a consideration of the function

z-a\"1f2—a\"2  (z-a\*
m[(z—bl) (z-b2> <z —bn> ‘ (5)
(2) The method also lends itself to the evaluation of in-
definite integrals., Thus, e.g., the use of the function

In[(z - b)/(z — a)] with the function to be integrated f(x)
leads to a result

I=F(b) - F(a) (6)
where

dF(x) _

= flx). 7

To illustrate the method we shall now evaluate the
generic integral considered by Glasser:

2w d
I= f-n (w? +A2) (eB“’w+ 1 ®

We consider then

I — 2 1 In ? -D
e P (2+A% (ePi+1) T z+D
For this function there are simple poles at z=1+iA and

at z =+ i(k7/B) provided BA # k7 where k is any positive
odd integer.

dz .

It is clear from inspection that the integral around T
vanishes. The evaluation of the residues is straight-
forward and we obtain

BA

D
—tan-t = el >
I=tan A tan 3 +47

which is the result given by Glasser!

k .1 AB
k odd BEAZ . poq2 tan T

M. L. Glasser, J. Math. Phys. 10, 1105 (1969).
2E.T. Whittaker and G.N. Watson, A Course of Modern
Analysis (Cambridge U, P., Cambridge, 1902), p. 122,
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We consider the problem of determining the scattering amplitude from the differential cross section
at a fixed energy by using the unitarity equation when the scattering potential does not have
spherical symmetry. We indicate some of the problems peculiar to this case. We prove two existence

and uniqueness theorems. We give an example of nonuniqueness.

1. INTRODUCTION

The purpose of this article is to give an account of
some of the existence and uniqueness questions which
arise in connection with the problem of determining the
scattering amplitude from the differential cross section
at a fixed energy by using the unitarity condition for
the scattering of scalar waves in the absence of spheri-
cal symmetry. We take the differential cross section as
given with infinite accuracy. A forthcoming article will
discuss the interesting question of how experimental un-
certainties affect the construction of solutions of the
unitarity equation, both in this case and in the case in
which there is spherical symmetry.

The principal results in this article can be summa-
rized as follows, We first show that the additional nec-
essary condition imposed by the absence of spherical
symmetry leads us naturally to consideration of a set
of functions which is nowhere dense in the space
C (S x8), the Banach space of continuous complex-
valued functions defined on the compact set SXS, where
S is the unit sphere in R®, with the usual maximum
norm. Next we prove two uniqueness theorems for the
unitarity equation in this case. One of these is quite
elementary, and has been known to the author for some
time. The other is a generalization of a theorem given
by Atkinson, Johnson, and Warnock.' We also point
out a minor error in their proof, and it is easily cor-
rected, as is seen below. Finally, we give an example
to show that at least one of the hypotheses of this last-
mentioned theorem cannot be dispensed with,

2. A FEATURE PECULIAR TO THIS CASE
We shall use the unitarity equation in the form

4”Imf(ﬁ1, ﬁ2)=j;f(ﬁ1,ﬁ)f(ﬁ2, #) dQ(#), (2.1)

where f is proportional to the scattering amplitude, and
#,, #i,, # are unit vectors in R® [see Ref. 2, expression
(10), or Ref. 3, expression (1)]. We shall suppose that
there is no spherical symmetry, but that the scattering
potential has inversion symmetry, so that we have

S iy, 7)) =f (7, %,) and (2.1) is valid (Ref. 2, part I). As
usual, we obtain the two equations

47Im f (,, ,) = [([Re f(ny, 7) Re f (7, #)

+Im f (7, A) Im £ (R, #)] A2, (2.2a)
0= [ [Ref(n,, 7) Im f i1y, 7) = Re f (,, #) Im f (7, 7)] d22.

(2.2b)
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It is well known that if the potential is spherically sym-
metric, (2.2b) is identically satisfied. However, if the
potential possesses only inversion symmetry, (2.2b)

is not, in general, identically satisfied {here the two
sentences following (2') of Ref. 4 are in error). In fact,
we have the following interesting observation:

Proposition 2.1: Let § ={xe C 4(SxS):
[ sx{fy, M)x(Ry, 7) dQ is real for every #,,f,€ S}. Then §
is nowhere dense in C (S %XS).

Proof: Let A ={xe C (SXS): Im [¢x(h,, A)x(7,, 7) dQ
>0, for every f,,#,€S}. Then the boundary of A, 84
=AN AC, is nowhere dense in C ((SxS), and § is a
closed subset of 34, so that 0(,7 is itself nowhere dense
in C 4(SxS).

The following not very surprising corollary follows
immediately.

Corollary 2.2. The set of solutions of the unitarity
equation (2. 1) is nowhere dense in C ((SXS).

Proposition 2.1 shows that if the potential has only
inversion symmetry, the set of solutions of (2.2b) does
not occupy very much space in C (SXxS). In fact, a no-
where dense set is sometimes called a sieve.® This
presents a problem in that the results we have so far
for this case all deal with Eq. (2.2a) only, and Eq.

(2. 2b) then represents an additional necessary condi-
tion on the solutions spoken of in these results. The
theorems below then, are uniqueness and construction
theorems for Eq. (2.2a) as they stand. If the solutions
constructed by the iteration procedures also satisfy
(2.2b), we get the existence of a solution of (2.1) as
well. However, the set of solutions of (2. 2b) is rather
sparse.

3. TWO UNIQUENESS THEOREMS

For the notation used in the remainder of this article,
see Sec. 2 of Ref. 4. To solve (2.2a), we seek a fixed
point of the transformation / defined on C (S XS) by

/M@)(#y, 7,) =arcsin fs H(#y , 7,, 7) cosle (#,, )

- gp(ﬁz, ﬁ)] dQ.

We introduce the notation M(G)=sup{f H(#,, 7,, #) d2:
4y, 7, € S} and M,(G) = (2m)M(G)¥1 = M(G)? + M(G)*]*
Xsup{f G(#,, ) dQ: #,c S}. We first make the trivial
remark that, for (2.2a) to have a solution, it is neces-
sary that [ G(#,, ) dQ <47G(A,, #,) for every A, S, In
the spherically symmetric case, the corresponding ob-
servation was made by Newton [Ref. 3, expression (8)].
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Lemma 3.1v Let G: SXS— R* be continuous, M(G) <1,
and let ¢ be a square-integrable solution of the equa-
tion ¢ = /(¢). Then 0 <@(#,,#n,) sarcsin M(G) for al-
most every [d,Q]%, and #, in S,

Proof: The proof of this result given by Martin® for
continuous solutions in the spherically symmetric case
is still valid in this more general case.

The importance of this lemma is that if we restrict
M(G) to be less than one, we need only look for fixed
points of /| in the set D={p € X: 0< @ (n,,7,)
<aresin M(G), #,, A, € S}, where X is the appropriate
function space.

Theorem 3.2: Let G: $XS—~ R* be continuous and non-
vanishing, and suppose M(G) < [8-1(vI7 -1)]*/2=0. 6255,
Then there is a unique continuous solution of the equa-
tion ¢ =/(¢). The solution is the limit of a sequence of
successive approximations which converges uniformly
on SXS,

Proof: Let X=C g(5XS) and let D be as above. Then
because M(G)<1, M:D— D. Let ¢,,¢,c D. From the
identity cos A - cos B=2 sinj(A + B) sini(A - B) follows
the Lipschitz condition

M @y) = M@y <2M(GY[1 - MG 2| |¢, - 0,],

and then the result follows from the Banach contraction
mapping principle.

The next theorem gives other sufficient conditions
for the existence of a unique solution of Eq. (2.2a).

Theovem 3.3: Let G: SXS— R* be continuous and non-
vanishing, and suppose M(G) <1 and M,(G) <1. Then
there is a unique square-integrable solution of the equa-
tion ¢ =///(¢). The solution is the limit of a sequence
of successive approximations which converges in the
norm of L*SXS, d,9).

Proof: Let X be the completion of Cg(SXS) in the

norm
112 = fous Gl ) | s, ) 8. (3.1)

X is the Hilbert space of real-valued measurable func-
tions on SXS which are square-integrable in the mea-
sure Gd,2, which is the measure dQ2 XdQ on § XS with
the weight G. Since G >0, the norm (3.1) is equivalent
to the usual norm on L%(SXS, d,Q). Let

D={p c X: 0<9(n,,n,) <arcsin M(G) a.e. [d,Q]};

D is a closed convex subset of X, and hence is a com-
plete metric space with the distance induced by the
norm (3.1). To solve (2.2a), we seek a fixed point of
Min D, Since M(G)<1,/)j: X— D; in particular, //j:D—~ D.
Also, at each ¢ € D,/ has a Gateaux variation 5/ (¢:x)
which satisfies the following equation: for every x € X
andpe D,

4Gy, 7,) cos/M (@ Ny, 7, 5/M (@ 3x) (Ry, 7,)
= [5Gy, R)G(R,, #) sinl@ (A, 7) = @y, 7))
X [x{ny, 7) = x(7y, 7Y} dD2. (3.2)
This is the defining equation for the Gateaux variation

of / at ¢ in the direction x.”7 Using (2. 2a), (3.2), and
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the method of Martin (Ref. 6, pp. 137—39), we obtain
the inequality

j:SxSG(ﬁly ﬁz) ‘ 6/ ((p;x)(ﬁn ﬁz) ‘ ZdzQ

<My(6) [5xsGy, ;) |x(7y, 25) | 22,92,
In the language of the norm (3.1), this is I|64/(¢;x)l|
< M,(G)'?||x|| for every xc X and ¢ € D, or I15/{p;)l
<M,(G)*/2 for every ¢ € D, Let ¢,,¢,c D and apply a

mean value theorem (Ref. 7, theorem 5. 4) to obtain the
estimate

H/”(%)—M(%)Il < H‘pl_‘pz”

xsup{|| oM ((1 = )¢, +10,; ) ||: O<t<1}

le(G)”zHcpl "‘ﬂzH'

By the Banach contraction mapping principle, there is
then exactly one solution of (2.2a) in D. But by Lemma
3.1, because M(G) <1, all solutions of (2.2a) are in D,
so that this solution is the only one in all of X. The
square -integrability of the solution and the convergence
of the approximations in L?(SX S, d,Q) follow from the
equivalence of the norm (3. 1) and the usual norm on
LYS XS, d,Q).

Remarks: (1) In the spherically symmetric case,
[sG(#, 7) dQ is independent of #,; and so no “sup” is
required in the definition of M,(G), and in this case the
condition M,(G) <1 is the original condition of Martin
(Ref. 6, expression 31).

(2) Theorem 3.2 is not included in Theorem 3. 3 be-
cause it is presumably possible that M(G) < 0. 6255
while M,(G) > 1. Of course, in the spherically symmet-
ric case this cannot occur.

(3) A significant difference in this case in which no
spherical symmetry is present is that we cannot guaran-
tee that the solution ¢ which corresponds to the contin-
uous G is itself continuous. In the spherically symmet-
ric case, an easy approximation argument shows that if
G is continuous and M(G) <1, then // takes L? functions
onto continuous functions (Anderson, Johnson, and
Warnock also show this in a different way in Ref. 1,
Theorem 2). When there is no spherical symmetry, if
G is continuous and satisfies [;G(#,, ) dQ < 47uG(#,, #,)
for some <1 and every #,,7,€ S, then /j(¢) is at least
continuous in the forward direction (i.e., on the diag-
onal #,=4#,), because

4T (@) Ay, 2y) =M (@) R, 7)) |

- G, 72 G, h)?
<(1 -~ 2\-1/2 o B) - 2
R S oy Rl

asQ.

(4) The transformation /, even in the spherically
symmetric case, is not Frechet differentiable in the
space X (or in L2[-1,1] in the spherically symmetric
case). Thus, the mean value theorem as it appears in
Dieudonne, ® which is used in Ref. 1, Theorem 2, is not
applicable. However, this is not at all serious, since,
as we have seen, /) has a Gateaux variation (in fact it
can be shown that /) has a Gateaux derivature) and there
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are stronger mean value theorems available than 8.5.4
of Dieudonne: for example, the one we used in Theorem
3.3, or proposition 2, 3 of Ref, 9. Also, as indicated

in remark (1), our Theorem 3. 3 includes the spherical-
ly symmetric case as a special case. An excellent dis-
cussion of many of the aspects of differentials in non-
linear analysis is given in Ref. 7.

4. AN EXAMPLE OF NONUNIQUENESS

The following example illustrates that the hypothesis
that G be nonvanishing cannot be relaxed in uniqueness
theorems such as Theorems 3.2 and 3.3. The idea for
this example is due to Professor Michael Golomb, and
the author wishes to express his gratitude to Professor
Golomb for his help.

Let ¢ be a real-valued continuous function on S such
that y assumes both positive and negative values and
Is19()12dQ =4n. Let o € (0,1). Put G(»,,#,)
=at/2 y(n,)l9(R,)! and F(fy, 7)) = B, ¢(A,), where B
=(a —a?'/?2+ia, Then | F| =G and F satisfies (2.1)
since | Bl®=a and ¢ is real-valued. Now let ¢, be con-
structed from P by replacing () — ¢(#) in some
places in such a way that #; is continuous. Then
F\ (A, 7,) = B (7,) ¥, (7,) also satisfies (2.1), and | F,|
=G, but F,#F and F,#-F,

Also, we have H{#,, 7, ) =(47) a/2y{(#)?, and so
M(G)=a*/2, Putting p* =sup{l ¢(#)|: %ic S}, we have
M,(G) s2p*a!/?(1 —a +a?)™?, and both M(G) and M,(G)
can be made less than one by choosing @ small enough,
Then all the hypotheses of Theorem 3.3 (or Theorem
3.2) are satisfied, except that G be nonvanishing, and
we have two (nontrivially different, see Ref. 3, Sec. 2)
solutions of (2.1).

From the physical point of view, this example cer-
tainly seems rather contrived. However, it does serve
to point out a difficulty which arises in treating the
unitarity equation in a purely mathematical way. In fact,
the example is all the more useful because it deals di-
rectly with Eq. (2.1), rather than with (2. 2a).

5. CONCLUSION

While giving some results for the solution of the uni-
tarity equation for scattering in the absence of spherical
symmetry when the differential cross section is known,
we have tried to point out some of the problems which
arise which are peculiar to this case. The most promi-
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nent of these is that, in this case, there is an additional
necessary condition on the scattering amplitude, rep-
resented by equation (2.2b). There is no reason to be-
lieve a priovi that a function which satisfies (2.2a) will
also satisfy (2.2b) without some further conditions; in
fact, we have seen (Proposition 2.1) that the set of solu-
tions of (2. 2b) is rather widely distributed in C ,(SXS).
Thus the conditions given in Theorems 3.2 and 3. 3 are
sufficient conditions only for the uniqueness of solutions
of (2.1) [while they do give existence for (2.2a)]; the
treatment of the question of existence of solutions of
(2.1) must also take into account Eq. (2.2b). We do
know that using these theorems, we cannot expect any
better conditions for existence of solutions of (2. 1);
however, other methods may yield more promising
results,

We have also given an example to show that even under
fairly restricted assumptions on the differential cross
section, if this cross section vanishes, Eq. (2.1) may
have two essentially different solutions. This example
as given is peculiar to this case in which there is no
spherical symmetry, for this construction cannot be
made if the potential is spherically symmetric.
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The Mellin transform is used to diagonalize the dilation operator in a manner analogous to the use
of the Fourier transform to diagonalize the translation operator. A power spectrum is also introduced
for the Mellin transform which is analogous to that used for the Fourier transform. Unlike the case
fog_}he power spectrum of the Fourier transform where sharp peaks correspond to periodicities in
translation, the peaks in the power spectrum of the Mellin transform correspond to periodicities in
magnification. A theorem of Wiener-Khinchine type is introduced for the Mellin transform power
spectrum. It is expected that the new power spectrum will play an important role extracting
meaningful information from noisy data and will thus be a useful complement to the use of the

ordinary Fourier power spectrum.

1. INTRODUCTION

In Refs. 1 and 2 we introduced the scale-Euclidean
group in one and three dimensions and showed how
physical quantities could be expanded in terms of the
irreducible representations of the group. One could then
use the expansion to construct correlations between
physical quantities which are independent of the transla-
tion of the origin of coordinates, of the units used in
measuring the physical quantities, and of the orienta-
tion of the axes (in three dimensions). The expansion
which was given is a generalization of a Fourier expan-
sion and the Fourier coefficients provide a basis for
diagonalizing the translation operator. One can intro-
duce a power spectrum in the Fourier transform space,
which is a slight modification of the usual power spec-
trum that has been found so useful in data analysis,
particularly when noise is present.

One of the elements of the scale-Euclidean group is
the dilation. One can expand the physical quantities in
terms of the irreducible representations of the dilation
operator and define a power spectrum in terms of the
amplitudes. This expansion corresponds to the use of
the (imaginary) Mellin transform. The power spectrum
associated with the Fourier transform can be used to
detect periodicities in the physical function, since the
wavenumbers at which sharp peaks of the spectrum
occur give the wavelength of such periodicities. By con-
trast, the positions of the peaks in the spectrum asso-
ciated with the Mellin transform give the magnification
(or compression) which will reproduce features in the
physical function. We believe that the power spectrum
associated with the Mellin transform is as important as
the power spectrum associated with the Fourier trans-
form. The use of both power spectra together appears
to be a most useful tool in extracting meaningful fea-
tures from data.

It is the object of the present paper to show the utility
(theoretically, at least) of the Mellin transform in the
one-dimensional case. We shall therefore review brief-
ly the expansions of physical guantities in terms of the
scale-Euclidean group in the one-dimensional case and
show how the Mellin transform makes its appearance.
We shall then review properties of the power spectrum
associated with the Fourier transform and give the
analogs of those associated with the Mellin transform.
Finally, we shall derive an analog of the Wiener—
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Khinchine theorem which will greatly simplify the calcu-
lation of the new power spectrum.

2. THE SCALE-TRANSLATION GROUP.
EXPANSIONS OF PHYSICAL QUANTITIES IN
TERMS OF THE IRREDUCIBLE REPRESENTATIONS

A. The group and its irreducible representations

We shall concern ourselves with the scale-translation
group in one dimension which is a subgroup of the scale-
Euclidean group in one dimension. Let us consider a
one-dimensional coordinate system, in which the coor-
dinate is labelled x. The variable x may be a space
variable or a time variable. For many applications, the
interpretation as a time variable is more interesting.

We label the transformation of the coordinate
X' =x-qa (1)
T(a). This transformation is called the translation.
The transformation
2 =ex (2)

is called the scale transformation or dilation and corre-
sponds to a change of scale. The transformation is
denoted by S(A). The set of transformations form a
group with the multiplication laws

T(0)=S(0)=1, T(a)T(b)=T(a +b),
S)S(p) =S\ + ), SAT(a)=T(e’a) SO, (3)
where I is the identity transformation.

The scale-translation group is the abstract group
whose elements satisfy the multiplication rules (3). In
Ref. 1 it is shown that irreducible unitary representa-
tions of the group in a separable Hilbert space are two
in number. The Hilbert space corresponding to one of
the representations is the space of complex functions
{Ap)} defined for p >0. The inner product and unitary
operators are defined by

=L f“‘*(p)ﬂp)%, (4)

T(a) A p) = expliap) Ap), SN Ap)= flexpp],  (5)

where the asterisk means complex conjugate and the
unitary operators are given the same name as the corre-
sponding elements of the transformation and abstract

Copyright © 1974 American Institute of Physics 748
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groups. We shall always label the operators this way in
any representation.

The second irreducible representation consists of the
space of functions {f{p)} defined for p <0 with the inner
product

(0= [2r DA T - (®

The operators representing the group elements are
given by Eq. (5).

[1t should be mentioned that our results for the
irreducible representations of the scale-translation
group in Ref. 1 were anticipated in Ref. 3 in a different
form and with a different derivation, However, the ex-
pansion of physical quantities in terms of the irreducible
representations, the definition of correlations, and the
generalization to three dimensions which are given in
Refs. 1 and 2 are not in Ref. 3.]

B. Physical quantities and their expansion in terms of
the irreducible representations

We now consider field quantities or physical quantities
»{x). The quantity » might, for example, be a linear
density or velocity component in one dimension. It will
have a dimensionality in units of length L. For example,
if v(x) is a linear density, v(x) ~L™. If v(x) is a veloci-
ty, v(x)~L. If we now regard x as time instead of a dis-
tance, and take v(x) to be an acceleration, v{(x)~L2,
Generally we shall write as an expression of
dimensionality,

v(x) ~L¥, )
where N is any real number.

Under the transformation T(a), »{x) transforms to
v'(x’) which is the same variable measured in the
transformed frame, Clearly

v'(x) =v(x +a). (8)
We shall write Eq. (8) as an operator relation
T(a)v(x) =v(x +a). (9)
Similarly under the scale transformation S(A)
v’(x) = exp(NA)v [exp(~ 1)x] (10)

which is in operator notation
S )v(x) = exp(NA)v[exp(-A)x]. (11)

On constructing the space of functions {v(x)} with the
same dimensionality N, it is seen that the operators
T(a) and S(\) are linear operators. Furthermore, they
satisfy the multiplication laws Eq. (3) for the scale-
translation group. Hence the space {v(x)} provides a
representation of the scale-translation group for every
N.

Let us now assume that the functions v(x) have a
Fourier transform and that their average is zero, i.e.,

.7 u(x)dx=0. (12)
That is, we regard v(x) as being measured from a mean

value.
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We may then write
vix)=(2m)2/2 f_: [p ]V A p) explipx) dp. (13)

From Eq. (12) it follows that

Lim [p| ¥V A p)=0. (14)

1p1=0
It is readily seen that
T(@v(x)=@m™/2 [ [p|"¥[T(a) A p)exp(ipx)dp, (15)

SWo(x) = @m)H2 [ p[-¥2[s0) fp) | explipx) dp,  (16)

where T(a)Ap) and S(\) A p) are defined in Eq. (5). Thus,
by rewriting the Fourier amplitudes slightly, we have
been able to reduce the representation of the group
operators acting on the physical quantities. In particu-
lar, it is noted that the translation operator is diagonal-
ized. It is also to be noted that the functions f(p) are
dimensionless.

We shall now introduce an inner product between two
functions v*(x) and v(x) of the set {v(x)}, namely

(0, 0)= [T AP ()
With this inner product, the representation of the opera-
tors acting on {v(x)} is a unitary representation and
Egs. (13), (15), and (16) give the reduction of this
representation to the irreducible unitary representations
of the group.

The inner product (»*’,v) is invariant under the

transformations of the group, that is, it has the same
value under the translation of the coordinate Eq. (1) and
under the change of scale of units Eq. (2). In Ref. 1 we
defined the correlation between »*)(x) and v(x) as being
the inner product (17). Hence this correlation is in-
variant under the transformations of the group. We
further defined the translation autocorrelation (TAC) as
being given by (v, T(a)v) which is closely related to the
usual autocorrelation except that it is now scale-
invariant. Furthermore, we defined a new type of auto-
correlation called the scale autocorrelation (SAC) by

(v, S(\)v). The TAC compares a function with itself when
the function is shifted. The SAC compares a function
with itself when it is stretched.

As usual the norm of v(x), denoted by livll, is defined
by

il = [(z, 0)]* (18)
and is an invariant magnitude of the physical quantity.

It is readily seen that a necessary and sufficient con-
dition that v(x) be real is that

F(=p)=r"(p) (19)
in the expansion Eq. (13).

The power spectrum of »(x) in this representation,
in which the operator T(a) is diagonal, is defined by
I7(p)1? which is nondimensional. The amount of power
in the interval a <p <b is

o 2 dp
Lolro)] T
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3. DIAGONALIZATION OF THE SCALE
TRANSFORMATION OPERATOR THROUGH THE
USE OF THE IMAGINARY MELLIN TRANSFORM

A. Transformation from the space in which 77a) is
diagonal to the space in which S (A\) is diagonal

For —o <s <+ and m==1, let us define the com-
plex function G(s,m) by

Gls, +1)=@m)*/2 ["|p| - f(p) dp, (20)

G(s,—1)=(271)'1/2f_i|p|‘“'1f(p)dp. (21)

It is readily seen that the inverse of Egs. (20) and (21)
are respectively

Fp)=@m2 [*|p|*G(s, +1)ds forp>0,  (22)
F(p)=@m2/2 [*|p|G(s, =1)ds forp<0.  (23)

These transformations provide another basis for the
scale-translation group. From Egs. (22) and (23) it
follows that

SO F(p)=(@m/2 [=|p]B[SA)G(s, +1)]ds,

for p >0, (24)
S F(p)=@m™2 []p|[S(MG(s, - Dlds,
for p <O, (25)
where
S(N)G(s, m) =exp(irs)G(s, m). (26)

One also has preservation of the inner product in the
form

-[.: G(l)*(s’+1)G(s, +1)ds:fomfu)*(1>)f(p)li§-|-,
f_: GV*(s, ~1)G(s, —l)dszf_ifm*(p)f(p)lcii)_ﬁ" _ @1

The variable m =1 labels the two irreducible repre-
sentations of the group. While the above statements can
be verified directly, the motivation for the form of the
transformation will be given in Appendix A, using tech-
niques of Ref. 1.

The transformations Eqs. (20)—(23) are seen to be
Mellin transforms with an imaginary argument is (see,
e.g., Ref. 4). This transformation is related to the
usual Mellin transform as the Laplace transform is
related to the Fourier transform.

B. Expansion of physical quantities in the new basis.
Power spectra

By substituting Eqs. (22) and (23) into Eq. (13) we
obtain the following expansion for »(x):

v{x)=(2m) ; f_;”(— imx)yST(— N +is)G(s, m)ds. (28)

The inverse transformation is
G(s,m)=2mM (N =-is + l)f_;”(imx)is'”'lv(x) dx. {29)

Equations (28) and (29) are verified in Appendix B.
From Egs. (17) and (27) the inner product of v'*! and v
is

(v, v):fr/_-,' f_: G'Y*(s, m)G(s, m)ds. (30)
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We note that Eqs. (28) and (29) are a generalized
imaginary Mellin transform pair.

We define the power spectrum with respect to the
Mellin transform as

Zi | 6ls,m)|2.

A necessary and sufficient condition that »(x) be real
is
G*s,1)=G(-s,-1). (31)
4, SIGNIFICANCE OF PEAKS IN THE POWER
SPECTRA

A. Fourier power spectrum

Let us assume that the power spectrum [f(p)!? has
a peak p ~k. There is then a contribution to v(x) from
f(p) in the vicinity of the peak given by

v(2) ~(27) 2 B "D £(R) exp(ikx). (32)

If v(x) is real, f(p) also has a contribution near p ~ - &.
The sum of the two contributions give

v, (x) ~(2/7) 21 B 17D £(R)] cos(kx + ¢), (33)

where ¢ is given by f(k)=!f(k)| exp(i®). For either Eq.
(32) or Eq. (33).

vlx +2mm/k) ~v, (%), (34)

where #n is any integer, positive or negative. Equation
(34) states that v(x) contains a feature which is invariant
under translations which are multiples of the wavelength
A =(27n/k). Of course, this discussion is the familiar
one for identifying peaks of the power spectrum with
translationally invariant components. We are reviewing
the theory because we shall give analogs to it when we
consider the power spectrum associated with the Mellin
transform.

If 7(p) were infinitely sharp at p =k, i.e., if f(p)
were a delta function centered at p =k, the approxima-
tions of Eqs. (32), (33), and (34) would be replaced by
equalities. However, the peaks have a ‘“line width.” The
approximations become increasingly poor with increas-
ing line width. In particular, one expects the periodici-
ty condition Eq. (34) to become increasingly poor with
increasing values of |nl. We shall characterize the
degree of approximation by giving a bound such that, if
|n| does not exceed this bound, the periodicity condition
of Eq. (34) is satisfied within a prescribed error,

To obtain this criterion, we shall consider only the
contribution to v(x) from the peak. We shall thus take

f(p)=0 for p<k—Aand for p>Fk+A, (35)
where 2A is the line width (0 <24 <|kl).
Let us define the relative error in periodicity by
E=I[T@2m/k)-I1]0ll/ V]l
The error will depend on # and on A,

From Eqgs. (17), (15), and (5),

o o= [ o (37)

(36)

F(p)|?
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2 e g [*sin ™Y 2 4D
“[T(T)_I]Ul _4J;A sin b |f(p)| ]
But by the second mean value theorem of integral calcu-

lus and from Eq. (37)
(T @mn/k) = I 17 = 4[sin(mn/R)(E + )P | v II?

(38)

=4[sin(me/R)F v %, (39)
where
—A<E<+HA, (39)
Thus
E <2n(a/[k|) |n]. (40)
Thus if
|n] <(|k|/278) E,, (41)

where E, is a prescribed (positive) limit of error, then

E <E,. (42)

Equations (41) and (42) provide the criterion.

B. Mellin power spectrum

Let us assume that the Mellin power transform
3, |G(s,m)]? has a peak at s =7. Then at least one of
the functions G(s, +1) or G(s, -1) also has a peak in
absolute value near s =». Without much loss in gener-
ality, let us assume that G(s, +1) has this peak and that
G(s, =1) is small. The contribution to v(x) from G(s, +1)

near the peak is
v,(x) ~ @M (= ix)V " T(= N +ir) G(r, +1). (43)

If v(x) is real, G(s,-1) has a peak near —». The contri-
bution of both peaks is given by

v,(x) ~(m)A|x|¥ expl - p77/2)]

xcos[rlog|x| +Npn/2 + ¢], (44)
where
p =sgnx, A:IG(?’,+1)F(—N+1‘1’)|, (44’a)
and ¢ is given by
G{r, +1)T(= N +ir) =Aei®, (44'p)

In either case v,(x) exhibits the property
exp(N2mm/7)v,lexp(= 2mn/7)x] = S(2mm/7)v,(x) ~v,(x),
(45)
where 7 is a positive or negative integer.

The significance of Eq. (45) is that a peak in the
power spectrum of the Mellin transform gives a contri-
bution to »(x) such that when this feature is stretched
(for positive n) or compressed (for negative ») by multi-
plying the units by the scale factor exp(2m/7) it is
identical to the original feature. Furthermore, the
stretching and compressing needed to obtain the original
feature is periodic. We believe that periodicities in
scale may be as important as periodicities in transla-
tion, especially where noise is present. Moreover, one
can set up a theory of noise using the Mellin transform
in a very similar way to the usual theory in terms of
the Fourier transform. It seems likely that the use of
both transforms can lead to better ways of extracting
meaningful information from a noisy background.
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Fourier transform. It seems likely that the use of both
transforms can lead to better ways of extracting mean-
ingful information from a noisy background.

As in the Fourier power spectrum case, the width of
the peak in the power spectrum determines the accuracy
of Eqs. (43), (44), and (45). We can set up an error
estimate similar to that of Eqs. (41) and (42). To study
such a peak, let us defines

G(s,m)=0, for r—A<s <v+A. (46)

We also define a relative error E as in Eq. (36) but re-
place T(27n/k) by S(2mn/v). Then Eqs. (41) and (42)
hold with 12! replaced by |7I.

5. ATHEOREM OF WIENER-KHINCHINE TYPE

The direct way to obtain the new power spectrum
% .l G(s,m)|? is to use the Mellin transformation Eq.
(29). While in principle there is no difficulty in using
the Mellin transform, the numerical evaluation of such
a transform has not yet been sufficiently studied to
enable one to do this easily. We shall show that the
power spectrum can be obtained using a Fourier trans-
form. Of course, the Fourier transform has been
studied exhaustively from a numerical point of view and
therefore offers, for the present, great advantages.

The scale autocorrelation F()) is defined by

F()) = (v, S(WW). 47
But from Eqs. (5) and (17)
FO)= [ 7o) slexpp) (48)

where 7(p) is obtained from v(x) using the somewhat
generalized Fourier transform which is the inverse of
Eq. (13):

F(p)=(2m)22|p| W1 [ y(x) exp(= ipx) dx.

In Refs. 1 and 5 it is noted that if {f(p)| has sharp
maxima at p=%, (i=1, 2, --), then | F(A)!, in general,
has maxima at A =2x,; where A;; =log(k;/k,). This prop-
erty of F() helps one identify periodicities in v(x) or,
equivalently, peaks in the Fourier power spectrum.

(49)

On using Eq. (26) and Eq. (30), one obtains another
expression for F()), namely,

F= /" ();}IG(s,m)[z) exp(irs)ds. (50)
Thus the Mellin power spectrum is the Fourier trans-
form of F(A):

;} |Gls, m)|2=(27)* [ F(A) exp(—irs)dn.

The substitution of the right-hand side of Eq. (48)
gives the Mellin power spectrum entirely in terms of
Fourier transforms.

(51)

Equations (48) and (51) constitute a theorem of the
Wiener—Khinchine type.
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APPENDIX A: DERIVATION OF THE TRANS-
FORMATION BETWEEN THE REPRESENTATION
WHICH DIAGONALIZES THE TRANSMISSION
AND THAT WHICH DIAGONALIZES THE
DILATION

For brevity we shall assume that the reader is
acquainted with Ref. 1, particularly Sec. 4. References
to equations therein will be denoted by a prime.

We consider the space of kets !p) for p)0 and for
which the spectrum is continuous. Hence the kets
satisfy the completeness relation Eq. (69)’.

We recollect that
|p) =exp(-iuD)|1), p=logp (A1)
from Egs. (50)’, (37)’, and (47)".

Let the eigenvalues of the Hermitian operator D be
denoted by the real numbers s and let the corresponding
eigenkets be denoted by |s). Hence

D|sy=s]s). (A2)
Of course, the kets |s) also diagonalize S(\).

S(A)| sy =exp(ins)|s). (A27)
The transformation between the basis which diagonalizes
the translation operator and that which diagonalizes the
dilation operator is {(slp). But

(s|p)=(s| exp(~iuD)|1) =exp(- ins)K(s)

=exp(— is logp)K(s) =p *K(s), (A3)
where K(s)={(s11). Now if |s) diagonalizes S(A), so does

[(2m)*/2K*(s)]1s). On using the latter set of kets we
have

(s|py=(2m)t/2pis, (A4)
Now from the completeness relation Eq. (69)’
(s[s’):L”(s[p)%(pIs’). (Ada)

On using Eq. (A4) and changing the variable of inte-
gration p in a suitable fashion, one finds

(s|sH=b8(s =s"), (A5)
which is the orthonormality relation between the kets.
Similarly one finds

JZplrasis|py=0(p -p").

Equation (A6) is a completeness relation for the kets
|s) and is equivalent to the resolution of the identity

I=[|syds<(s|.

Equations (A6) and (A7) show that the spectrum of D is
continuous and extends over the entire real axis.

(AS6)

(A7)
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Let us define G(s) as being | ®) in the [s)
representation:
G(s)=(s|®). (A8)
Then from the completeness relation (69)’
w d
6ls)= [, (s |p) Ty (b1 ®). (49)

On using Eq. (A4) and (56)’ one obtains (in a slightly
different notation) Eq. (20). Equations (21), (22), and
(23) are derived similarly.

APPENDIX B: THE TRANSFORMATION FROM THE
PHYSICAL SPACE TO THE SPACE IN- WHICH THE
DILATION OPERATOR IS DIAGONAL

On substituting Eqs. (22) and (23) into Eq. (13) we
obtain

v(x):(Zw)'l;fomp'("*” exp(imxp)dpf_:p“G(s,m)ds.

(B1)
Interchanging order of integration gives
vixy=(2m1 ; G(s,m)ds j;"’ plis=¥-L) exp(impx) dp.
But from Eqs. (4 ~1-17) and (4 =1 -8) of Ref. 4
L7 pte Y explimpx) dp = T(is = NX(— imx)¥ts. (B3)

On substituting Eq. (B3) into Eq. (B2) we obtain Eq.
(28). However, Eq. (B3) holds, as an expression for
the integral, only for —1{M0. For other real values of
N, Eq. (B3) is to be regarded as an equality in the
sense of distributions. The proof that Eq. (B3) is an
equality in the sense of distributions follows standard
procedures. One multiplies both sides of Eq. (B3) by a
suitable test function f(x) and integrates with respect
to x. On differentiating by parts in a suitable fashion
one proves the result. For the sake of brevity we re-
frain from details.

(B2)

Equation (29) is proved as follows: Eq. (49) is sub-
stituted into Eq. (20) and (21) and the order of integra-
tion is interchanged. The use of Eq. (B3) leads to the
final result.
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The Lie algebra, which was introduced in a previous paper to treat the hypergeometric functions by
Lie theory techniques, is used to derive generating functions of the hypergeometric functions. Several
generating functions are obtained from the theory of multiplier representations. Weisner’s method is

also applied, giving another generating function.

1. INTRODUCTION

In a previous paper® six operators forming the Lie
algebra D, were introduced, which transform the hyper-
geometric functions among themselves. Therefore these
operators can be used to treat the hypergeometric func-
tions by Lie theory techniques. This is done in the
present paper.

In Sec. 2 the Lie algebra D, is used to derive gener~
ating functions of the hypergeometric functions. First,
three generators forming the subalgebra s/(2) are em~
ployed. From the theory of multiplier representations
of local Lie groups and the matrix elements of the rep-
resentations? D(u,m,) and *« of the algebra sI(2), two
generating functions of the hypergeometric functions are
derived. Several interesting relations are obtained as
special cases of them, in which a hypergeometric func-
tion is expanded in a series of hypergeometric functions
of another variable,

Subsequently the boost operator in the direction x, is
used to derive two more generating functions in a simi-
lar fashion, The matrix elements of this operator cor-
responding to finite rotations were employed, which
were calculated recently®® for both series of unitary
representations of the Lorentz group™?®, the principal
series and the supplementary series. In Sec. 3
Weisner’s method®*° is applied, and another generating
function of the hypergeometric functions is derived.

In Ref. 1 we considered the operators

Aot d e ]
L24_2[ t<”’aw t5ito) T\ w-Dgprtsta)ls
(1.1)
L =i<2w(w-1)—a~+ti+2(cr—k)w+k—0)
34 dw 8¢ ’
@@= +1]@Qw-1) 8  2-18 _wi-1)+1
Lo= 27 PP I T [
2~1)2w~1)
+0——*————2t 3
(@ + D) ~1]@w-1) 0  £+10 | wr+1)-1
Lm"( 27 aw T2 5k 7
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{#+1)2w~1)
to 27 )

which satisfy the commutation relations

[pr Lph]:‘ i(gvpLu).+gu7\va _gupLux _gvALup)’
BT 82=8u~ —gu=1. 1.2)

Therefore the above operators form the Lie algebra D,
in the notation of Cartan. If we write

L,=M, Ly=M, Ly=M, L,=N, L,=N, Lg=N,
the Casimir operators are
M?=Ni=0®+(k+1)°-1, MeN=-io(t+1),

i.e., the letters o and % determine the eigenvalues of
the Casimir operators, and therefore characterize the
irreducible representations of the group generated by
the operators L.

We defined also in Ref, 1 the operators J;, J*, and H*
by

Eirey g
Ly, =d, L14-=‘§'(J +J7), (1.3)

Ly,=3%W*=J°), H*= Ly, #iL,,.
Equations (1.1) and (1. 3) give

3
Ja=t'a—t';

. 8 8

J'= t(waw tat+cr),

I | 3 ] )
J"t<(w°1)aw+’é7+° (1.4)

which satisfy the commutation relations

[, M=z, [J°, J]=24. (1.5)

Therefore the operators J;, J* form the Lie algebra
sl (2).

It can be shown' that the operators L, of Egs, (1.1)
transform among themselves the functions |u,m)
=F(o-u, o+u+1; c=m+1;w) t~, where
Flo-u, o+u+1; 0-m+1;w) is the well-known Gauss
hypergeometric function. For convenience we introduce
the functions lu,m),

! T(m=-o0)
u,m -_——m—_—u—)F(o—u,o'+u+1;cr—m+1;w)t"‘,

(1.6)
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for which we get

Lwlu,m)’=mlu,m)',
Ju,m) = (m —u)lu,m +1Y,

I |uymY == m +u)|u,m-1Y,

{  w=-m)o(e+1) o+ D=k
L “m> TSV “’m+1>"(u'+1_)(zu+_1)
X u+1,m+1>l
-0ttt Du-mu~m=1)
uu+1)
X u—l,m+1>,
. \_(u+m)oe+1) Y
H u,m> “—u(m"-—u,m—i>
(w+o+1u=2)
RN L St A AU EA GIDER ) u+l,m=- 1> 1.m
(u Nut+k+DNu+mu+m-D1, ¢ m-1>’
w(2u+1) ’ ’
N mcr(k+1) w+o+Du~r)|
I.mum> z( wln £ 1) ) PESESV u+1 m>

LIRS s 1)n® ~u
u(@u+1)

.

The states lw,m) will be used in the next section.

2. GENERATING FUNCTIONS

Let us consider the multiplier representation induced
by the operators J;, J*, and J” of Egs. (1.4). We want
to calculate the expression

ebl.[* ecr.r"e'r'Jgf(w, t)., (2_ 1)

The complex parameters b, ¢’, and 7' are related to
the representation g of SL(2,¢),

g:(‘c‘ g), ad=be=1, @.2)

by 11

exp(T /2)=d?, ¥ =-=b/d, ¢’=~cd. 2.3

The action of the group element ¢”’2 ig obtained by l

AM (g) = My A QUM =N 11"

754
solving the differential equations
M) _4r), o=t (2.4)
ar : ' :
giving
HT)=te"=t/d? . 2.5)
The action of the group element ¢*7" is obtained by
solving the differential equations?
dw(d’) _ , o dHY) oy dv()
==t W), T =), BT
=t W), wO=w, tO=¢t v{0)=1 (2.6)
The solutions of the above equations are
dt d+bi
Y — s Yo (1 = B —
)= =57 b' =T’ wdy={1-~w 7
p(p)=(1=btr= (E’-;—-’”) ’ @.7)

where Egs. (2.3) have been used. Finally, the action of
the element ¢¢Y" is found from the equations

dw(c’) _ wl’)=1 dic’)_ avley o .,
dc’ i) dc’ 1, dc’  He) vle’),
w(@)=w, HO)=t, v({0)=1, (2.8)

Solving the above equations, we get

wit—-c'Y+e' w{t+ed)-cd

He'Y=twe' =t+ed, wic')= ; = ;

o -{oo)

Therefore, we get

(2.9)

[T flGo, t)= e e™ 31w, ) = (d + bt)"(sz + ;i)

i ((d+bt)[(a +c/tw~1)+a)l, %t) 2.10)

The operators J;, J*, and J° form a basis of the com-
plex Lie algebra si(2). Let f, . L, 1), n=0, 2,7,
be the basic vectors of the repfresentatmn12 D(u mg) of
s1(2) defined for all complex u and m, such that m +u
are not integers and 0 < Re m,< 1. In this representation
the spectrum of the operator J; is m, +n,

T+motn+ D)F(=u=mo—r, —u+mo+n; n=-1+1; bc/ad)

J. Math. Phys., Vol. 15, No. 6, June 1974

Tu+mg+x+1)Tn—-r+1)

n=0, *1,*2, *--. We have
(T (V)00 )= 21 Ay (&) a0, ), 2.11)
where the matrix elements A4, {g) are given by'?

(2.12)
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We identify £, (w £) with the basic vector |ux,m,) of Eq.
(1.6). Then we get from Egs. (2.10), (2. 11) and (2.12)
if we take =0 and introduce new indeces m, W, and v
by u=0-u, v=0+u+l, m=0-my+1,

d+bty"~a + C/t)uw-mF(Fﬁ(];_:n’nT)_i_)

xF{u, vim;(d+bt)a+c/w=1)+altym w2

o0

— E au-mﬂ.dm-u-lc-x

A=

I'v=-m+1)I'A-m+1)
T-m+ A+ 1) (~2+ 1D (u-m+r+1)

X Flm=~v=x, p =m+1; =x+1; bc/ad)

X F(IJ-, vim-— A; w)tk-m*(uﬂ“l)/z (2 13)
with the restrictions (coming from the fact that the pow-
er series and the hypergeometric series must converge)

|bt<1

d

% <1, I (d+bt)[(a +c/t)w—;—:”<1, |w|<1.

2.13)

In Eq. (2.13) and in all equations which we shall derive
from it p, v, and m are arbitrary complex numbers
such that p-m, v-m, and m are not integers. ' In Eq.
(2.13) the terms corresponding to A=1, 2, 3, -+ are
well defined because of the relation
al@+1)--(@+n)b(d+1D--+(b+n)

. Tla,bic;2)
lim = PESM

cs-n c

X2"™Fla+n+1,b+n+1;m+2;2),
n=0,1,2,---.(2.14)
If we define 7 and y by
T=c/at, y=bc/ad,
Egs. (2.13) and (2.13") give

(2.15)

F( i +y7-1)[(11:)(w -1+ g)
XA +y7)m (14 7)rvm(l —y)»

_ i > T'=—m+1D)TA=m+ 1) (u-m+1)
- To=-m+x+ )T («x+1)T(u-m+A2+1)T{A ~m)

A==c0

XFm=v=X,u~m+1;=x+1;3)F(u,vim=\w),

lyl<itl<t, [@+ymNA+Dw=r][<|1-3|, [w]|<1.
(2.16)

For y=0, Eq. (2.16) gives,

Flu,vim;(1+ 7w =1](1 + 7)srvem

_ S aL@=m+ DI(=r—m+1)
—AZ-DOTA Fy=m=-x+1I'(A+1)
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X T(p=-m+1)
T(u=m=x+1T1-m)

Flu,vim +x;w),

Ir]<1, |@+Dw-7{<1, (2.17)

If Re (u-m+1)>0, Eq. (2. 17) can be written in the
form

Flu,vym;(1+ 1w = 7](1 + r)* 7

lw|<1,

=§ﬁ(vim)F(—A, -y =r=-m+1;1)
XF(i,vim +xw),

[r]<1, |A+Dw-7|<1, |w|<1 (2.18)

Let us set y=x7 and then take the limit 7= 0, If we
use Eq. (2.14) and the relation

I'(z)I(1 - 2z)= n/sinnz, (2.19)
we get from (2.16)
Flu,v;m; (1+x) w](1 +x)m?
=:/_i,; (=P CNYF(u, vim = A5)
=§ox*("XI)F(u, vim = 2w),
lx]<1, |[A+x0w|<1, |w|<1. (2.20)

For w' = (1+ 7)w, (2.17) becomes
F(u,vimw’ — 7)1+ T)“"":AZ_)OT"(VX'")

% T{=A=m+D(u=m+1)

F( L Vim A —w—'—>(1+7)'“,

D(p=m=A+1)I'(1~m) 1+
[7]<1, |w -7|<1, |w]|<|1+7]. (2.21)

Using the relation? ’

F(u.,v,m+)\1 )(1+T)'“
=§,(—T)’(“’f;l)F(u+p,V;m+J§;w’),
[rl<1,|wi<|1+7], |w]|<1, (2.22)

we get

Flu,vimuw’ =11+ 10 m=2 55 (= 1)91-“)«("”‘)(# tp- 1)

A=0 £=0 A P

x D=A=m+1)T(u~m+1)
(e =m =2+ 1T ~m)

XF(p+p,v;m+2aw’)

- _ " “ llm nipel
gp2< 1 (X (p )
XF(=\, =p; =1 ~m+1;1)
XF(u+p,vim+xu'),

|rl<1, |w -7|<1, |w|<|1+7|,|w]|<1. 2.23)
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The second equality above hold if Re (u—-m +1)> 0.
Similarly, hypergeometric functions of the form
Flu,vim;(1+ )z — 7] and Flu,vim; 2/ + ¢) — 7] can be
expressed in terms of hypergeometric functions with
argument z,

For m=-u+n, n=0,1,2, -+, 24#0,1,2, -+, the
states lu, ~u+n)Y of Eq. (1.86) are the basic states of
a local multiplier representation of the type t# in
Miller’s notation,? induced by the operators J,, J* of
Egs. (1.4). In this case we have

[T(& V)0, 1= 25 By (@) 0, ), (2.24)

where?

P+ 1)F(=x, ~2u+nm—x+1; bc/ad) ,

— A J2Un =\
B,,(g)=d'd™™c” O+ DT -5 1)

WELR (2.25)

Proceeding as in the case of the representation D(u,m,),
we get

A+ 1+ Dw -1+ 11)
1-y
x (L+y7 )yt (1 + 7)em(l - y) e

F( K,V ~n;

-»
mTﬂ TO+ DI =2+ 1) T +p-v+ 1) Tn-v+1)

_f: T+ DI =~v+1)Tn+pu-v+1)

XF(=X,n+pu—=-v+1lm=nr+1y)
XF(M,V;V—K;w),
[yl<|7l<1, |[@+yr)[A+Dw-7]|<|1-p], |w|<1.

(2.26)

The condition 24 #0,1,2, --- is now translated into
v-u#1,2,8,°+ and is imposed to (2.26) and to all
equations derived from it, If we write y =x7 and take
the limit 70, we get from (2. 26)

Flp,viv ~n;(1 +x)w](A +x)r*

= ? (= x)"'"(hxlvn)F(u, Vv~ W)
=n
=)~E-0xx(v-£h1)F(“,V;V'—n—A,w):
|x|<1, |1+x)w|<1, |w|<1. (.27
For y=0 (2.26) gives
Flu, vy ~n;(L+7)w = 1)1+ 1)
2 oDt n=-v+ )T =v+1)
— 2 }
~§)Tn (A)ir‘()\+u—y+1)1"(n—v+1)
XF(u, vy =nw),
I7|<1, |[A+Dw-71|<1, |w|<1, (2.28)

which, if Re(p+n-v+1)>0, A-=v+1#0, =1, =2,
can be written in the form
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Flu, vy =n;(1+7)w = 7)(1 + 7)#m
:i}orﬂ'*(fl)F(x-n, - ~=v+1;1)
XF(u,v;v =xw),
I7i<1, |@+Dw=-7|<1, |w|<1l. (2.29)

We shall also consider the multiplier representation
induced by the operator L,,, whose maitrix elements are
known. In the case of the physical Lorentz group the ro-
tation in the x, — x, plane generated by this operator,
corresponds to an accelaration, or boost, in the direc-
tion x,. The action of the group element ¢5L3¢ is obtained
from the solution of the equations

%%ﬁ:it(s),
dZiS);zi[w(s) -1Jw(s),
d;is):i[z(c_k)w(swk—U]V(s), (2.30)

t0)=t, w@®=w, v(0)=1.
Solving the above system of differential equations, we
get

ts)=tets,

wis)=w/[w-e?(w-1)],

V(s) = eHo®s /o — e (3 — 1)]o*, (2.31)

The matrix elements of the boost operator in the di-
rection x, corresponding to finite rotations, have been

calculated in the canonical basis lu,m;0,k). If we denote
this operator by F,, we get™?

F, u,m;o,k>

A @ =mB) @ = o) - (& +1)2]\V?
t ( u*(4u®-1) )

imo(k +1)

X ulu +1)

u-l,m;c,k> - u,m;c,k>

( (G + 12 =m?w+ 12 - 0 (w+1)2 = (& +1ﬂ>‘/2
-t WD d@+1)2-1]

X (2.32)

u+1,m;c,k>'

Comparing the above expression with the last of Eqgs.
(1.7), we get

F,=~L,,. (2.33)
Let us define the operators Zw by
L, =-L, (2.34)

If m is the eigenvalue of L,,, the eigenvalue of L, is -
—m. The basic functions |u,m;0,k) in the canonical ba-
sis corresponding to generators ffw are obtained from
expressions (1-6) by the replacement m — —m, apart
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for a normalization, i.e., classified into the following two series™®:
|u mio, k) o lu: —mY. (2.35) tat(izzl))n’.I‘he principal series for which we have in our no-

To find the normalization we make in the last of Egs.

~ — L PPN . 3 3
(1.7), the substitutions Ly, — ~ Ly,, and m - —m and 0=0,3z, 1,°**, k+1:pure imaginary,

compare with Eq. (2.32). In this way we find u=0,0+1,0+2,*, m=—u, —u+1, o, u~1,u.
o\ Tu+o+1)Pu=-R)Tw+m+1) (u+l.)>1/2 (2.38)
UsM0,8) =\ Tlu—o+ DI +k+2)Tu —m +1) (b) The supplementary series for which we have
T(=m—u) - ’ 0=0, Osk+1<1,
"1-‘.(_—_ u, —m) =N, Nu, —m (2.36) _n i _ ] e
-m=0) . u=0,3,1,+, m=~u, -u+l, ,yu—1,u, (2.39)
The matrix elements of the boost operator F;, corre- In the case of the principal series the expression for
sponding to finite rotations, i.e., the expressions'® D3k . (@) can be obtained, for example, from the ex-
me
50, k| 42w, mi0, kY= DS (@), (2.37) press~10n Dre s €) of Ref. 3 by the replacements
have been calculated before3™® in the case of unitary J=u, JS~u, uom, wm, yo, ip/2k+1,
representations of the Lorentz group, because of their 9.40
physical interest. The unitary and, therefore, infinite- (2.40)
dimensional representations of the Lorentz group are J We get for 7=¢™

D, ) = (= D et (<zu +1)@u + )T =0+ 1) (u+ o+ DT —m +1)

TG/ +k+2 /2
X T+ m + DD = 0+ DT +0+ DD —m + 1T +m+1) et D= k)>

T —k)T(u+k+2)

x(Z)( Ly Tu+u —d=d —m—o0+1)
T@+ D@ + DT -m—d+ VL@ —m ~d + Do+ m+d+ DI(o+m +d +1)

% Td+d +m+o+1)
Tu-o-d+1)Tw —o-a +1)

Flu-k,d+d +m+o+Liu+u +2;1 = T)T‘z""”‘*"'k’/"’) , (2.41)

!

where the relation < ™
Flo—u,o+u+1; o+m+1,—————->

F(a,bic;2)=(1~2)F(c —a,bic; 2/(z-1)), (2.42) 1+ (-1

was used. The above expression coincides with the x [1+(1=1)w]o= i (= 1)* (2 +1)

corresponding expression of Strém’s paper,® for a prop-
er choice of a phase,

)r(u_m+1)r(u' +m+1)

X — ’ . .
From (2.37) we get F(O u,o0+u +150+m+ 1w r(u+u/+2)

dzd;’ (=D (ud U)( u’ Zi’r;:id’)

evielsa|u,mio, k)= uZ)

R
a
Tt M u’m'(

)| m’;0,k) (2.43) [

or using Eq. (2.36)

., d+d +o+m\{ut+uw —o-m-d-d

e"“"34 U, "m> E, um,um( ) N = , —m> (2'44) x< d >( u-m-—d >

The left-hand side of the above equation is easily ob- X Fu=k,d+d +o+m+1u+u +2;1 =177 "] s
tained from Egs, (1.6) and (2.31). We get

. Tw
1+(r=-Dw

e telaa| y

_ > I‘(_m O‘) e(o-k~m)a
"= T(=m—-n) (w—e®(w-1)F*

<1, |w|<t, |1-7|<1, (2.46)

where the range of the parameters o, %2, », and m are
given in (2. 38).

w Y-
xF( O-u,0tutliotmtl; oy ) . @.45) The matrix elements of the finite rotation e's% in the
case of the supplementary series of unitary representa-
tions of the Lorentz group have been calculated in Ref.
Therefore, for T=¢%¢, Egs, (1.6), (2.36), (2.41), 6. In this case 0=0 and the expression for the matrix
(2.44), and (2.45) glve the generatmg function elements are simpler that the corresponding expres-

J. Math. Phys., Vol. 15, No. 6, June 1974



758 E. Kyriakopoulos: Generating functions

sions of the previous case. The matrix elements in our
notation are obtained from those of Ref. 6 by the
replacements

l—u, ! =u, n—-m, s—=k-1, 2.47)
Since 0 <s <1 we have
1<s-p<2, (2.48)

We get for the supplementary series

By’

ID:m,u'm' (d)= ("’ 1)u+u’r(u +u + 2)

T +k+2)I(-k)
T +2)Tw ~k)

X [(2u +1)(2w + 1)( (1~s,0+ 60>

Iu-%)T(k+2)
X (F(—k)r(u +k+2) 1=6,,0+ 5u,<,>

Tlu+m+ 1D +m+ 1)] ye
Tu-m+DI@w ~—m+1)

[ Z () (v 5m)

% Tu+DTe + DT u+uw —m—-d-d + 1 )Tm+d+d +1)
Twu-d+1)I'e ~d + D)Tm +d+ 1D)T'(m +d’ +1)

XFu=-k,m+d+d +lpu+u +2,1~ -r)r‘zd*m-k)/z] ,

(2.49)
where again T=e"%,

From Eqs. (2.36), (2.44), (2.45), and (2.49), we get

T
F(‘“’“+1’m+1’1+(7_1)w>

X[+ (7= Dwk =21 (-1)*“Qu + DF (=o' ,u’ +1;m + L)

><1"(u’+m+1)1"(u—m+1)[Z (_1)d+d'<“>< u' )

Tu+u +2) 4,2 d/\u —=m-d

X <d+d'+m>(u+u' —m—d—d’>

d u-m-—-d

XFu-k,d+d +m+1u+u +2;1 _T)-rd] ,

_Tw
1+(F-NDw

<1, |w|<1, |1-7|<1, (2.50)
where the range of the parameters k, », and m are given
in (2.39).

3. WEISNER'S METHOD

Relations involving the hypergeometric functions can
be derived by applying Weisner’s® '° method. The meth-
od in general is the following: If C is the Casimir oper-~
ator of a group G with generators L, and C its eigen-
value, we consider the simultaneous partial differential
equations

(C=Cp)f=0, (37,,L,,+7%)f=(@+%)f=0. 3.1)
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The coefficients #,, and %, are arbitrary constants. (Of
course we cannot have 7,,=0 for all y and v, #%#0.)If
S is an element of the group G, since [C,S]=0 we get
from the above equations

(C-Cp)(SN=0, (SQS™+4%)(SN=0. (3.2)

Given @ the operators of the form S@S-! constitute its
conjugate class, Equations (3.2) imply that it is suffi-
cient to consider only one operator from each class.
Each solution Sf of Egs. (3.2) is a linear combination
with constant coefficients of the solutions of equation
(C-Cp)f=0.

In our case let us consider the operators J;, J°, J".
We have
e'r'JgJ;e-r'J3= et'r'Ji, e""ﬂJ_e"’"L: -y 2J+ + Zle3 +J_,

et et =W, 4y, e, e-=d, = ¢ = 2" dy,

(3.3)
e l-gerc T =c'J + 4,
and we get
b=y —m)e et T = Ny (= ¢’ b2 = b7 ), + Ay’
+25(287 ¢’ + 1), = m. (3.4)

Therefore we find that @=ndJ; +1J, +rJ +1, is a con-
jugate of

(3.5)
(3.6)

The ratios m/x, and B/x, (or ¥/1.) are not important and
we may choose

Q) Ngh=m if 2 +45+0,

(ii) A, J, =B (or xJL~») if r2+4nKn=0,

(3.7

We shall apply Weisner’s method for case (ii), i.e.,
we shall consider the simultaneous partial differential
equations

Ag=A,=A=1,

J*g(w,t):—t(ws%—t:—t+ cr> glw, =0, (3.8)
a2 92
[C-u(u+1)]g(w,t)=<w(w—1)W+t5-1;é—t
+ (g+ 1)(2w—1)%0—+ o(o+ 1)—u(u+lbg(w,t):0.
(3.9)
The solution of Eq. (3.8) is
glw, t)=1th(wt), (3.10)

where h is an arbitrary function of w¢, Substituting
glw,t) of Eq. (3.10) into Eq. (3.9) the function % is cal-
culated. In this way we find that the solutions of the
simultaneous Eq. (3.8) and (3.9) are

Wi, (3.11)
g(T/U, t): {w-u-o-lt-u-l

We get for ¢#0

e O (O e I G
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u=o
x[(l +£c£) w - 1} e,

(3.12)
Therefore,
(1 + q_t) Ow[(i +Q£) w— 1] o 1
S c c
::éth(O—u,0’+u+1;0’+u—)\+1;1ﬂ)t""‘,
| g, ‘(1+%“)w <1, |wl<1, (3.13)

which comes from the fact that the left-hand side must
be a linear combination of functions of the form
Flo—u,0+u+1;0-m+1;w)™. It follows from the
series expansion of the left-hand side of Eq. (3.13) that
m must be of the form m=A—-u where x=0, 1, 2, ---.
To calculate the coefficients &, we put w =0 in Eq.
(3.13). We get then

oo 9!.)"’":"‘ .

(- 1) (1+c lz.)ohxt. (3.14)

Therefore,
— (1) U+u>(£>*, (3.15)

= (=1 (h c
and, for at/c=s, Eq. (3.13) becomes
(LT+s)yl-A+s)w

:é(ozu)_ﬁ‘(o—u,o+u+1;a+u—)\+1;w)s",

Is|<1, |[1+s)w|<1, |w|<1, (3.186)

which can also be written in the form

[1-1+s)w]e+s)t

=23 ( b- 1)F(a, bib = Mw)s?,
120 A
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Is|<1, [(1+s)w|<1, |w|<1. (3.17)

Therefore the expression [1 - (1 +s)w]*(1+s)*'is a
generating function of the hypergeometric functions of
the form F{a, b;b = x;w). The solution glw, f)=w™ o ¢
gives again Eq. (3.16) with « replaced by —u ~1.
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The optical equivalence theorem relating ¢ -number and g-number formulations of quantum optics is
rigorously extended to cover various unbounded operators, and in particular those operators that

directly yield counting rates.

1. INTRODUCTION

The optical equivalence theorem has enjoyed a wide
application in quantum optics since its introduction by
Sudarshan! and subsequent development. ? This theorem
uses the “diagonal” coherent state representation for the
density operator p, which, for a single degree of free-
dom system, may be formally expressed as

p=1" [ 0(2)|2)z|d?%, (1)

where d°z = dRezdImz and the integration is over the en-
tire complex plane. The coherent state |z)

=exp(a’z ~z*a)|0), where a and a' are conventional an-
nihilation and creation operators with alz)=z1z). Al-
though ¢(z) is a generalized function for a general den~
sity matrix p we may always find an approximating
density matrix for which ¢(z) < S(R?).2 More specifical-
ly, for a general p a sequence p, exists, with the rep-
resentation (1) and ¢,(z) € §(R?), such that || p - p,ll,~ 0,
i.e., py—p in trace class norm, Consequently, for an
arbitrary bounded operator B,

{BY=Tr(Bp)=1im Tr(Bp,)
M-
=lim 7 [ ¢, (2)(z|B|2)d%,
M=o
where convergence is ensured since

|Tr(Blo—p)) | < Bl llp=pyll,~0.

Indeed convergence is uniform for that class of B with
operator norm || Bl sc <=, ¢ fixed.

Although this form of the optical equivalence theorem
covers a number of important cases (see Ref. 2, pp.
190—~192), there has been some concern?® since it does
not deal with certain unbounded operators, especially
those that determine photon counting rates. For a single
normal mode the counting rates are given, up to an in-
essential factor, by '

Tr(a'™a™p), (2)
which in a formal sense may be expressed as
" [(2)|z|?md%z

While it is physically plausible that such moments exist,
it is by no means true that every density matrix p has
finite counting rates, and thus any proposed extension of
the optical equivalence theorem to unbounded operators
cannot apply to an arbitrary p. A convenient and physi-
cally reasonable subclass of density matrices are those
for which ¢%p is in trace class for some 8> 0, where
N=g"a is the number operator. For each such density
matrix the moments (2) exist and we seek to calculate
them as the limit of a sequence of means based on den-
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sity operators p, admitting a diagonal representation
with ¢, e S(R?). Specifically we have proved the
following:

Theorem I: Let p be a density operator such that
¢%p ig in trace class for some 8> 0. Then there is a
sequence of functions

¢y € S(R?)
such that for the trace class operators

pu=2 f 0, (2)|2)z | d22

the following properties hold:
@) llp=pyll,~0 as M—x;

(ii) for all operators T for which Te-®and e=8¥ /2T g8V~
are both bounded

Tr(Tpy,) ;:?Tr(Tp)

uniformly on any subset of T for which
lle-8¥/2 TeBN/2|| < c< e, c fixed;

(iii) the approximate density operator p, gives rise to
the representation

Tr(TpM)=—11; f(pu(z)(z |T|z)d%.

Application to counting rates

Suppose we deal with a density matrix p that fulfills
the condition that ¢®¥p is in trace class for some 8> 0,
For

T=a"mg" =NN=1)(N=2)++(N=[m -1])

. the two conditions on T are the same, and

H Te ¥ || =max (n!/(n —m)!)e™*,

which is finite for all m., Thus Theorem I assures us
that a sequence of functions ¢,(z) €S(R?) exists such
that, for all m,

Tr(a'mamp) =lim 7 [ ¢,(2)|z|2ma%,
Mo

which is the desired result.

2, PROOF OF THEOREM

We note first that e®¥pc B, (=trace class operators)
for p a density operator implies that

pBEem/"’peM/"’EBl, (3)

a fact we establish below in Lemma 2. As such we may
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approximate p, in trace class norm by trace class
operators

=1 [ o) exe @

where ¢ ¢’ e §(R?) for all M.? We next introduce a sup-
port-controlling function S(x) which is unity for x <0,
vanishes for x = 1 and falls smoothly in between such as

S(x) =expl— (1 = x)2e?],

We next define weight functions of compact support by

O<sx<1,

?au()=S(|2] =10 (2) e SR, (5)
and associated density operators
1
pa’ME-T?fgaB’M(z)lz)(z[dzz, (6)

choosing #, < = so that (cf. Lemma 1 below)

lpg =08 <18 = pglly . (7
Finally, we introduce

py=e /ZpB'Me'BN /2 (8)

which evidently is again in trace class. Making use of
the basic fact that

o8N /2 ’ 2y =et /2 (L-g=B) I 2 ’e-e/zz,> (9)

and a change of variables e"#/2z’—~z, readily leads to the
diagonal representation

Py = % f(PM(z) |z)z | d% (10)

where
@, (2) = efem €™V |z|2<pB’M(eB/zz) eS(R?).

Indeed this function has compact support within the
circle |z| <e™®/%(y, +1) <o,

The operators p,, constructed above constitute the
desired approximating sequence and we now turn to
establishing the properties listed in the statement of the
Theorem, For property (i) we let e> 0 and choose M
such that

“péu)"!)5”1<%€-
Then, in addition, from (7),
o =pgull < 3¢,

so that we have the estimate

oy =plly=1le %o, , =pJe ™ /2|,
< ” e-BN /2 ”2” pB’M —'03“1
Slpgu=p Il +11p% =p,l,

<3€+ie=e,

Since € was arbitrary, p,—p in trace class.

For property (ii) we first note that ¢*¥p, is a bounded
operator for any complex « since ¢,{(z) has compact
support. Because

oN — N {ar1)N
epy=ele ¥ Wp, |

it follows that e*¥p,, is in trace class being the product
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of a trace class operator and a bounded operator. Thus
we are assured that

Tpy=(Te ™) (e py)
and
Tp=(Te*)(e®p)

are in trace class using the fact that trace class opera-
tors form a two-sided ideal of the algebra of all bounded
operators. *

The trace of such operators may be computed in an
arbitrary basis, such as the number operator eigen-
state |n). For Tp, we find

TH(Tp) =3 (n| Toy 1)

=5 n

@8N /27 p=8N /2 58N /szeaN/z l n)

:Tr(e-BN/z Te-BlepB,M)’
and similarly with the index M omitted. As a result
|Tr(Tp,) = Tr(To) |=|Tr{e™™ 2Te ™ /*(p, , ~p,)|
< || e @ /2T em8N /2| || Ps,u —Pslly

which goes to zero as M— < uniformly for all T with
(e /12T /2| < ¢ < w0,

For (iii) we observe that
Tr(Tp,) =Tr{e*¥ /zTe'ﬂ”/zpB’M) ,
while the diagonal representation (6) for Pg y leads to®

Tr(e-ﬂleTe-ﬂN /zpB,M)
1
= ;fdzz'¢B’M(z’)(z’|e‘B”/zTe'B”/zyz’).

Use of (9), coupled with the same change of variables,
establishes that

Tr(Tp,) = -;— fwM(z)(z |T|2)dz,

completing the proof of the Theorem.
Lemmas and additional remarks
In order to justify the statement in (7) we appeal to
Lemma 1: Let ¢ (2) € S(R?) and
@,(2)=5(|z| =R)p(z) € S(R?) .
Then

Ap %f(pR(z)szzldzz

il]

converges to A, in trace class norm.,

Proof: Consider the expression
1
AA=A, -A, =~ J‘cpé(z) |2)z| &z,

where the integrand
en(2)=11=5(]z| =R) o () € S(R?)
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vanishes for |z| < R. The operator AAc f3, and fulfills
the condition

[(o|aA]py|<(p|6A]p)

for all |¢), where 06A is nonnegative and given by

6A5%f|¢é(z)| |z)(z|dzz.

The positive and negative, Hermitian and skew-Hermiti-
an parts of AA may each be so bounded as well leading
to

[1AA|l, <4l 8Al,
4
=22 [ los@] (2 Pz

4
S R
lzl=R

which evidently vanishes when R—«, as desired.
The required property given in (3) is established by

Lemma 2: Let p be a density operator such that ¢®p
€f, for some B>0. Then

eBN/2peBN /2 GBl .

Proof: We may write

p:kg a, i ¢k><¢k| ’
with
2,20, 2ia,=1

and {|¢,)} an orthonormal basis. Let I={i:a, #0}. Then
for all ic ]

[¥,)€ R(p)C D(e®)C D (e¥/2) ,
To evaluate the trace of e®pe f, we may use any basis,?
e.g., the basis {|¢,)}. Then

Tr(ef¥p) = i 2 a k| e |94, | 4

k=0 (&I
— BN
——{%} a;(w;‘e ldh),

which clearly converges absolutely. Let
p.= 2 a;| )]
ier

isn

and |x)e D(e®" /%), Then

e""/zpne""/z\x)ze""/z CE ai(ngIeBN/zIX)‘ )
i€r

i=n

= Z aK‘P,‘X)\‘P;),
i€r1
isn
where |@,)=e®/2]},). Consequently,
szewlzpnewlzcig%“p{x‘pi'GBx
isn

being an operator of finite rank. These operators and
their differences are semidefinite so trace norms eqpal
traces.* For m >n> nyle),
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Il p8 = pBll, =Tr(p8 - p")
2 afele)
ic

icr
n<i<m

2 aly| e |y)<e
i€r

n<ism

because of the absolute convergence of Tr{e®¥p).* We
conclude that there exists

lim pf:li'IB eBN/zpneBN/2=i§ a‘ |(Pi><(pi|681 .

e n

Does this limit agree with e /2pe® /22 Let |x) € D(e® /2)
and introduce

|6, =p,e™ 1*| x) € D(e™/?).
1t follows that
s-lim|6,) = pe® /2|x)= | 0),
since we can estimate
116, = |6y I1=Il(p, = p)e® /2| x) I
<llp,=plly Il e® 12| X1l
By a similar estimate it follows that
s-lime® /2| 9,,>=(i§1 a @@, )|x).

Since ¢® /2 ig a closed operator,
s-lime® /2| 6,) = eA¥ /25-1im | )
=e® /2| 6)
= e 12pgBN /2|y |

Consequently,

eBN/zpeﬂN 12~ {g ail(pi><<pll€BI ,

establishing the desired result.

Remark 1: The preceding proof makes no special use
of the fact that N is the number operator. Consequently,
it follows, for any density operator p, if A%pe S, then
ApA € 3, for an arbitrary self-adjoint operator A> 1,
Indeed it is a trivial extension to allow p to be a general
element of A3;, which in turn, under the stated condi-

tions, implies that pA%2e f3,.
Remark 2: While only one condition on p is necessary,

the two conditions imposed on T are nof redundant as
may be seen in the following examples:

(a) Let
T:?0 |n) e2*(2n|.
Then

Te ¥ — Z% |n){2n| (bounded),

e BN /27 =8N /2 _ Z ln}ea" /Z(Zn; (unbounded) .
n=0
(b) Let

T= i | 2n)e®n/2(n .
n=0
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Then

Te 8 = 20 | 2n)e™/%(n| (unbounded),

e BN /2T o8N /2 — Zo [2n)(n| (bounded).
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In classical and in quantum mechanics physical variables play a dual role as observables and as
generators of infinitesimal transformations in the invariance groups. We show that if the Lie algebra
of generators is central simple, the observable—generator duality restricts the structure of the algebra
of observables to two cases: a commutative, associative algebra as in classical mechanics, or a central

simple special Jordan algebra as in quantum mechanics.

I. INTRODUCTION

It is a peculiar feature of both classical and quantum
mechanics that the physical variables of these theories
play a dual role as observables and as generators of
infinitesimal transformations in the invariance groups.
(For example, one and the same variable plays the role
of an observable, called the energy, and of a generator,
called the Hamiltonian). The fundamental significance
of this pointwise identification of two sets of conceptual-
ly different objects manifests itself in the description
of the measurement process.® In fact, the observable—
generator duality is at the root of the Bohr ~Heisenberg
principle of equivalence between definability and mea-
surability in physics, a principle which has played a
fundamental role in the discussions of the foundations of
quantum mechanics.?

In this paper we study the identification of observa-
bles and generators from an algebraic point of view. ?
Each of the sets of observables and generators is an
algebra, and the observable —~generator duality mani-
fests itself as a map from the space of observables to
the space of generators. This map interrelates the two
algebras, imposing restrictions on their structures.
Our purpose is to investigate these restrictions.

In Sec. II we construct an abstract algebraic struc-
ture that has the observable—generator duality as a
fundamental property. We show that such a structure is
a system {/, 7,a}, where/ is a linear space over a
field 7, equipped with two algebraic products, 7 and «,
such that the product ¢ is a Lie product and its distri-
bution law with respect to the product 7 is the deriva-
tion rule. The duality map is the canonical projection
of the Lie algebra {#/, o} onto its algebra of inner
derivations.

In Sec. III we investigate the important class of struc-
tures {#, 7, a} for which the kernel of the duality map
is minimal, i.e., {0} or the field 7, and the image of
this map is a central simple Lie algebra. Since objects
of this type first appeared in physics in Hamilton’s
formulation of classical mechanics, we call such struc-
tures Hamilton algebras.

One sees that if {#, 7, @} is a Hamilton algebra, and if
. T=0 +m, where the products o and 7 are, respectively,
the symmetric and antisymmetric parts of the product
7, then the structures {#, o, a} and {#/, 7, a} are also
Hamilton algebras.

We show that there exists no nondegenerate antisym -
metric Hamilton algebra {//, 7, @}. We further prove
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that in symmetric Hamilton algebras {#, ¢.a}, there is
a relation between the association properties of the
products ¢ and a. Specifically, according to this asso-
ciation velation the associator with respect to the
product ¢ is proportional to the corresponding asso-
ciator with respect to the product ¢, the proportionality
constant being an element of the field of scalars, 7. If
this constant vanishes, we call the structure {/,0,a}a
classical Hamilton algebra. Thus, in a classical Hamil-
ton algebra the substructure {;L/ ,0} is an associative and
commutative algebra. If the proportionality constant in
the association relation does not vanish, we call the
structure {;L/, g, o} a quantum Hamilton algebra. We
show that in a quantum Hamilton aigebra the substruc-
ture {/—/ ,o} is a central simple special Jordan algebra.

tl. ALGEBRAS WITH DUALITY

In the standard formulation of classical mechanics the
observables are real functions on a phase space and the
product of observables is the commutative and associa-
tive product of these functions. In the standard formula-
tion of quantum mechanics the observables are self-
adjoint operators on a Hilbert space and the product of
observables is the commutative, but not associative
Hermitian product (i.e., the anticommutator) of these
operators.

In addition to the commutative and associative pro-
duct of functions, the space of classical physical vari-
ables is equipped with a second bilinear operator, the
Poisson bracket {, }, which is a Lie product. For every
classical physical variable f{p,q), the symbol {f, }
represents a linear operator which aFts on the algebra
of observables and produces in that glgebra an infini-
tesimal canonical transformation: '

Wp,q) = 1p,q) +e-{f,h}(p,q),

where € is an infinitesimal real parameter. Similarly,
in addition to the Hermitian product, the space of self-
adjoint operators of quantum mechanics is equipped with
a second bilinear operation, the commutator L, l/in,
which is a Lie product. For every quantum physical
variable A, the symbol [A, |/i% represents a linear
operator which acts on the algebra of observables and
produces in that algebra an infinitesimal unitary
transformation:

B—B+e-[A,Bl/in

Thus, in both theories, each variable plays a dual
role as an observable and as a generator of a transfor-
mation belonging to the invariance group of the theory.

Copyright © 1974 American Institute of Physics 764



765 E. Grgin and A. Petersen: Observables and generators

We shall now construct an abstract algebraic struc-
ture in which the observable—generator duality is in-
corporated. As a first step, we give a formal definition
of this duality. Let {4, 7} be an algebra, i.e., / isa
linear space over a field 7, and 7 is the symbol for the
product in 4:

T HOH—H.

For our present purpose it is unnecessary to specify the
field of scalars 7. Of course, the scalars of the alge-
bras of observables in classical and quantum mechanics
are the real numbers. Let &’ denote the associative
algebra of linear operators acting on the linear space
/#, and let & be the subset of £’ consisting of the in-
finitesimal automorphisms of the algebra {#,7}. Every
element of the set £ has the form I' +eD’, where I’ is
the identity operator, and D’ some linear operator, both
belonging to ¢’. The automorphism condition reads

(I' +eDNfrg) =(I'+eD") f) (I’ +eD’)g)

where f,..., €/4. This implies

D' (frg)=D'f)rg+f1(D’'g),

i.e., the operator D’ is a derivation in the algebra
{H4,7}. The setp)’, ' &', of derivations in {#,7}is a
Lie algebra { " [, I} with the commutator as Lie
product.

If we think of the linear space /4 as the space of physi-
cal variables, and of the algebra {#, 7} as the algebra of
observables, then the observable—generator duality is
a requirement that every element of the linear space #/,
i.e., every physical variable, in addition to being an
element of the algebra {H, 7}, i.e., an observable, also
be able to uniquely define an infinitesimal automorphism
of the algebra {/, 7}. Thus, to every element of 4/ there
is associated a unique element of the derivation algebra
{0'[, I}, i.e., a generator of an infinitesimal automor -
phism. In other words, the observable—generator
duality amounts to the existence of a map

0 H =D
The map ¢’, which shall be called the dualify map, is
to be a fundamental structure of the mathematical object
we are constructing. This means that the other struc-
tures of the object must be compatible with it, and that
the object must be so constructed that the duality map

is “natural,” i.e., that no choices have to be made in
order to exhibit it.

To bring out the structural conditions which the duali-
ty map ¢’ imposes on the system consisting of the alge-
bras {#,7rand {/)', [, |}, we separate the operator
structure from the algebraic structure of the sety)’.
Let ¢ be a linear space isomorphic with ¢, and y be
a map

v:iE®H —~H
defined by the requirement that for every operator U’
€ ¢’, and the corresponding vector Uc ¢, the identity
U'f=Udlyf<# should hold for every fc#. In short, U’
=Uvy. Further, let/) C¢& denote the abstract vector
space which corresponds to the space /)’ of derivations.
A Lie product u is now defined in /) by the requirement
that the Lie algebras {/}, u} and {0)’, [, |} be isomorphic.
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Specifically, the product p in/) is related to the commu-
tator in /)’ by the identity

(UpVyf=[Uy, Vylf=UnAVyf) - VU ) 1

for all U, Ve/) and fe//. We shall denote by ¢ the map
from 7 into /) corresponding to the duality map ¢’, and
by A the image space of ¢, i.e., S =¢(4). The elements
of A will be denoted by the letters F, G, H, - -+ where
F=¢(f) for fe/, etc.

Every element of /) generates two infinitesimal auto-
morphisms, one in the algebra {/—/ , T} via the map y, and
one in the Lie algebra {0, u} itself via the product u.
Clearly, for the map ¢ to be compatible with the other
structures, its image space A must be invariant with
respect to the infinitesimal automorphisms generated
by elements of A itself, i.e., AuBCA. Hence, {8, u}
is a Lie subalgebra of the derivation algebra {/, p}.

The duality map ¢ induces a new algebraic product,
a, in its domain space via the diagram

HeH. o
o v N
BHY

which is equivalent to the identity

fozg:Fyg. (2)

Thus, the two linear operators on/, f o and Fy=¢(/y
are identical:

fa=Fy (3)

The condition that the product « be preserved by the
infinitesimal transformations in /4 generated by the
operators Hy, He /4, reads

HAfag)=Hyflag+falHyg).
With identity (3), this relation becomes
ho(fag)=(hapag+ falhag) (4)

From relation (3) one obtains, for the commutator, the
expression

[H')’, FY]g:[hQ,fQ]g:th(ng) —fa(hag)
which, with Eq. (4), yields

(ha, fal=(hafa.
The antisymmetry of the commutator implies the same
property for the product a:

fah=-haf. (5)
The antisymmetry condition (5) and the derivation rule
(4) yield the Jacobi identity

folgan) +galhaf) +hol fag) =0, (6)
Hence, the algebra {;L/, a} is a Lie algebra.

The diagram shows that (Ker ¢)a/ ={0}. Thus, Kero

C(, where ( is the center of the algebra {#, ¢}. This
further implies the condition 8y Kero ={0}. One also

sees that the image spaces of the linear maps y and o
coincide, i.e., Ima =Imy.

The duality map also induces a product, v, in its
image space A via the diagram
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B®H L4
e e
B® B-2+A

which is equivalent to the identity
@¢(Fyg)=FvG. (7

This diagram is possible only if SyKery CKerg, but
since the previous diagram required Ay Kerg ={0}, no
new condition is being imposed. One sees that the image
of the induced map v coincides with the image space of
the composite map @ oy, i.e., Imy=¢ (Imy).

Identities (2) and (7) yield the relation
¢o(fag)=(Fyg)=FvG.
Thus, the diagram
He H=H
¢l @ 90%
B® B>
is commutative, i.e., the algebra {#, v} is a homomor-
phic image of the Lie algebra {#, o} under the duality

map ¢. Consequently, Ker ¢ is an ideal in {/—/ , o} and
{8, v} is isomorphic to the Lie algebra {#, a}/Kero.

From the previous identities one obtains the relations
[fa,ga]l=(fag)a=(p(fag))y =(FvG)y,
[fC!, g(!] = [F‘}/, GY] =(FI-LG)77

which imply FvG=FuG for all F, Ge 4, i.e., the pro-
ducts v and u are identical.

The set A« of operators fo is the algebra of inner
derivations of the Lie algebra {/, a}. It is isomorphic
to the quotient algebra {//, a}/C. Since, due to relation
(3), all operators in the set By are inner derivations
in {#, a}, one has Ay C/4 @. On the other hand, Kergp
c( implies

{#, al/C C{H, a}/Kero,

i.e., A ais isomorphic with a subalgebra of {8 , i}, so
that 8y 2 4 a. Thus, Ker¢ =, i.e., the kernel of the
duality map is the center of the algebra {//, @}. In other
words, the duality map is the canonical projection of
the Lie algebra {#4, o} onto its algebra of inner
derivations.

In summary, the system consisting of an algebra
{2, 7} a subalgebra {A’, [, I} of the algebra of deriva-
tions in {#, 7}, and a duality map of // onto 3’, is
equivalent to an algebra {#, 7, @} with two products such
that the distribution law of the Lie product a with re-
spect to the product 7 is the derivation rule, and the Lie
algebra // @ of inner derivations in {#, @} is isomorphic
to the Lie algebra {4’, [, I}

iItt. HAMILTON ALGEBRAS

Having shown that a structure with duality is equiva-
lent to an algebraic system with two products {#, 7, o},
we now investigate the restrictions that are imposed on
the product 7 and the Lie product « by the conditions
that they exist in a common underlying space and be
related by the derivation rule. We do not study this
question for general algebras {#, 7, a}, but restrict
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ourselves to the family of algebras {#, 7, a} for which
the kernel of the duality map is minimal, and its image
is a central simple Lie algebra. We call such two-
product systems Hamilton algebras.

Definition: A Hamilton algebra {#{,7, @} is a linear
space /{ over a field 7, equipped with two bilinear oper-
ations: a product 7 and a Lie product a, satisfying the
following conditions (where f, g, %, ++-€ 4):

(1) Lie conditions:

fag=~gaf (8)

(fag)an +(gah)af +(haf)ag=0. (9)
(2) Derivation condition:

falgrh)=(fag)th +gr(fan). (10)

(3) Minimality condition: The center ( of the Lie
algebra {#, a} is minimal, i.e., { =Fe if the algebra
{#, 7} has a unit element e, and ( ={0} if {#/, 7} has no
unit element.

(4) Simplicity condition: The Lie algebra Ao =~{#, a}/
C is central simple. That is, (a) 4« is simple, i.e., if
Y is an ideal in #/@, then either ¢ ={0} or Y="Ha; (b)
any algebra obtained from /4 o by extension of the base
field # is simple.

This definition of a Hamilton algebra is purely alge-
braic. If / is a topological linear space and {H ,ala
topological Lie algebra, the corresponding definition of
a topological Hamilton algebra imposes itself, but we
do not consider it in this paper.

If {4, o} is a central simple Lie algebra, the struc-
ture {#,ra, a}, where »< 7, is a Hamilton algebra.
Such a Hamilton algebra shall be called degenerate, or
trivial if r=0,

Let {#, 7, @} be a Hamilton algebra. Since the linear
operators fa, fe/{, are derivations with respect to the
product 7, they are also derivations with respect to the
opposite product 7’ defined by the identity gr'h =h7g,
and hence, by linearity, they are derivations with re-
spect to the symmetric and antisymmetric parts of 7
defined by the relations

o=(T+1)/2, 1T=(T-T')/2.

In other words, if {#/, 7, a} is a Hamilton algebra, so
are the structures {#, ¢, o} and {#, 7, @}, which shall be
called, respectively, symmetric and antisymmeltric
Hamilton algebras. Since an algebra {4/, 7} with = anti-
symmetric has no unit, the algebras {#, a} and Ha are
isomorphic in an antisymmetric Hamilton algebra.

In investigating the association properties of the pro-
duct 7 we shall need the concept of the associator. The
associator [ f, g, h] of the product 7 in /4 is a linear map

[, ) HOHSH—H
defined by the identity
[f’ £, h] = (ng)Th - fT(gTh).

It “measures” the deviation from associativity of the
product 7. One verifies that if the product 7 is either
symmetric, i.e., T=o0, or antisymmetric, 7=7, the
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associator is antisymmetric in its exterior variables,
i.e.,

[f;gyh]:_[h;g’f]-

Furthermore, if T=0¢ or 7=, the associator satisfies
the identity

[f,hag, gl +[r,fag, g]=0.

For T=o0, identity (11) is obtained by expanding each
term of the identity

(foh) o(gog) +(gog) o fon) =0

by means of the derivation rule (10). For 7=7, itis
obtained in a similar manner from the identity

(fmg) ol gmh) +(gmh) a(frg) =0.

We shall now show that relation (11) leads to the
following:

(11)

Lemma: Let {#, 7, a} be a symmetric or antisymmet-
ric Hamilton algebra. Then there exists in 4 a product

p: HOH—H

such that
fpg=-gpf, (12)
falgoh) =(fag)ph +go(feh), (13)
golfan) =(1,g,h). (14)

Proof: For any g/ let R, denote the right multiplica-
tion operator defined by the identity R, f= fog. Relation
(11) implies [k,fag, g] =0 for every ke kerR,. Thus, the
kernel of the linear map A: 4 — /4 defined by A
=[, fog,g] contains KerR,. This guaranties the exis-
tence of a map B: 4/ — /{ such that A=B+R,, i.e.,

[h; fag,g]=B(hag)-

Since the associator in this relation is linear in the
variable fag, while the right-hand side is linear in hag,
one can introduce a new map, M,, defined by the identity

M[hog, fag)=|h, fag,gl. (15)
It follows from relation (11) that the map

M (Hag)® (Hog)~H
is antisymmetric.

We shall now prove that there exists a map M: /4
®/{ =/ such that, for every g /4, the map M, is a
restriction of the map M. First, we note that, for any
given g/, there is an extension of M, to a map whose
domain is /®#. Such an extension of M, shall also be
denoted by M,, and hence, from now on, M,: 4/ ® 4 —~4#.
In substituting ¢g for g, where ¢€_#, in relation (15),
one verifies that the map M, is the same for all points
belonging to the same ray through the point gin /4, i.e.,
M, =M,. By linearity, substitution of tg +% for g in
relation (15), ¢ being a variable over 7 and # an arbi-
trary element of //, now yields the equation

t3{M (hag, fag) - M,.,, (hag, fag)t+H[h, fag, k]
+ [h’ f(!k, g] - M,,,k(hozg,‘fak) = Mtg*k(hak,/fag)}
+{M(hak, far) =M, (hak, fak)}=0.
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Since this relation must be satisfied for all values of ¢,
the coefficients must vanish. The vanishing of the first
coefficient implies M, =M,,,,,. Since & is arbitrary and
does not appear in the arguments of these maps, the
indices g and g +k/¢ are independently arbitrary points
of /{ and it follows that M, does not depend on g. Thus,
there is indeed only one map M: 4/ ® 4 —/. The vanish-
ing of the third coefficient yields the same result. The
vanishing of the second coefficient implies the identity

(7, fag, k] - M(hak, fag)
== [h’ fak;g] +M(hag’ f&k)

In the antisymmetric case, 7=, the product « is onto.
One can thus write fag=m c/4/, and consider m as an
arbitrary point. The left-hand side of the above identity
is then linear in m, while the right-hand side is not a
function of this variable. This implies the vanishing of
both sides, i.e.,

M(hak,m)=[h,m,k].

By writing the antisymmetric bilinear map M in the pro-
duct symbolism one obtains relation (14). In the sym-
metric case, 7=o0, the product @ may be into, and the
domain of the variable m may be only the complement
of the a-center  in /. In this case, one can extend the
domain of the map M from 4 ® #,, where # ,=Ha/ is
the image space of @, to 4/ ® # by setting M(hak,m)=0
if m €. The derivation relation (13) is obtained by
applying the derivation law (10), with r=¢ or 7=, to

‘relation (14) in which the associator is first replaced

by its definition. This completes the proof of the lemma.

We next investigate the two cases, T=mand 7=o0,
separately.

The antisymmetric case

Let {#, o} be a central simple Lie algebra and let II
denote the set of all possible products 7 on /4 for which
{#, 7, @} is an antisymmetric Hamilton algebra. Since
every 7c Il is a linear map, m 4 ® 4 — #, and since the
derivation rule (10) is linear, the set II is a linear
space. The origin of the space II coirresponds to the
trivial Hamilton algebra {#,0, a}, while the existence of
the degenerate algebra {;L/ , @, o} implies @ €II. Further-
more, according to the previous lemma, for every nell
there exists an element p< IT defined by relation (14).

It is easy to see that all maps n<II, except the origin
7=0, are onto. For any ne I, let /, denote its image
space. Obviously, since A/ 7/4,C #,, the space #, is an
ideal in the algebra {#, 7}. The derivation rule (10)
implies

Hat, S H.,

i.e., /4, is an ideal in the algebra {#, o}. Since {#, a}
is simple, it follows that either //,={0}, i.e., 7is the
zero map, or A,=/4, i.e., wis onto.

Consider now relation (14), which, written full, reads
(frg)mh - frignh) =gp( fan). (16)

By subtracting from this identity its two cyclic trans-
forms and using the derivation rule (13), one obtains
the relation

2g n{hf) = gp( fan) +gof foh). (17)
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Let ¢, be an ideal of the algebra {#/, n} and let g be
a point in this ideal. Relation (16) then implies that
Hp$:=Ys i.€., Y, 1is also a p-ideal. With this result,
relation (17) then implies that Y, 1s also an a-ideal.
Hence, all algebras {4/, 7}, 7<Il and 7#0, are simple.
We can now prove the following:

Theovem: There are no nondegenerate antisymmetric
Hamilton algebras.

Proof: Since a < II (corresponding to the degenerate
Hamilton algebra {/7/, a, a}), the linear space II is at
least one-dimensional. The theorem states that it is
exactly one-dimensional. We shall prove this by deriv-
ing a contradiction from the assumption dim II >1,

Consider a linear basis in II consisting of the linearly
independent points « and #,, i€ [, where [ is an index
set. Every point 7<1I is then of the form »=17" +sa,
where s is in 7 and 7' €11 has no @ component, i.e.,

7’ is of the form

m=27r,
i

the coefficients #* being in 7. Since the map p corre-
sponding to 7 is also in IT, as proved earlier, a set of
coefficients, at=aqi(r,s), b=>b(r,s), functions of »i, s,
exists such that

p:Z aln,+ba.

By substituting these expressions into relation (17), one
obtains '

2gm'(ha’ f) =gp'(fah) + gal fp'h), (18)
where
p'=2(a’ +2s )7, +(b +s%)a.

J
Since gn'(hn'f) is independent of the variable s, p’ must
also be independent of s, which implies

al(r,s)=a'(¥,0) ~ 25y’ foralljel,
b(r, s) =b(r, 0) =52,

Furthermore, since gr'(k7n’f) is a bilinear function of
the coefficients 7!, identity (18) implies that p’ must
also be such a function, i.e.,

a‘(r,0) =i’2k Pl rivt,
b(r,0) =iEinkr"r'*,
where Pj,, @;, are some constant coefficients. Thus
a'(r,s) =iZk> Pl rirt =2sv7,
b(r,s) =iZb) Q77— 5%

Consider now the following system of quadratic
equations:

iZ; Pl rirt - 257 =0,
Zrirt=1.
1
- Since there are as many unknowns »*, s, as equations,
the fundamental theorem of algebra guaranties the

existence of solutions for 7!, s. These solutions are in
general in the algebraic closure of 7. Let ¥, s, be a
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set of solutions, and m,=3,»{w; + s, the corresponding
product #. The equation § ,7'»?=1 prevents the vanish-
ing of all coefficients 7!, and hence 7, can not be degen-
erate or trivial. Since a'(v,,s,) =0, the product p
corresponding to w, is proportional to @, say p=-b,a.
Equation (17) then implies

frlgmh) = b, folgan). (19)
The coefficient b, cannot vanish, since this would imply
m,=0. Since gah can be an arbitrary element  of /4,

identity (19) implies that gn, is a linear function of
gah:

gnh=L(gah) (20)

where L: /4 — /. The same relation further implies the
following identity involving L and @ only:

L(fa(LEk)) = b, fak, (21)

f and % being arbitrary elements of //. From the deriva-
tion condition,

folgmh) =( fag)mh +gn( fah),
one gets the identity
Fo(Lk)=L(fak) (22)
which, substituted into relation (21}, yields
L¥ fak) =b,fak.
Since the point fak can be chosen arbitrarily, one has
L2=b,I (23)

where I is the identity map in /. Relation (23) implies
that the linear space /4 is a direct sum of the two eigen-
spaces of the operator L, i.e., /=4, ®H.. InH,,

L =vVp,I, and in #_, L ==+b,I. 1dentity (22) implies
that the points % and fak must belong to the same eigen-
space for all fe A, i.e., HaH . CH,andHaH_CH..
Hence, the eigenspaces 7/, and //_ are ideals in the
algebra {#4, a}. Since the algebra {#, a} is central sim-
ple, this implies that #/, and //_ are either {0} or /4.
Thus, there can be only one eigenspace. In other words,
the operator L is a multiple of the identity, which im-
plies that 7, is degenerate. This contradicts the pre-
vious conclusion that it is not. Hence, II is one-dimen-
sional. This completes the proof of the theorem.

The symmetric case

Let {#/,0, o} be a symmetric Hamilton algebra.
According to relation (14), the product o satisfies the
identity

(fog)oh — folgon) = gp(fah), (24)

where p is an antisymmetric product with respect to
which the product « is a derivation. One verifies that
the associator of a symmetric product satisfies the
identity

[f:g}h] +[g’h’f] +[h’ f,g]:O.
By substituting into this identity Eq. (24), one obtains
the relation

go(fah) +hp(gaf) + folhag) =0

which, with the derivation rule of o with respect to p,
yields
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folrag)= folnpg).

This relation implies that zpg is a linear function of
hag, and by arguments similar to those used in proving
relation (23) one shows that the product p is propor-
tional to @. Hence, relation (24) reads

[frg,h]=aga(fa, h) (25)

where ac 7. We shall call this identity the association
relation. Using the Jacobi identity, one can also write
the association relation in the form

(/& nl,=al7,8,hl,- (26)

One sees that in a Hamilton algebra {#, o, @} the prop-
erties of the product ¢ depend crucially on whether the
constant a is zero or different from zero. If a=0, we
shall say that the Hamilton algebra is classical. In a
classical Hamilton algebra, the algebra {#4,c}is both
associative and commutative. A symmetric Hamilton
algebra for which a#0 shall be called a quanium Hamil-
ton algebra. It follows from the association relation that
in a quantum Hamilton algebra the product ¢ satisfies
the identity [ f2, g,f]1=0. This identity, together with
the symmetry of o, defines a so-called Jordan algebra.
A Jordan algebra whose product can be expressed as
the anticommutator of an associative product is called
a special Jordan algebra. In order to check whether the
Jordan algebra {H ,0} is special, we consider a product
B=0+ba, and require [f, g,4],=0, which implies the
relation

[fyg,h]a::‘bz[f;g:h;]a- (27)

Comparison of relations (27) and (26) shows that the
product 8=0 +V=q « is associative. Hence, in a quan-
tum Hamilton algebra {#, o, a}, the algebra {#, ¢} is a
special Jordan algebra. Let ﬂo be an ideal in the algebra
{#,0}, and let g€ ¢,. The association relation (25),
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with a#0, implies that ﬂ‘, is also an a-ideal. Hence,

in a quantum Hamilton algebra {/—/ ,0, a}, the algebra
{/—/, o} is a central simple special Jordan algebra. Since
a simple special Jordan algebra has a unit element e,
the center ( of the algebra {#, @} in a quantum Hamilton
algebra {#,o, o} is Fe.

In quantum mechanics, the base field 7 is the field R
of real numbers, the linear space // is the space of
Hermitian operators on a Hilbert space, and the special
Jordan algebra {#/, o} is the algebra of these operators
under the Hermitian product. The associative product
B is the product of operators on the Hilbert space, and
the product @ is the commutator divided by v~1%. Thus,
the constant a is related to the quantum of action, #
€ R, by the equation a = (%/2).
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Cancellation of the Green’s function in the generation of
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Continuum bound states (CBS) are known to appear in the spectra of some nonlocal scattering
equations. We give a simple derivation of the presence of these states consistent with the requirement
that such states occur for zeros of the Fredholm determinant. Examination of the form of the
nonlocal potential necessary to the generation of a CBS shows that CBS solutions appear only when
the potential has the effect of cancelling the Green’s function in the kernel of the integral equation.
Several examples from the literature are cited to demonstrate this characteristic feature of CBS.

1. INTRODUCTION

Nonlocal potentials have been the subject of consid-
erable investigation since their introduction into the nu-
clear problem by Yamaguchi.! The work of Feshbach?
and of Perey and Buck® has been important in extending
the concept of the nonlocal potential to the nucleon—
nucleus interaction. It was pointed out by Gourdin and
Martin?s® that one feature of the separable nonlocal po-
tential is the possibility of wavefunctions at positive
energy which behave asymptotically like bound states.
These states have been studied by various authors®?®
who have labeled them positive energy bound states,
positive energy degenerate states, spurious bound
states, or continuum bound states (CBS). In this paper
we demonstrate the occurrence of CBS solutions in a
particularly simple manner. We then show that such
solutions can be generated only by nonlocal potentials
which have the property of cancelling the effect of the
Green’s function in the scattering equation.

2. CONTINUUM BOUND STATES
Consider the integral equation which defines the phys-
ical solutions to the scattering equation

p*(k, v) = sin(er) + [ [T Gk, v, )V, 5)b*(k, 5) ds dv’

(1)

and the associated homogeneous equation
Xk, = [ [7 Gk, 7, )WV, Xk, s)dsdr',  (2)

where
Gk, v, v")= = (1/k) exp(xiks) sin(kr ) (3)
for both %> 0 and k%< 0.

It is well known from Fredholm theory that if (2) has
a solution for some value of 2, then the complete solu-
tion to (1) at that value of # will include an arbitrary
amount of the solution to (2). By using (2) and (3), we
can find an expression for the asymptotic form of the
homogeneous solution:

Xk, 7) =z - e_xp;(%z_kﬂ fom fow sin(kr")V(v', s)x*(k, s) ds dr’.

(4)

In general, therefore, we would expect positive energy
solutions to (2) (i.e., k real) to oscillate at infinity
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while negative energy solutions (¢ imaginary) would de-
cay like exp(- €7), where €= ~%%>0, However, we are
interested in the special condition in which both (1) and
(2) bave solutions for the same real value of 2. In this
case, we can further examine Eq. (4) by extension of a
procedure used by Martin.®

Multiply (1) by x*(#, £)V(#, t) and integrate ¢ and » over
(0, ). Similarly, multiply (2) by ¢*(k, £)V(¢, ) and inte-
grate » and ¢ over (0, ©). The results are

L 7 04k, )Xt (R, YV, £) dt dy
= [ [ sin(ker)x(k, )V (r, £) dt dr
TS G R, VO, SR, X, 1)

XV(r, t)ds dr didr, (5)

1™ 7 XAk, M2k, O VE, 7) drdt
= [ T TG ey v, PV, )X, S)O (R, B)

X V(t,v)ds dv' drdt. (6)

Subtracting (6) from (5) and making use of the assumed
symmetry of V(r, ') and of G*(k, », ¥') leaves

5 f sinen)x: (&, )V (7, £) dr dt=0. )

With (7), the asymptotic form in Eq. (4) becomes
X*(&, 7) == 0. (8)

r-.&
This means we can have positive energy solutions of (2)
which vanish at infinity. These are continuum bound
states (CBS).

The homogeneous equation (2) will have solutions for
some real value of 2 only when the Fredholm determi-
nant of the integral equations (1) and (2) vanishes for
that value of £. In that case, the solution of the inhomo-~
geneous equation (1) contains an arbitrary amount of the
solutions to (2). We have demonstrated that these solu-
tions to (2) at that value of # will vanish at infinity even
for £2> 0 and are therefore CBS solutions.

3. CANCELLATION OF THE GREEN'S FUNCTION
We wish to examine the form which a potential must

have in order to produce CBS. Local potentials cannot
produce CBS' because the Fredholm determinant for

Copyright © 1974 American Institute of Physics 770
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the scattering equation cannot vanish for real values of
k, except possibly at k=0; the derivation of the asymp-
totic behavior of CBS which was given in the previous
section fails for a local potential. However, nonlocality
in a potential is not sufficient to guarantee CBS solu-
tions. To generate CBS requires that the form of the
potential be such that Eq. (2) as well as Eq. (1) have a
solution (or, equivalently, that the Fredholm determi-
nant vanish) at some value of 2. In this paper, we show
that this will occur only if the potential cancels the ef-
fect of the Green’s function in the scattering equation.

An attempt to solve directly the problem of what is
required of a nonlocal potential to produce CBS could
be made by writing out the Fredholm determinant, set-
ting it equal to zero, and inverting to find the potential.
This approach is not fruitful because of the complexity
of the determinant. Additional insight into the requisite
form of the potential can be gained, however, by recon-
sidering the asymptotic behavior of the homogeneous
solutions. The form of the Green’s function (3) causes
the solutions to the homogeneous equation to appear to
behave at infinity like exp(+ikv), as indicated by Eq. (4).
But, as we have shown, solutions need not behave in this
way. For CBS solutions, it is only necessary that they
vanish at infinite distances. In order for this to happen,
the effect of the Green’s function in the integral equa-
tion must disappear. This can be the case only when the
Green’s function is cancelled by the potential. Let us
see how this might occur.

In three dimensions, the Schrodinger equation is

(V2+rA)u(k, r)= [ V(r, r)¥(k, r)dr’.

We can formally investigate the possibility of a homo-
geneous solution to this equation by bringing the differ-
ential operator to the right-hand side
1

T(k, r):eg_ﬁ2 [ v, r')¥(k,r’)dr’. (9)
Of course, this form is most inconvenient. Since divi-
sion by a differential operator is equivalent to multipli-
cation by an integral operator, Eq. (9) is usually re-
written in integral form with the aid of a Green’s func-
tion g which takes account of the boundary conditions

¥k, r)= [ G (& r,r) [ V(r’, 8)¥(k, 8)dsdr’.

The effect under discussion can, however, be more
clearly seen from Eq. (9). Suppose the potential has
the separable symmetric form

V(r, ') = MVEi+ &) @(r)(VZ + ) &(r), (10)
where « is a constant. Then at that energy where 2=«
the integral equation (9) becomes

¥k, r)=23(r) [ (VZ + B d(r")] ¥(k, ') dr’. (11)
This is a “pure” integral equation. It no longer contains
a Green’s function, and it can behave asymptotically in

a manner other than exp(+ik7). The form of the solution
to (11) is clearly

¥(k, 1) =Nd(r), (12)
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where N is arbitrary since (9) is homogeneous in ¥(«, r).
If a potential can be written in the form (10), then it can
be seen immediately that there may be a continuum
bound state E ., = ##x*/2p, and that the form of the CBS
wavefunction would be &(r).

There is an additional condition which must be met
by the simple separable potential (10) in order that a
solution of the form (12) exist. The solution {12) must
be consistent with Eq. (11). That is,

Uk, r) = N&(r) =A&(r) [ [(v2 + )8(r )] ¥(k, 1) dr’.

Therefore
N=x [[(72 +®)a(r)|¥(x, ) dr . (13)
Substituting (12) into (13), we have
N=x [[(V2 +1®)&(r)IN®(r")dr’.
or
A ST+ D)@ ()] dr =1. (14)

Condition (14) is equivalent to the requirement derived
by Gourdin and Martin*-® for the generation of a CBS by
a single term separable potential although they
approached the problem from a completely different
point of view, that of phase shift behavior.

The concept that cancellation of the Green’s function
is necessary to the generation of CBS is not restricted
to the simple separable potential (10). Consider the
potential

V(r, ) =A(F + @B()(TE + D) + 3 A, F(B)F(x).

(15)
Substitution into (9) yields (at k=«)
¥(k, r)=2r8(r) [ (V2 +c?)d(r ) ¥(k, ') dr’
tETe :Z;MF,-(r)fFi(r’)\If(x,r')dr'. (16)

The effect of the Green’s function has been cancelled
from the first term of (16) but not from other terms. At
positive energy the oscillatory behavior of the wave-
function due to these terms will dominate at infinity.
Thus, this potential can produce CBS solutions only if
N
iZA;F,.(r)fF,.(r’)\IJ(K,r')dr':0. (17)
=2
If the constraint (14) is also satisfied by the potential
(15), then a CBS solution will be produced.

This method of approaching the existence of a CBS is
consistent with the requirements for a CBS presented
in Sec. 2. That is, it can be shown by direct calculation
that a potential of the form (15) with constraints (14) and
(17) will result in a vanishing Fredholm determinant at
k=K.

Ghirardi and Rimini'! have written a potential which
generates N chosen wavefunctions |9, at N energies E,,

vir,r)= - él X, e | WXW, |27, (18)

where (| W) =(E, - T)|y,) and T is the single particle
kinetic energy operator. Examination of this potential



772 T.0. Krause and B. Mulligan: Cancellation of the Green’s function

shows that it is a sum of terms where each term has the
form of Eq. (10). The method used by Ghirardi and
Rimini to pick the coefficients X, iz is equivalent to re-
quiring the constraint (17). This N term G—R potential,
therefore, can be used to produce an orthogonal set of
N CBS solutions at N required energies.

The concept of cancellation of the Green’s function is
considerably easier to use in k-space since the Green’s
function is the simple function (k% — %)™, where #%x?/2u
is the center-of-mass energy. Tabakin'? has written a
single term separable k-space potential

Vik, k') 5 37 2g(le)g(k) (19)
where
2 Loy B2 HdE 1
glk) = o(R2 - %) Frat (20)

kz +b2
From the foregoing discussion it can be seen immediate-
ly that this potential generates a CBS at E,, =7#%£%/2 .
The form of the CBS wavefunction can be seen at once

by comparing (19) with (10) and (12). The k-space rep-
resentation of this wavefunction is

E:+d? 1

P=N P Tra

where N is a normalization constant. These results are
the same as those which Tabakin'? has derived from a
consideration of phase shift behavior. The equation
which Tabakin derives as a necessary condition for a
CBS [Eq. (15) of Ref. 12] is equivalent to our constraint
(14). The example of Tabakin’s potential in particular
demonstrates some of the advantages of considering the
CBS problem through the cancellation of the Green’s
function.

4, A MORE GENERAL POTENTIAL

The potentials given in the previous section explicitly
contain a term which cancels the Green’s function.
Indeed, for a simple separable potential, the inverse
Green’s function must appear explicitly as there is only
one way to write a one term potential. For multiterm
potentials the appearance of this inverse Green’s func-
tion need not be explicit. However, any separable
potential which produces a CBS, although complicated
in appearance, is such that it can be written in a form
like (15) with constraints (14) and (17).

As an example which does not contain an inverse
Green’s function explicitly, but which can have a CBS
for a proper choice of its parameters, consider the
following k-space potential:

Vi V2
B +a R +ad) ~ (B + Wk +07)

Wk, k') = (21)

Mongan'® has shown that potentials of this form fit the
two nucleon phase shifts over a range of energies. We
shall show that it is possible to choose parameters in
(21) (different from those selected by Mongan) such that
the potential will have a square-integrable solution at
positive energy. For each such choice of parameters,
the solution will be the result of the cancellation of the
Green’s function in the integral equation for the
wavefunction.
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We obtain the one-dimensional k-space Schrédinger
equation by Fourier transforming the three-dimensional
configuration space Schrodinger equation and integrating
out the angular dependence. The result is
(22)

(=22 + 1) p(k) = 2ﬁ—‘;— Wk, k) (k)R2dR’,

where the energy dependence has been written
K =2 [J.E/;ZZ .

As before, we formally obtain the homogeneous integral
equation for ¢(%) by substituting (21) into (22) and
dividing by (- 2% +«%).

s(ry= 2 L |7 VielkDe” dr’
— EZ 2 o (ka +a2)(k/2 +a2)
2p 1 ~ VSR dR' (23)
h—2 K2 _k2 o (kz +b2)(kr2 +b2)
With the definitions
d) (R )k’zdk’ 9
j k’2 + a) (24)
“ o)kl
ﬁ k,z + b2) (25)
Eq. (23) becomes
Via 2u__ ViR
o= 3 o v o R oy ML)

Equation (26) represents the most general form for a
solution to the homogeneous integral equation (23) with
this potential.

The constants a and 8 must satisfy certain self-
consistency conditions if (26) is to be a solution. Specifi-~
cally, we can solve for o and 8 by substituting the wave-
function (26) into Eqs. (24) and (25). This will yield two
consistency equations involving @ and S8 which must be
satisfied simultaneously if (26) is to be a solution to
(23).

We are looking for solutions to (23) of the CBS type
which go to zero at infinity. The appearance of the
Green’s function (k% — k%)™ in the wavefunction (26) would
seem to exclude the possibility of CBS solutions because
this factor, when Fourier transformed back into con-
figuration space, will produce oscillatory functions
which will dominate the behavior at infinity. However,
the wavefunction (26) can be a CBS solution if we pick
the parameters such that the Green’s function is can-
celled. We now show how this may be accomplished.

Let us put the wavefunction (26) over a common
denominator

2u Via(k® +b%) - ViB(K® +a°)

= 2
(rb(k) h—z (K2 - kZ)(kZ +a2)(k2 +b2) ( 7)
We are looking for a wavefunction of the form
d(k) = (28)

ﬁz (kz +a2)(k2 +b2)
where the Green’s function dependence has specifically

canceled out. The requirement for writing (27) in the
form (28) is
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Via(k? +b%) = Vig(k® +a®) =c(k® - #?)
or
Via-Vig=-c
and
Viab® - ViBa®=ck®.
Eliminating ¢, we have

B VI b2+i?

a Vi @+

(29)

This condition on @ and 8 must be met in order to pro-
duce a wavefunction of the form (28) without Green’s
function dependence. Condition (29) is independent of
the consistency conditions on o and 8 which must be
satisfied separately in order that the potential produce
any solution at all. This is analogous to the discussion
of Sec. 3 in which the consistency condition (14) must
be met independently of the conditions for cancellation
of the Green’s function.

In this example we have chosen to cancel the Green’s
function from the wavefunction (26) rather than to put
the potential (21) into a form in which the cancellation
would be explicit. This is strictly a matter of conve-
nience. The potential is a function of two variables, the
wavefunction only one. It is behavior of the wavefunc-
tion, after all, which is our ultimate interest.

5. CONCLUSIONS

The study of scattering involves the inhomogeneous
wave equation

¥k, 1) =¥+ [ Gk, r,r)V(r’, 8)¥"(K, 8) dsdr’.

This equation has solutions at all real k for any poten-
tial. For those particular values of k2 at which the
Fredholm determinant for this equation vanishes, the
solutions to this inhomogeneous equation will include
arbitrary amounts of the solutions to the associated
homogeneous equation (which has solutions only at these
values of £). We have shown that these solutions to the
homogeneous equation are therefore continuum bound
states. When the Fredholm determinant vanishes, then,
the complete solution to the inhomogeneous equation
will include CBS wavefunctions in addition to the regular
scattering wave functions.

The presence of the Green’s function would be ex-
pected to force the solutions of the homogeneous equa-
tion to oscillate at infinity. Since CBS solutions do not
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oscillate at infinity, they can be produced only by poten-
tials which cancel the effect of the Green’s function. In
single term potentials which produce CBS, the inverse
Green’s function which performs the cancellation must
appear explicitly. If a single term potential contains an
inverse Green’s function and also meets the independent
consistency condition (14), then the energy of the CBS
and the form of the CBS wavefunction can be obtained by
inspection.

For potentials of two or more terms, one term with
an explicit inverse Green’s function may appear for each
CBS produced. If the potential has this form it is again
possible to determine the CBS energies and wavefunc-
tions by inspection. In this case the sum of all terms
which do not generate a particular CBS must be orthogo-
nal to that CBS wavefunction. Although terms with ex-
plicit Green’s function dependence may appear in a
potential which generates CBS, such explicit dependence
is not necessary. It is possible, however, to rewrite
in this form any potential which produces CBS. Also,
regardless of the form of the potential, there exist con-
sistency conditions which must be met independently of
the cancellation of the Green’s function if CBS solutions
are to be generated.
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An invariant geometrical description of the world lines of charged particles in arbitrary homogeneous
electromagnetic fields is presented. This is accomplished through the combined use of the
Frenet-Serret equations and the Lorentz equation. The results apply to flat as well as Riemannian
space-time. The intrinsic scalars associated with these curves (i.e., their curvatures and first and
second torsions) are found to be constants of the motion when they are well defined. Moreover, they
form simple relationships with the field invariants as well as with the energy and' momentum
densities of the rest frame fields. When they are evaluated in the instantaneous rest frame of the
particle, the Frenet vectors lend themselves to simple physical interpretation. It is shown that one
cannot distinguish in an intrinsic geometrical manner between the curves of positive and negative
charges. The same is true for positive and negative magnetic monopoles if they exist. In such a case,
however, one would be able to distinguish intrinsically between ordinary and magnetic charges. The
effect of duality rotations of the field tensor on the Frenet scalars is studied. A physical realization
of the Frenet frame is obtained by considering the classical description of spin precession. Finally the
Frenet formalism is applied to timelike Killing trajectories. These are shown to closely resemble the
world lines of charged particles in homogeneous electromagnetic fields.

I. INTRODUCTION

The main purpose of the present work is to investigate
the intrinsic geometrical features of the world line of a
charged particle moving under the influence of a homo-
geneous electromagnetic field. Our definition of a ho-
mogeneous field is equivalent to the field tensor being
covariantly constant. The motion of the particle is then
governed by the Lorenz equation that incorporates this
constant electromagnetic field tensor. The conventional
way of describing the space—time trajectory of the par-
ticle is through a parametric representation taking the
initial conditions into account. This task can be accom-
plished in principle by integrating the Lorentz equation
(see the Appendix). Even if this approach may be of
practical value, it suffers from two drawbacks, namely
it is not coordinate independent and, moreover, does not
give direct information about the geometrical character-
istics of the world line. These two shortcomings can at
once be removed by recourse to the Frenet—Serret for-
malism.! Here a curve is associated at every point with
the orthonormal Frenet—Serret tetrad; the members of
the tetrad, the first of which is the unit tangent vector to
the curve, obey the Frenet—Serret equations. Further-
more, the intrinsic geometry of the curve is uniquely
determined by the Frenet scalars, namely the curvature
and the first and second torsions defined along the curve.
We combine the Lorentz equation and the Frenet—Serret
equations by identifying the curve with the timelike
world line of the charged particle. The intrinsic geome-~
try of the world line is thereby obtained in a manifestly
direct and elegant manner, which is completely inde-
pendent of coordinates as well as initial conditions.
While the Frenet—Serret method provides an excellent
framework for our present study, the physical phenom-~
enon we have invoked serves, in turn, to illuminate the
basic mechanism inherent to the formalism itself. This
is achieved by establishing simple connections between
the field quantities and the geometrical entities. For
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instance, the Frenet scalars, which will be shown to be
constants along the world line, are directly related to
the Lorentz invariants of the electromagnetic field. In
addition, the Frenet vectors, when evaluated in the in-
stantaneous rest frame of the particle, find simple in-
terpretation in terms of the electric and magnetic fields,
and the Poynting vector. Further insight is achieved in
this direction, if we assume that the charge has spin and
magnetic moment with a gyromagnetic ratio of two. We
shall see that in this case the spin and hence the mag-
netic moment will not precess at all with respect to the
spatial Frenet triad as it is carried along the world line
of the charge. Thus along the path of the particle the
frame which has constant components of the magnetic
moment is either identical to the Frenet frame or at the
most differs from it by a rigid rotation. This then pro-
vides for any observer a physical realization of the
Frenet vectors which would otherwise remain of essen-
tially mathematical significance.

To summarize, the problem we study in this paper
helps to describe the motion of charged particles in ho-
mogeneous fields by focussing on the invariant geometri-
cal aspects of their paths, and at the same time clarifies
the nature of the Frenet—Serret formalism on the basis
of a simple physical model.

The rest of this paper is divided into different parts as
follows. Section IT is devoted mainly to deriving general
expressions for the geometrical quantities in terms of
the field tensor. In Sec. III we specialize to the instanta-
neous rest frame of the particle and obtain simple in-
terpretations for the already derived relations. Section
IV examines the effect of duality rotations?:2 of the field
tensor on the Frenet scalars. We point out in Sec. V the
formal similarity that exists between the world lines of
charged particles and timelike Killing trajectories ad-
mitted by Riemannian spaces. Finally in the Appendix we
present a covariant solution to the Lorentz equation for

Copyright © 1974 American Institute of Physics 774
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homogeneous electromagnetic fields in flat space—times.
This has been included not only for the sake of complete-
ness, but also to contrast this rather cumbersome ap-
proach with the elegant Frenet—Serret method.

1l. GENERAL RELATIONS

The motion of a charged particle of mass m and
charge e in an electromagnetic field is governed by the
Lorentz equation

4

k=
mc?

s
F* o,

where u* is the 4-velocity of the particle and Fw is the
electromagnetic field tensor. In our notation Greek in-
dices range from 0 to 3 and italic indices from 1 to 3.
The signature of the metric is (+, -, -, —). A dot over
any quantity stands for its absolute derivative with re-
spect to the proper time 7 along the world line of the
particle, e.g.,
DAGE:: _

= ABVeo. 47
DT 'AozB...:Vu s

\BVe .. =
Aaﬂ... -

the semicolon representing covariant differentiation. It
is convenient to write the Lorentz equation as

ut=F* 0y
with F,,=XF,, and X =e/mc?.

As was mentioned in the introduction, the intrinsic
geometrical characteristics of a curve T’ can most ele-
gantly be described by utilizing the Frenet—Serret equa-
tions. The curve I', which in our case is the world line
of the particle, is assumed to be sufficiently smooth (at
least of class C%). Associated with I' at every point is
the Frenet—Serret tetrad consisting of four orthonormal
vectors ef,,. The index within the parenthesis is the
tetrad index which singles out a particular member of the
tetrad. In particular, e{,, =u" is the timelike unit tangent
vector to the curve. The spatial triad ef,, (i=1,2,3)
consist of the normal, the first and the second binor-
mals, respectively. The orthonormality conditions are
summarized by e{,,e g, =",z Where 7,,is the Lorentz
metric: diag(l, -1, =1, =1). The vectors obey the
Frenet—Serret equations

é%, 0 « 0 0 ey (2a)
é%, _|*® 0o = 0 ety (2b)
&4, 0-7, 0 7,0 ]eth]| (2¢)
ek, 0 0 ~7, O ek, (2a)

The Frenet scalars «, 7,, and 7,, which are termed the
curvature, the first and the second torsions, respective-
ly, completely characterize the intrinsic nature of the
curve when given as functions of 7. The assignment of
the initial configuration of the tetrad would further fix
the curve uniquely in space—time. The sign of x and T
is taken to be positive, whereas that of T, is fixed by the
requirement that the triad e, be a right-handed one. We
shall assume that all the three scalars are well defined
unless otherwise stated (i.e., x and 7, are both
nonzero),

We shall now apply the Frenet—Serret formalism to
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charged particles in electromagnetic fields obeying the
condition

Fuu;r=0‘

In other words, the field tensor F,, is assumed to be
covariantly constant, which in the special case of flat
space—times implies the constancy of electromagnetic
field both in space and time. All the results we shall de-
rive require only the weaker condition F =0, but this
would impose severe restrictions on the curve followed
by the particle. We shall therefore assume the stronger,
but more general, condition that F, is a covariantly
constant bivector. We shall refer to this property of ¥,
by the equivalent statement that the associated fields are
homogeneous. We first proceed to prove the following
theorem.,

Theorem: The Frenet scalars remain constant along
the world line of a charged particle in a homogeneous
electromagnetic field. Further each of the Frenet vec-
tors obeys the Lorentz equation.

Proof: From Egs. (1) and (2a), we have
él,=F* el = kel . (3)

Taking the absolute derivative of the above equation with
respect to 7, we obtain

Req, kel =F* &, .
Again using Eq. (2a)
Kely, tref,=«F* ey, . 4)

Forming the scalar product of both sides of the above:
equation with e¢,,, , gives immediately

k=0,

since
ét,eq,,=0, e, being a unit vector,

and
F,.efeq,=0

by the antisymmetry of F,,. Equation (4) then reduces to
é‘(‘1)= F* ety -

Thus « =const along the world line of the particle and
e4, in fact obeys the Lorentz equation. By repeatedly
applying the above procedure to the other Frenet—Serret
equations, we can show that 7, and 7, are constants and
that ef;), ef;, also obey the Lorentz equation. To
summarize,

K :‘1'1=T2 =0
and
ol
€)= F* ety - (5)

This completes the proof of the theorem. We wish to
emphasize that the properties of F,, that entered into
the proof of the theorem were its .antisymmetry and its
constancy along the curve, viz. F,,=0. We shall need
this fact later when we draw the analogy between the
present case and that of the Killing trajectories.

Next we shall evaluate the Frenet vectors and the
scalars «, 7,, and 7, in terms of F,, and the 4~velocity
e%,. For convenience we denote
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(P, = P Fogene P,

with F?  repeated # times on the right-hand side. Furth-
er, it is easy to show that given an arbitrary vector ¢*
if we define p, =(F"),, ¢, then

pub* =(=1)"F"),,q"q" . (6)
We have already the relation

[ —— v
Ke(l)_Fuve(O) ]

or
o 1 {13 v
€a)=y F* ety - (Ta)
Squaring and using Eq. (6),
K= (F?),,e%,€%0, - (Tb)

In order to obtain 7, and ef,,, we observe that Egs. (5),
(2b), and (7a) together lead to

. 1
— ——_(F2 —
ely=Fe,= K (F?)", %o, = kelo, T Tiely) 5
that is
LA [ - .].'_ (Fz)u v
kKeoyTThee =g v€(o) *
The required expression for ef,, is obtained directly

from the above equation, while by squaring the latter 7,
can be readily found. So,

1
e(“z) =K_T1 [(Fz)“'v - K2 Guu]eu([)) (83)
and
1
T2=k2 = p (FH* €080y * (8b)

Similarly ef;, and 7, can be obtained by combining Egs.
(5), (8a), and (2¢):

b TR
€e)=F"eq
- L [(F2y, = k%0 Jed, == T,e4%, + T,ek,
=xT v a allo)y==T1€q) T T2€(s, -
1

Equivalently, we can write

1
O = e FY o + (1] =K Jef, (92)
Squaring and using Eq. (6), we find
1 . 1
7= g (el o, = 7k =T (9b)

The above expressions can be employed to determine
the tetrad components and the Frenet scalars whenever
ey and F,, are known. However, we can simplify the
formulas we have already derived and establish some
interesting interrelations among these quantities which
throw more light on the geometry of the world line. As
a preliminary step towards this end we invoke some use-
ful identities involving F First let us define

uye
= 1P Fv, =)(E? - H?)
and
B=1iF# v =)*E -H)
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which are the Lorentz invariants of the electromagnetic
field with E and H denoting the electric and magnetic
fields respectively. The tensor F,, which is the dual of
F,,, is defined by

Fuvzé '_geuuaBFaB
and
Fw =3(1/VZg)e™*eF

where g=det || g4l and €_,, is the completely antisym-
metric Levi—Civita symbol with €% = 1 = _ €jyp3. Furth-
er, we note F'* =~ F®_ Now, two arbitrary bivectors
A,gand B g along with their duals (denoted by hats above
these tensors) defined on a four-dimensional Riemannian
space satisfy the identity*

A* B —Br A« =15 (A B%),
Identifying A, =B,
(Fz)uv - (ﬁz)uvza 64,

,=F,, gives
(10a)

whereas making A,,=F,, and B, =F v and vice versa
leads to

Fe Fe —Fu Fe =po*,. (10b)

With the help of these two identities it is a straightfor-
ward process to derive three further identities:

(F)* ~aF* -pF: =0, (10c)
(F4*, —a(F?)», -p264, =0, (10q)
(FO)¥, = (a®+B)(F?)", ~ap®8,=0. (10e)

We are now ready to apply the above identities to the al-
ready derived results. Substituting for (F%* , from Eq.
(10d) in Eq. (8b), we obtain

T2=k2% - - B%/K2, (11)

The curvature « depends on F,, as well as on e},,. Once
it has been determined from the rather simple expres-
sion of Eq. (7b), 7, can be evaluated at once with the
help of the invariants ¢ and 8 which are free from the
parameters associated with the curve. This is true in
the case of the second torsion 7, also. A vastly simpli-
fied form for 7, results if (F)*, in Eq. (9b) is substi-
tuted for from the identity (10e). Thus we have

1 1
T3=—s (a2 +BY(FA)*, +a 0" Jeo e oy, — 5 (K2 = T2
K373 T3
The formulas for 2 and (x* = 72) from Eqs. (7b) and (11)
reduce the above equation to the extremely simple form
T2=P%/k? or KiTI=F".
As we pointed out earlier, while x and 7, are assumed to
be positive, the sign of 7, is fixed by the demand that e{;,

form a right-handed frame. We shall show in the next
section that this requirement implies that

KT,==B. (12)
Again from Eqs. (11) and (12) we obtain
kKi=12-Tiza, (13)

Equations (12) and (13) relate the Frenet scalars to the
field invariants, Apart from displaying the connection
between the geometry of the particle’s world line on one
hand and the electromagnetic field acting on it on the
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FIG. 1. Rest frame configuration of a positively charged par-
ticle (A=e/mc? > 0). The spatial Frenet vectors are given by
e)= E/E e@y=P/P, and e(3,=E XP/EP, where P=(c/4r)

X (E xH

other, the above relations can also serve as a simple
means of obtaining 7, and 7, starting from «, provided of
course k, T,, and T, are all well defined.? Another piece
of information that elucidates the interplay between the
geometry and the physics of the situation is provided by
the energy —=momentum tensor,

7%, = (1/4m)[F* e, = (e 78 ) 6%, ).
By using Eqs. (8a) and (13), we arrive at

T*, &%, = (1/4m4(k2 + 72 + 12)e%y, +kT,e%,]. (14)

Clearly, the above equation implies that in the instanta-
neous rest system of the particle the energy density of
the field is given by e =(1/87)(k® + 72 + 72) and the flux of
energy density or the Poynting vector is purely in the
direction of e, and has the magnitude «7,.

Finally, consider Eq. {(9a) for e¥,,. Replacing (F%)*,
through identity (10c¢) and further employing Eqs. (12)
and (13), we get

(15)

Firstly, this equation relates the magnetic field in the
instantaneous rest frame of the particle to the Frenet
vectors ef;, and ef,. Secondly, a Fermi transported
vector undergoes rotation with respect to the Frenet
triad with the angular velocity vector - w* given above.®
Or since a Fermi transported frame is the relativistic
analog of a nonrotating frame in Newtonian physics, "8
the Frenet frame can be considered to rotate with re-
spect to a nonrotating frame at a rate given by w";
evidently the vector — w” can be identified with the rest
frame magnetic field.

—Fb o u [Pt
Fb ety = Tiel +Telh, =0,

Towards the end of the foregoing discussions we have
alluded to the instantaneous rest frame of the particle.
We shall present more detailed considerations pertaining
to this frame in the next section.

lil. SPECIALIZATION TO THE INSTANTANEOUS
REST FRAME OF THE PARTICLE

In the instantaneous rest frame of the particle e¥,,
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=58#,. Consequently, the members of the triad ef;, will
not have time components, since they are orthogonal to
e',. The electric and magnetic fields, E and H, in the
rest system are given by the equations

Ii"‘.;ev(O):}mEu ’ F“ue'fm:ilu . (18)

In the above equations, F , and f‘w are of course evalu-
ated in the rest system. It is evidently a simple and
straightforward procedure to translate all the results
derived in the last section to their equivalents in the in-
stantaneous rest system of the charged particle.

Remembering that ¥ and 7, have been chosen to be
positive, we get directly from Egs. (7), (11), and (8),

= A E
k=[ME, eq,=T37 5
and
IExH| Exd P
=1 ——, epy= =% (17)
1 I | E ) ) 1B xH| P
where P =(c/4m)EXxH is the Poynting vector, The fact

that the Poynting vector is in the direction of e,, in the
rest system, with its magnitude equal to ¥7,, had been
anticipated towards the end of the last section,

We shall now proceed to examine the sign of 7,. As-
suming that k7,==8, we derived Eq. (15). That equa-~
tion, in the rest system, reads

-)\}-I=1'1e(3)+72e(1). (18)

This is indeed consistent with e,,, €.,, and e 3, forming
a right-handed system as can be seen by ta_king the
cross product of the above equation with AE =«e:

-MEXA=-kTe,,
which agrees with Eq. (17). Thus,

1,==|A|EH/E. (19)
Equation (18) shows that e ¢, lies in the plane of E and

H; the rest system magnetic field in properly chosen
units (taking into account the coefficient 1) has compo-~
nents — 7; and ~ 7y along e y.and e 4,, respectively.
Similarly in the same units E has component « along e,.
As was pointed out in the last section —AH coincides
with the angular velocity vector that measures the rate
of rotation of the Frenet triad with respect to a Fermi
transported spatial frame.

The rest frame configuration of a positively charged
particle (A =e/mc?> 0) is shown in Fig. 1. It displays
the triad

A E P A ExP
e(1)=m§’ e(2)=-1-;, e(3)=_|-5\—l E}B 9
P i E H.

Since the particle is initially at rest here, it will get its
first impulse in the E direction, i.e., along e,,, there-
by acquiring an infinitesimal velocity V, along e,. The
second 1mpu1se felt by the particle is due to the force
(e/c)V, xH along e,. The velocity component thus ac-
quired in the direction of e, couples with H to impel the
particle out of the e, —e,, plane.
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We summarize below the Frenet scalars evaluated in
the rest system:

‘.Ih

N IE><H f:
k=|x|E, 1,=|xr] ',

2= = || . (20

The formalism we have developed would equally well ap-
ply to magnetic monopoles, if they exist, provided we
replace F,, by its dual #,,, and X by X =&/mc® where &
is the magnetic charge of the monopole. The resulting
Frenet scalars in the rest system of the monopole would
be

= lA]H, 7= lil |E}~>;H| ,
Comparing the Egs. (20) and (21), we notice that in both
cases the scalars are independent of the sign of the
charge concerned. This means that we cannot distinguish
intrinsically between the space—time trajectories of
positive and negative charges of equal mass. In order to
differentiate between these charges we must also specify
some external information namely the direction of the
arrow of time. However, the motion of a negative charge
is the same as that of a positive charge moving back-
wards in time. This is a reflection of the fact that the
Lorentz equation is invariant under the simultaneous re-
versal in sign of the proper time and the charge., Never-
theless, T, changes sign upon passing from an electric
charge to a magnetic monopole, thereby making the in-
trinsic distinction possible between the two. Evidently,
underlying this distinguishability is the tacit assumption
that one can define positively oriented reference frames;
in other words, space—time is orientable,

EH

Ty= | == (21)

We shall now establish the relevance of the Frenet
frame to the phenomenon of spin precession. Let us as-
sume that the charged particle of mass m and charge e,
has a spin S and a consequent magnetic moment M =(ge,/
2mc)S, where g is the gyromagnetic ratio of the particle
and e, is the electronic charge. We shall not go into a
detailed discussion of the covariant dynamical descrip-
tion of spin precession at this point.? It is sufficient for
our purpose to note that, in the instantaneous rest sys-
tem of the particle, spin precession is described by the
familiar equation

dSs g6 >

& = 5 aSxH. (22)

At this stage we have made no assumptions about the
spatial frame to which S is referred, nor about the
transport of such a frame along the world line. Choosing
this frame to be the instantaneous Frenet triad e;,, we
can write

S=S“’e(”. (23)
Substituting Eq. (23) in (22), we find
ds(i) de.: ge
e +S9 =il ==ty SWe,,,xH. (24)

In the space orthogonal to e“, = &%, we have the Frenet
equations

€q) 0 T, 0 €

d

w8 | T =T 0 7, €(2) . (25)
€ 0 -7, 0 €
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Substituting the above in Eq. (24) and defining the modi-
fied gyromagnetic ratio g’ =(e,/e)g, we arrive at the
equation

' ds(i)

S:QXS, §=7em (26)

where Q= —[(g’/2)7\ﬁ +w] and W=Tyeq,+Ti€(.

Assume now that the charged particle is in a homo-
geneous electromagnetic field and that its motion is gov-
erned by the Lorentz equation. We have ignored the fact
that the spin-electromagnetic field interaction would in
itself result in a deviation from the Lorentz force. Then,
as we have seen [Eq. (18)], w=-2H and, consequently,
Q=(1-g/ 2)7\H We see immediately that if g’ =2 then
8 =0 and hence the spin (consequently, the magnetic mo-
ment) does not precess with respect to the Frenet triad.'°
Its components along the Frenet vectors will remain
constant. Or, if a frame can be picked that is attached
to the moving charge and in which the magnetic moment
has constant components, then such a frame could differ
from the Frenet frame by at most a constant rotation.
Thus, as we stated in the introduction, the phenomenon
of spin precession affords a direct physical realization
of the Frenet frame up to, of course, a constant rotation
of the spatial triad.

We have assumed all along our development of the
formalism that «, 7,, and 7, are well defined, i.e., at
least k #0 and 7, #0, From the expressions for these
scalars in the rest system [Eq (20)] it can be seen that
this stipulation can be satisfied by taking ExH=# o,

a fact which we shall need in the next section. A detailed
discussion of the bearing of field configurations on the
Frenet scalars and hence on the intrinsic geometry of
the world lines can be found in Ref. 9b.

IV. DUALITY ROTATIONS

Duality rotations?®2 can transform a given electromag-
netic field to new ones that are related to the former by
simple equalities. In this section we briefly explore the
effect of such transformations on the geometry of the
charged particle trajectories.

Consider electric and magnetic fields, E and H, that
are solutions to source free Maxwell’s equations. If we
define K=E +{H, duality rotations are represented by

K/=ei0K, (27)

where ¢ is a real constant. Obviously, both K and K’
satisfy the source free Maxwell’s equations. The Lo-
rentz field invariants E «H and (E? - H?) are not invariant
under these transformations. Nevertheless two new in-
variants are admitted here, namely

K’'-K'*=K-K* or E”+H?=E*+H? (28a)

and

K’'XK'*=KXK* or E'XH'=EXH, (28b)

where the asterisk indicates complex conjugation. With
this preamble we establish the following theorem:

Theovem: Let the initial velocity v, of a charged par-
ticle in an arbitrary homogeneous electromagnetic field
be such that k, 7y, and 7, are all well defined (i.e.,

k #0, 7, #0 or equivalently E XH #0 in the rest frame).
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If we perform an arbitrary duality rotation on the elec-
tromagnetic field, and if the particle has the same initial
velocity v, in the newly generated field, then the new
secalars k’, 7,’, and 7,” will also be well defined.

Proof: We note that Lorentz transformations and
duality rotations acting on fields commute. In what fol-
lows we use the same duality transformation (same “an-
gle” ¢) and the same Lorentz transformation (corres-
ponding to a velocity -~ v, that produces the instantaneous
rest frame of the charged particle) acting at the initial
space~time point of the particle. We first perform the
duality rotation (E — E’, H-H ’) followed by the Lorentz
transformation (E’'— E’ H'—H’ ). Reversing the order of
the operations we have,

(E,H)— (E, H)— [(E), ()]
Since the two types of transformations commute we con-
clude E’=(E)’ and H’ =(H)’. On the other hand, since
E xH is invariant under duality rotations,

ExH=(E)'x(#)'=E'xH’,

- Thus, E’xH'’+0 and therefore K’y 7{, 75 are well defined
at the initial point and consequently all along the curve
since these scalars are constants. This completes the
proof.

(29)

Equations (29) and (20) yield the relation
(30a)

Similarly with the help of Egs. (28a) and (14), we can
show that

tr? —
K'T|=KT, .

K2+ T+ 78 =k2+ 12+ 72, (30b)

Further relations are obtained by noting that K2 = ¢?'°K?
which, with the help of Egs. (12) and (13), leads to

K212 7s? cos2¢ -sin2¢

sin2¢ cos2¢

2 2 2
k2—7i-12

26’7} 24T,

(30c)

Equation (30a) through (30c) can easily be uncoupled so
that each of the scalars «’, 7{, 7} is expressed in terms
of k, 7), T, and ¢.

V. KILLING TRAJECTORIES

There exists a striking similarity between the world
lines of charged particles in homogeneous fields and
Killing trajectories admitted by four -dimensional
Riemannian spaces. Consider such a timelike Killing
vector £*. We can define then the 4-velocity along £* by

u“:e"&“ , e 2 — gugu . (31)

It is easy to show that ¢’ or, equivalently, i is constant
along the Killing tra]ectory, i.e., ¥ ,£=0, from the
Killing equation:

gu;u+ gv;u=0.
So
du = ewguwuu. (33)

(32)
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We can identify e*£,,, with an antisymmetric tensor F,,

by virtue of Eq. (32),
FuVEewgu.;v! (34)

so that Eq. (33) is formally the same as the Lorentz
equation. Further, since ¢’=const along £#, we have

Fuvzezwg 7:0 (35)

since §,.,.,= umg where R, ,,, is the Riemann tensor.
As we emphas1zed in Sec. II, the properties F ,=~F ,
and F ,=0 were sufficient to derive all the results of
that sectlon. Those results, then, are valid in the case
of the Killing trajectories with suitable changes in in-
terpretation whenever necessary.

-

We concentrate attention on some of the significant
results that emerge. To begin with, the Frenet scalars
are constants along the Killing trajectories. Equation
(15) now becomes

Wk =T 0% +Tze;{1):_ezwgu;ug“ (36)
where the dual E““’:(l/zx/:E)e Mﬂgu;ﬁ as before.
We define
@* = g vE,=(1/2V=g )" Lk, . (37)

In the above equation w* is the rotation vector of the
Killing congruence. And also e®£*v¢ =(1/2/=g Je*v o8
XuMy, s the rotation vector associated with the congru-
ence of Killing world lines. In the present context these
vectors are evaluated along a particular curve belonging
to the congruence. We have already pointed out in Sec.
II that w" gives the rotation of the Frenet frame with re-
spect to the Fermi transported frame. In the case of
Killing trajectories, we have arrived at the interesting
result that w* is directly proportional to the rotation
vector of the Killing congruence w®. Obviously, in static
space—times, that are characterized by w* =0, the
Frenet frame is a nonrotating frame defined along the
Killing line.

Next consider the Killing analog of Eq. (13) which
reads
k2= 2 === (e®/2)E,  ENY. (38)

In order to interpret this equation, define the family of
hypersurfaces,

Z: g"E,=const. (39)
The normal to any of these surfaces is given by
n,=(FE) =2t 8. (40)

By the antisymmetry of £, s we find n £ =0. This shows
that the Killing tra]ectorles having the same length £*&
(say c,) lie in the corresponding member of the family

Z characterized by the constant ¢,. For the 4-velocities
along these trajectories, we have

a,=e*t, F=ke,,,=—3¢%n,. (41
Or,

Keq,,==-36"n,, K:==%e'n n*. (42)
Further, from Egs. (36) and (37),

—whe? =Tl +Tel,, ~(TE+T)=e"0"w,. (43)
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With the help of Eqs. (42) and (43), Eq. (38) reduces to

B4B, ~ b = = S E (£, 649 (44)

This is an equation that has black hole physics as its
usual habitat. !* It shows that the surface on which £, be-
comes null is a null surface (the horizon or the black
hole), provided w* also becomes null, In the case of
static metrics (w* =0), e.g. Schwarzschild metric, this
automatically occurs, but not necessarily in stationary
space-times (w* # 0). In the case of Kerr metric, for
instance, the condition is not satisfied for the global
time-like £* (which is time-like at spatial infinity);
nevertheless the combination £* + cw*, where 7* is the
axial Killing vector and ¢ is a suitably chosen constant
does satisfy the condition making the Kerr black hole in
fact a Killing horizon. *?

Equation (12) translates into

KT2=:§-§H,V£‘”V. (45)
If 7,=0 then the above equation shows that £,,, 1s a sim-
ple bivector. We may mention that this holds true in the
case of the combined Killing vector £* 4 ¢7* alluded to
in connection with the Kerr black hole.

Finally, consider the Lorentz equation for a charged
particle in flat space—time

du, -F dx’

ar ~Fwar- (46)

If F,, is constant, Eq. (46) can be directly integrated to
give

u (N =F, »(1)+a,. 4m
Here x¥(7) is the parametric form of the charge trajec-
tory with the proper time 7 as the parameter and o, is
constant. On the other hand, the most general form of a
Killing vector in the flat space—time is given by

£,=8,x"+7,, (48)
where B,, is constant and antisymmetric (8,,=~8,,) and
v, is also constant. Therefore, £*/VE'E, can be identi-
fied with «*, provided x*=x"(7) in Eq. (48). This shows
that trajectories of charged particles acted upon by con-
stant electromagnetic fields in flat space—time coincide
with timelike Killing lines. Probably this is not true in
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After submitting the present paper for publication we
have learned that D. M. Eardley has studied space—
times admitting constant bivectors.!3

APPENDIX

The usual method of describing the motion of a
charged particle in an electromagnetic field is through
a parameter representation of the particle’s world line.
The initial conditions give rise to eight constants of in-
tegration, but the side condition

172

uby,=1 where u”:%x;— , u=0,...,3,

reduces this number to seven. It is preferable to have a
representation that displays these transformation prop-
erties explicitly. Unfortunately, the usual procedure for
treating the motion of charged particles in electromag-
netic fields is to specialize the fields.* Then the trans-
formation properties of the constants of integration are
effectively masked. In the following we avoid this by
presenting a general covariant solution to the Lorentz

- equation for homogeneous electromagnetic fields in flat

space—time. This solution, and alternate solutions giv-
en elsewhere are quite cumbersome,® This is in sharp
contrast with the elegant results that are obtained
through the Frenet—Serret formalism.

The formal solution of # = Fu when F =0 in flat
space—time is

w(T) = eF"u(0) . (A1)

In the above F stands for the matrix F* . The series
operator ¢f” can be simplified through the recursion
relation

FteaF?-p =0 (A2)

where

a=)X3(E?-H? and B=)%E -H).
This method, however, is too complicated to use, es-
pecially if both o and B8 are nonzero.

The simplest approach is to operate on u wi'th both
sides of (A2). Since du/dr =Fu together with F=0 im-
ply that d"u/d7" =F"y for all integral », it follows that

the case of arbitrary Riemannian spaces, although at = = B0 “3)
present we do not possess any theorems that point one
way or the other. This is a simple linear equation whose solution is
[aﬁcoshalf+afcosa27]l+[ag sinha, T a? s;,zaz-r]F
1 s ;
u(1) = A2 K?| . . #(0),
+[cosha, T - cosa,T] F? + [smhaﬂ- _ Smaz'r] P
1 2 (A4)

where K=FE +{H and
a, =A(|K?| +ReK?/2)*/?, a,=X(|K?| -ReK?/2)'/2,
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It follows that

sinha, 7 sina,r cosha;7-1 coSa,T -1
2 1 2 2 2 1 -2 F
[az o +a? 5 ]I+ l:a2< af ) 1( ag

1 2

x(7) =x(0) + 1
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u(0).

A R?| . [Sinhalf _ sina ZT]FZ N [(coshg,-r - 1) + (COSQzT - 1>]F3

a, a,

Various limiting cases in which E+H =0 or E2=H?>=0
or both E -H=E?-H%=0 can be evaluated. In this re-
gard we note that if B=2%E +H =0, then F obeys

F3-aF=0. (A8)

Note added in proof: We have discovered that J. L.
Synge, Proc. Roy. Irish Acad. A 65, 27 (1967), has
considered some geometrical properties of flat space—
time trajectories of charged particles in homogeneous
electro-magnetic fields.
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The O(5) van der Waerden invariant is given; with its help the general Wigner coefficient in the
canonical SU(2)XSU(2) chain is calculated. Some special Wigner coefficients and Gaunt-type
formulas needed for the construction of the general Wigner coefficient are also presented.

1. INTRODUCTION

The group O(5) has been useful in classifying states in
several different areas of physics. Perhaps the best
known is the seniority model which treats the pairing
force between particles in the same nuclear shell,?
Special representations serve to describe nuclear surfon
states? and more recently have been used to treat states
of atomic electrons interacting with vibrations of
neighboring atoms in a solid (Jahn—Teller effect).? In
its noncompact version 0(3, 2) it is related to the
Coulomb problem.* A practical problem in connection
with any group is the calculation of its Wigner coef-
ficients which couple states of three irreducible rep-
resentations (IR’s) to a scalar or, equivalently, its
Clebsch—Gordan coefficients which couple states of two
IR’s to a composite state belonging to a third IR. These
coefficients are needed for coupling states and tensors,
and perhaps more importantly, in connection with the
Wigner—Eckart theorem, for calculating matrix ele-
ments of physical quantities. Hecht and Pang® calculated
0(5) Clebsch—Gordan coefficients for special cases.
Wong® derived those associated with the coupling (p, q)
%x{(0, 2), involving external multiplicity up to two. The
most general Wigner coefficient involving no multi-
plicity was given by Aligauskas and Jucys.” Holman®
calculates the general O(5) coefficient by a factorization
scheme which involves embedding in a higher group; a
disadvantage is the presence of redundant labels, so
that an orthogonalization or some such procedure is
needed to retain a complete and independent set of
couplings.

In Sec. 2 we construct the general van der Waerden
invariant for O(5).

The method of van der Waerden invariants provides a
complete nonredundant solution of the external labeling
problem which is symmetric in the three IR’s and which
has the advantage of making no reference to the internal
basis states to be used. To calculate Wigner coeffi-
cients, one merely expands the van der Waerden in-
variant in products of states of the three IR’s using
whatever basis states are convenient for the problem at
hand. In this paper we use states classified according
to the canonical SU(2)XSU(2) subgroup of O(5).

Section 3 is devoted to the calculation of certain Gaunt
coefficients which arise when a product of two O(5)
states in the same variables is expanded in O(5) states.

In Sec. 4 we evaluate certain classes of simple
Wigner coefficients.
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In Sec. 5 the general O(5) Wigner coefficient is calcu-
lated explicitly. It takes the form of a sum of products
of 9j symbols, Gaunt coefficients, and the simple
Wigner coefficients of Sec. 4. It involves 41 internal
summations.

2. 0(5) VAN DER WAERDEN INVARIANT

The external labeling problem for a compact group is
that of specifying all couplings of two IR’s to give a third
or, equivalently, specifying all couplings of three IR’s
to give an invariant. Long ago van der Waerden® wrote
down such a general invariant for SU(2) as a product of
powers of certain elementary scalars; similar solutions
of the external labeling problem exist for SU(3), °
SU(4), ' and SU(5).'2 A general discussion of the method
is found in Ref. 12; it is an extension to the external
labeling problem of the method of elementary multiplets
(elementary permissible diagrams) which has been used
to solve internal labeling problems, '3:4

Examination of couplings of low-lying IR’s suggests
the following elementary scalars for O(5):

A,=(00, 10, 10), A,=(10, 00, 10), A,=(10, 10, 00),
B,=(00, 01, 01), B,=(01, 00, 01), B,=(01, 01, 00),
¢, =(01, 10, 10), C,=(10, 01, 10), C,=(10, 10, 01),
D,=(20, 01, 01), D,=(01, 20, 01), D,=(01, 01, 20).
2.1)

Explicit expressions for the elementary scalars are
given in Sec. 4. They are not independent, for C,C, is
a linear combination of A, D, and A;A;B,; D;D,is a
linear combination of A2 B, B, and B;C%; C,D, is a linear
combination of A;B,C, and A, B, C, (throughout this
paper ijk are 123 in any order). Accordingly C;C,,
D;D;, and C,D, are incompatible pairs for the purpose
of forming the general van der Waerden invariant. Six
types of invariant may be distinguished, each char-
acterized by a product of powers of eight elementary
scalars

Sa=PA1A%2 A B B,"% B, CSDY, (2.2)
where i #j are chosen from 123. Since the invariants
differ only by a relabeling of the three IR’s, only one
will be discussed in detail, namely that with =1, j=2.
P in (2. 2) is a projection operator which instructs us
to retain only the part which is stretched in all IR
labels. Thus

Copyright © 1974 American Institute of Physics 782
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p=ayta,, py=a,ta;+c+2d, py=a, +a,+c, (2.3)

g,=b,+b,+c+d, q,=b +b, gq,=b,+b,+d.

The eight exponents provide the six representation
labels and two multiplicity labels. It is clear that we
may use ¢, d as the multiplicity lables. All couplings
are obtained by letting the exponents take all nonnegative
integer values.

To show that (2. 2) solves the external labeling
problem, we invoke Speiser’s theorem?!® which makes a
correspondence between basis states of the first IR
(p, q,) and couplings involving the first IR and the second
IR (P, q,).

Basis states of the general IR (p q) of O(5) can be
characterized by products of powers of variables which
are the basis states of the two FIR’s (fundamental ir-
reducible representations); the basis states are of de-
gree p in the variables afy5 of (10) and degree g in the
variables norEg of (01); the notation for the states of
the FIR’s is that of Ref. 15. The existence of a sym-
metric scalar in the direct product (01)x(01) and of a
(10) quartet in the product (10)x(01) occasions the
proviso that the following pairs of variables are incom-
patible for the purpose of forming states of higher IR’s:
8k, 8, ¥n, dx, b6&; the states thus eliminated belong to
IR’s lower than their degrees would indicate. Five types
of internal state may be distinguished, each charac-
terized by a product of powers of six variables; the
variables are afn¢ together with one of the following
five sets of two: v8, y&, 66, Or, r&. The indices of the
powers of the six variables provide the two representa-
tion and four internal labels. This primitive solution of
the state labeling problem utilizes no subgroup [apart
from the U(1) subgroups corresponding to the two
weights]; it is convenient for our purpose because it
corresponds to our symmetric solution of the external
labelling problem.

In specifying the connection between variables and
elementary scalars, we ignore A;, B,. By identifying
weights we are led to the following correspondence:

A,~a, A~
C2~65 c3~71 DZN‘E)

(o and n are regarded as the heaviest states of their
respective IR’s). D, corresponds to y5; there is no
double counting since C, C, are incompatible. Then
internal states correspond one-to-one to external
couplings. Qur justification of the solution provided by
(2.2) is valid only when p, ¢, are sufficiently large. Its
correctness in the general case can be proved by the
method discussed in Ref. 11 or 12,

Bz~"7, B3~§y

D, ~ 6.

C;™x,

3. GAUNT COEFFICIENTS

In expanding the van der Waerden invariant (2. 2) for
the evaluation of O(5) Wigner coefficients it is necessary
to combine O(5) states in, say, the l1-variables arising
from different factors of the invariant into a sum of
states in the same variables. The required formulas
are analogous to the well-known formula of Gaunt by
which a product of two spherical harmonics in the same
variables is expanded as a sum of spherical harmonics.
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Because of the projection operator P in Eq. (2.2), we
need keep only that part of the expansion which is
stretched in the O(5) Cartan labels p, q; terms belonging
to lower IR’s will be denoted by “unwanted. ”

First consider a state belonging to the simple IR of
type (#0). According to (3. 2) of Ref. 15 it can be
wr_itten

N> (3.1)

where |§), | D are Wigner monomials, i.e., SU(2) basis
states, in the apB and y6 variables, respectively; S+ 7T
=4p. The SU(2) Gaunt formula is

320 e )G ) 515

where S=S, +S, and the SU(2) Gaunt coefficient is
15,;S, 1S} =1[(28, + 28,)! /(28,)1(2S,)1 ] /2.

Using (3. 3), we obtain the Gaunt formula

STMN 'M

(3.2)

(3.3)

b >! b, >
SlTlMlNl l SZTMZNZ
] po >< S,S, S><T1T2|T>
= |STMN/ \M,M, |M/\NN, |N
{plo pZOIPO} (3. 4)

S,T, 8,T,| ST(’

where p=p,+p,, S=S,+S,, T=T,+T,, and the 0(5)
Gaunt coefficient is

9.0 . 1,0 |pO _((251+282)!(2T1+2T2)! >1/2
ST, ’ S,T, | ST ~\(28,)1(25,)1(2T,)1 (2T,)1

(3.5)

Before deriving the Gaunt coefficient for (Ogq) type states
we cast the (Oq) states in a new form:

Ogq — N’m2Sy a-2S
SS;SS>—Nsn A92S + unwanted (3. 6a)
[T =5 for (0q) type states]. Also
(25 + 1)(2¢q + 2)! 1/2
[
NS_((q—2S)!(q+ 25+ 2) (g + 1)1 2928 (3. 6b)

It is evident that the state (3. 6a) is identical with (3. 5)

of Ref. 15 apart from normalization. That the nor-
malization (3. 6b) is correct is verified by taking the
scalar product of (3. 6a) with (3. 5) of Ref. 15. The
state | &; /) is obtained from (3. 6a) by replacing n?$
by )

25— [(S+M)I(S=M)I(S+N)I(S-N)I]*/2

,qﬂhm es-m ES-M*N-m :m-N

2 M+m)(S=m)(S=M+N-m)l(m -=N)! (3. 6¢)
The Gaunt formula for (Oq) states is
|  Oq >’ Oq, >
’3151§M1N1 ’stz§MzN2
oriah ) 0% )
ss MN M/ \N,N,|N (3.7
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«104;  Ogq,
Slsl ’ 8232

Oq
+
ss } unwanted,

where ¢=g, +g,. To determine the Gaunt coefficient,

Oq, , Og,
Slsl ’ stz

Ogql _
ss}'(

—1)82+55°8 (<231 +1)(2S, +1)(2g; + 2)!
(2q, +2g,+2)!(g, — 25))!
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put M, =N,=S,. M,=N,=-85, in (3. 7), substitute from
(3. 6a) for the states on the left, and take the scalar
product with | & ; 4, in the form (3. 5) of Ref. 15 with
the replacement (3. 6c). The result is

)1/2

><< (29, +2) (g, + g~ 2S)! (g, + g, + 1) 1 (g, + g, + 25 + 2)! )1/2

(g, ~2S,)!(q, +

We are now in a position to derive the general Gaunt
formula

( N, > ’ 20 >
STy ; MiNy [ |S;T,; M, N,

st o ot

T,T,
N N N
{plql Py pq} +unwanted, (3.9)

S,T,’ S,T,|ST

where p=p, +p,, ¢g=q,+q,. The general O(5) state can
be cast in the form

{ ' "
I s Tp_"MN> . ;f» A% +unwanted,  (3.10a)
H
where [see (4. 7) of Ref. 15]
Arfn=[Ag(s 5], (3. 10b)
pq §’§I’
ST MN
_ E §-I §” S Z" §.’l T
=S| T' M’N’ s s" M"N" M M| M)\N' N7 N/’
(3.10¢)
and §_’ :% %p+S—T)9 _S_” =%(S+T—%p)’ ZV :}ép_ga
M? =M —=M!, N"=N-=N (3. 10d)

The justification of (3. 10) is similar to that of (3. 6a).

To evaluate the Gaunt coefficient in (3.9), take the
scalar product of both sides with | ..,4>. In evaluating
the scalar product on the left-hand side, use (3. 10) for
the states on the right side of the scalar product, (4.1)
of Ref. 15 for the state on the left. The resuilt is

P1€11 . quz pq
§,T,’ S,T,|ST
A,qul A,pzqz 0,0 1.0
S, T, 8,T, S':I&’S'T' ST

X[(25" +1)(2S, + 1)(2S, + 1M(2T" + 1)(2T, + 1)(2T, + 1)]* /2
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1)1(g, + 1)1(25 + 1)(g, + 25, + 2)I{g, + 2S, + 2)!

(3.8)
Ogq, . Og, | Oq
X 4 1. 2
; (28 + 1){‘2:‘/-8-/1;’ §g §[2[ SII SII
S & §) (I I T
XAST(S’,S”) _S_;' §£‘,’ S” T_;' _7_‘.",’ S” (3.11)

s, s, s)lr, 7, T

The 95 symbols are stretched in their first and second
columns and their first rows, and contain one sum
each. !” Thus the Gaunt coefficient (3. 11) contains three
sums.

Special cases of (3. 11) needed later follow:

2

=(=1)°[(28" + 1)(2S, + 1)@T’ +1)(2T, + 1)/ 4 ';11";1

ogsi s s\ T, T PO, 10
9 8 ST T ST ST ST

(3.12)

pa, , 0
5,T,’ S,T,

where p=p, +p,, & =5] +8S,.

204
ST

= (__ 1)5*51*52*7'*7'1*7'2

(3. 12) involves no sum,

04, Oq,
SlTl, SZTZ

[(2s, + 1)2T, + D]/ 2A 2%,

S, S, s}

XT, (28" + 1) Agi(S;" ){ s 5 5

Tl T2 T O ql . O q2 O q (3 13)
X} Z:i I'l' §£ -S_Ilr ’SZ Sz sros” ? M
where g=gq, +¢,. (3.13) involves one sum:
p0 . Oq |pg -
{S’T’ » gr ‘ ST :AST(S S”). (3.14)
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4. SOME SPECIAL WIGNER COEFFICIENTS where
We fix the phase and normalization of the van der I Oc >
Waerden invariant (2. 2) by writing explicit expressions | 8,813 =My, = Ny /o
for the elementary scalars: is a composite state formed from two IR’s of type (cO)
Ay=aB,-B8,a,+7,5,— 0,y in the 2- and 3-variables. N, is the normalization factor
PR TR TR TR for the invariant. Such states can be constructed by
Bi=n Lt Em,— 0,8, - E0, T2, methods similar to those of Ref. 15; the result, in an
C;=(aB,-B,a,+ 5¥p=Y 0N obvious notation, is
- 25)1(c + 25 +2)! \1/2
+‘/§5B_ﬁ6 X ‘ Oc _ !((C 23)(0 )
(88 =£,000ms ss;n) =T DI\ TG )@+ 2
+V2(=y Byt By )0 + V2 (=5 a,+ @,5,)E,
+ \/’Z—(yjak— aj'yk)gi: (4 1) x Z) < cO cO ) SS>
D;=(,0,- 9,"’!,)33 5553 S;T, S3T3 /MN [
= (£;6, = 0,5, + 7,8, = £ M) P, X (= 1278 [(S, + S5 = S)1(S + S, + S, + 1)!
+ (£l = &80T + (1,8, - £,)03 X(T,+ Ty=S)US + Ty + Ty + 1)!1]2, (4.4)
+(8,L, - £,0.0 Substitution of (4. 4) into (4. 3) gives the special reduced
= (68— £;0,t 8= Em,)Y 0y Wigner coefficient:
FVEM X~ A8, (00. co . cO)
AR 55,7 8,8, 7 S3T,

—VZ(O = 2,008y, ~ V2 (E, =N E)a,d,

+VZ(E M =Ny C(e1PTel (20(251 +1){(c+1)11(c - 25)! )1/2
The van der Waerden invariant may be expanded as a (2c+2)1(S, +S5-S))!

linear combination of products of states in the 1-, 2-,

and 3-variables: X _(c+25, +2)! He )
(S:+S,+S,+ DT, + T, =T )T, + T, + T, +1)!
S“:sl?s P b1t > (4.5)
253 12 S,T,; M,N. s <
nT,T, MK e and the normalization factor in Eq. (4. 3)
N =V3[c! (c+ 1)! (c+2)! (2¢+ 3)2e1]/2, (4.6)
x | pat, P34, > <Sl S, S3) The invariant P D¢ can be written.
ISsziMzNz 2 | SsTy; MNy /3 \M, M, M,

PDi= = ( 3 Y
2= N \[d+ Dd+ D)(2d+ 3)>
X<T1 T2'T3> (p1q1 . Pags Psq3> !
Ny Ny Nof \S;T," S;T; " S3T3 ) cqr (4.2) x | 2d (0] >
The Wigner coefficient is just the coefficient in this Sy |S2T53 MpN,/ 5
expansion; by the Wigner—Eckart theorem it factors into

a product of two SU(2) Wigner coefficients and the re-
duced O(5) Wigner coefficient

2d 0 >
— 1 M2+N2’
STy =M, =N, 31( )

(4.7
where | 2% . 4.0 ) i a composite state formed from
two IR’s of type (Od) in the 3- and 1-variables. Again
b.ay Pots . Dol such states can be constructed by the methods of Ref.

RO o ek 15 with the result
<SITl S,T, SaT3>cd.

1/2
In this section we calculate the special reduced |} 2?, ASI)N> =< an : S_chi;(lz)éziil-;é); ¥ 1)) :
Wigner coefficients arising from the special van der a ) )
Waerden invariants C§, D¢, A% A2 A%, and B%1 Blz Bls; |fod 0d\ ST
they are needed later as components of the general O(5) X S%: , <5353 Slsl)MN>31

Wigner coefficient. These special invariants involve no

external multiplicity and are readily normalized. The X (= 1)1-25 ((28;1 +1)(2S, + 1}(S +S,=S,)!

Wigner coefficients we derive are the unnormalized (S5+8, =SS, +S, - T)!

ones; in each case the normalization constant is given

separately. The invariant P C¢ can be written 5 (5+8,-8)!1(S+S5,+5, +1)! )”2
(d=2S)!(d+ 25, +2)!(d-2S,)!

1 6 1/2
e T+8,~S)HT+S,~S)(T+ 1\1/2
PeI= N ((c+1)(c+2)(c+3)) ><<( 1= S (d-iZSSllz()T' S;+S,+1) > '
L+ 2)
4.8
% ISSQICWN>|ISS~C3VCI N>(‘1)MI'N1 9
Sy | 9171 Ml /a1 190915 =M =N /2 Substitution of (4. 8) into (4. 7) gives the special re-
(4.3) duced Wigner coefficient.
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(Od .2do0 0d

—(— 1)2S
5,T,° §.T,; 53T3>_( 1ps 22d+1)!

o ((2sl+ 1)(2S, +1)(S, + S, =S,) 1>1/2
(Ss+5,=S) T+ T, =T,)!

x((sz+sl-sa)!(s,+sz+sa+ 1)!
(d-25,)1(d+2S,+2)!

o (Tpt T =TT+ Ty =TT + T+ T, +1)'>1/2
(d- 25)'(d+28 +2)1
(4.9)

and the normalization factor in (4. 7)
N,=V6[d! (d+1)! (2d+3)1 ]2,

Next consider the invariant A{1AJ2 A%, The norm of
AP AZAR s (a, + a,+ 1) (a, + a, + 2) (@, + a, + 3)/6 times
the norm of the term containing a31**2. That term is
a'"2\a,), where |a,) =g Bj2A3. The norm of |a,) is
found from the equation

(a,+ 1| A, |a)) =(a,]| Aj | a, + 1); (4.10)

A; is just A, with variables replaced by differentiations.
The resulting normalization factor for A1 432 A%8 is

N,=vV6[a,! a,! a,! (a, + a,+ a; + 3)1]1/2, (4.11)

To expand Aj1 Aj2 A3, break each A into its S-spin and
T-spin parts and make a binomial expansion; the S-fac-
tor and T-factor each form an SU(2) van der Waerden
invariant. Expanding these and using (3.2) of Ref. 15,
we find the special reduced coefficient

(1’10 . P20 P0
SlTl ’ Ssz ’ SSTS

(S, +S,+85,+ 1)!
((S +S,=S)1(S,+S, - Sz)'(s +S,=S,)!

(T, + T, +T,+1)! 1/2
(T +T,-T)NT, +T Tz)I(T +T,~T,y)!

)11 (30, + by = )11,
(4.12)

X[3(by+ 03 =) 1[5 (D5 + 0, -

where p, =a,+a,, etc.

Finally consider the invariant P Bt B}z B3, Its nor-
malization constant is evaluated by methods similar to
those used in normalizing Aj1 A2 A2, The result is

N = 6(2b, +2b, + 1)1 1(2b, + 2b, + 1)! |
57\ b,16,1b,1(2b, +1)"(2b +1)”(2b + 1!

(20, + 2b,+ 1)1 )1/2
(b +b,+ b, +2)!(2b, + 2b, + 2b, + 3)! !
(4.13)

PB’1’1 Bgz 323 is expanded by first expanding the individual
factors according to

by _ 1y |O b3>
PB, ‘b3’s§>ﬂ|ss;MN )

0 b, _{)M-N
SS;-M —N>2 (= 14,
(4. 14)

and then combining the states with the help of the Gaunt
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formula (3. 7). The special reduced Wigner coefficient
turns out to be

0q, 04q, Ogqy
Slsl ’ stz ’ Sssa
:(_ 1)81*52+S3 (qz + q3 - ql + 1)!(613 + q, =
+g,—qy+1)!

<8(ZS L+ 1)(2S, + 1)(2S, + 1)g, ! g, ! g,!
(2¢, + D 1(2g, + 1)!

42+1)!(¢11

o (4, = 25))! (g, = 25,)! (g, — 2s3)!>1 /2
(2¢;+ 1)!

X[(gy +2S,+2)1(g, + 25, + 2)! (g, + 25, + 2)! /2
Z , (= 1)2(S{+S5+5D

1 2 3
(257 +1)(2S; + 1)(2S; + 1)

X
(g, + a5 = q,) = 25, ] ! [$(qs + q, = g,) = 255] !
{Sl 52 83}2
st S, S,
[%(‘h +4q;~- qa) - ZS;]!
X{[3ay+ g5 — ;) + 25, + 2} ! [3(gy + g, — g5+ 28, + 2]!

X[3(g, + g, — q5) + 255+ 21}

Formula (4. 15) contains four sums. The special
Wigner coefficients found earlier in this section contain
no sums.

(4.15)

5. GENERAL WIGNER COEFFICIENT

To expand the general van der Waerden invariant
(2 2), one first expands the separate factors AJ1A2A 3,
Bj1 B2 B3, C¢, Df using the formulas of Sec. 4, then
combmes the different factors involving the 1-, 2-, 3-
variables respectively with the help of the formulas of
Sec. 3. The order in which the factors are combined
affects the form but not the numerical value of the final
result We first combined A1 A2 A33 with C¢ and
B 1 Bb"’ B 8 with DJ, then combined the results to arrive
at a fmal formula:

214, . Pods . P3ds
SiT, " ST, " SsT3)ca

— 2,0 | Oc
7 \SiT, S TY

xpa_c COII,)}..,
SyT, ' SITL|S,T,

Og,-c Ogq, . 2d0O
SlTl

pyelYp,-c-2d0 cO |p,~-2d0
S, T ST, CsyTel S, T,

x)0q—-c-d_ 0d
stTy CsprTyr

05l ) he . Og-c
s3 T3 Sl Tl ! S'1 Tl

2d£12
S¥Ty F sprTyr S,

% 0gq,—~d_ 0d
SFTY * SEXTH*

x{f’ o5 200, 2
5T, ’5,
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PO pyp—c=2d0 p,~cO\[{Oc , ¢cO  cO
ATV STy STy J\SITL sy Ty STy

240  0d

od g g 1/
(S;* T¥*’ SFeTr*’ S;*T;*) [(251"' 1)(2S, + ppr2

x[(25, + 1)(25, + 1)(25, + 1)(25, + 1)(2S, + 1)
X (25, + 1)(2S, + 1)(2T, + 1)(2T, + 1)(2T, + 1)]/2

x[(2T, + 1)(2T, + 1)(2T, + 1)(2T, + 1)(2T, + 12T, + 1)[*/2

SR sgz Srx Sy s;*z

x{s; Sy S, {SF s¥ Sx
S, S, S,
«J3. 3, &
S, 8, S,/

(Tkk Thk Tk
T¥* T} T3

T, T, T,;< Tf T

~
o

Gy

N’
»-ﬂl
31
[
&l
w
=)
Rel
=3
w

1

»

RN
n:a'

(5.1)

X
——
N
i B L

N
s B U1

w

-
»n

The sum in Eq. (5. 1) is over the variables 5
S_'l’ S,l, ’ Sl’ S;! §3’ S,Z' ’ 5'3’ S'é ’ Sf) Sf*, S_p S;) S; *’ Sz’ 5’3*;33‘*, T1y
' T,. The other S’s and T’s are not independent:

S,=83+8y, 5,=S,+8y, Ti=%a,+a,)-S,,

T! =S¢, Ty=4la,+a)=-8, Ti=%c-57,

T,=Ty+ Ty, Ty=4%a,+a,) =S, T5=4%c~-S;, T,

=T, +T%,
T¥=Sf, Tyr=S8t~ legv Ty=5¢,

T}*=d—SF*, TF=S¥, T=8¥, T, =3,

There are 18 explicit summations in Eq. (5.1) and 23
more in the various 9j symbols, Gaunt coefficients, and
special reduced Wigner coefficients.

The metric matrix for the unnormalized van der
Waerden invariant is discussed in an appendix.

The method of van der Waerden invariants is a power-
ful technique for obtaining expressions for the Wigner
coefficients or Clebsch—Gordan coefficients of low
order compact groups commonly utilized in physics. We
plan to use the van der Waerden invariant of this paper
to evaluate certain classes of Wigner coefficients for
the noncanonical chains O(5)->SU(2)XU(1) and
0(5)> SU(2).
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APPENDIX

Two van der Waerden invariants with the same p’s
and ¢’s but different c¢;d ; are in general not orthogonal.
We indicate here how the metric matrix (overlaps) may
be calculated. Isolating the S,7°, multiplet which contains
the heaviest state of (p,q,), we may write

biaq
Sea= Z 1
cd 5?1 A S1T1;M1Nl>
SaTz Ma¥
D24, > D39, , >
S,T, 5 M,N, %(P3+q3)5q3;M3N3

x[ S1Sz b5+ Q3)> (Tx T, %%)
mM, M, NN, Ng

X(plql : by, . P34 . )
ST, 8T, %@3""13) 2493

+ contribution of other S,T, multiplets. Since each of
the D, =(py+ 1)(g; + 1)(p; + g, + 2)(p, + 2, + 3)/6 states

of (p,q,) contribute equally to the metric matrix element
(S. g S We may write

(Pg+1)(py + g5+ 2)(Py + 2¢5 + 3)
6(p;+g,+1)

Sog 1St =

X 2 <p1Q1 . botty - Psqs . )
5177851, \ $,T; * S;T; " 3(bs +45) 35 ed

x(qul . b,

P34, )
5,7, ST, 3y + q) 245 cd* (A1)

The reduced Wigner coefficients appearing in (A1)
contain the heaviest ST multiplet of (p,¢,) and hence are
considerably simpler than the most general ones.

If orthogonalized couplings are desired, one can, of
course, use the Schmidt scheme. Alternatives are to
diagonalize the metric operator (A1) or to use
eigenstates of the mixed Casimir operators. ®
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On global embedding
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A basis vector treatment of tensor calculus in an N -dimensional (pseudo-) Euclidean space is used to
obtain new insights into the geometrical properties of curved Riemannian spaces of smaller dimension
which are globally embedded in the N-space. In particular, it is shown that, in general for a
globally embedded hypersurface, (i) partial derivatives of internal basis vectors with respect to
internal coordinates must in general be expressed as a linear combination of external as well as
internal basis vectors, (i) there exist two different geometrical expressions, always equal in value, for
the intrinsic curvature tensor, (iii) the geodesic equation contains more terms than does the usual
one; the extra terms vanish for Schwarzschild metric embeddings. These points are illustrated by the

example of a 2-sphere embedded in Euclidean 3-space.

INTRODUCTION

Very many advanced physics texts make no mention
or use of basis vectors in their presentations of tensor
calculus and general relativity.' However, a great many
authors have made good use of a tetrad formulation in
the context of general relativity.? Orthonormal triads
of basis vectors in a Euclidean 3-space are very famil-
iar; perhaps not quite so familiar are treatments of
tensor calculus in N-dimensional spaces which make use
of covariant basis vectors (tangent to the coordinate
curves), and their duals, contravariant basis vectors
(normal to surfaces of constant coordinate).?

Our main purpose in this paper is to show that such
a basis vector formulation of tensor calculus provides
certain new insights into the geometrical properties of
curved Riemannian spaces which are globally embedded
in larger pseudo-Euclidean spaces. To this end, in
what follows we develop just enough of the general for-
malism to treat embedding; we omit the bulk of standard
tensor calculus (transformation properties, covariant
derivatives, etc.) which could also be derived easily by
our methods. The most important point of our treatment
is that the change with location in a hypersurface of the
basis vectors belonging to the coordinates of the hyper-
surface must in general partake of basis vectors exteri-
or to the hypersurface. This result leads to two differ-
ent geometrical expressions, always equal in value, for
the conventional curvature tensor in an embedded hyper-
surface. As an example, we evaluate the curvature ten-
sor, using both expressions, for the surface of a sphere
embedded in Euclidean 3-space; the results agree.

We also find that the equation for the geodesics in an
embedded hypersurface in general contains more terms
than does the usual geodesic equation. For Schwarzs-
child metric embeddings, * these extra terms vanish,
so that there is no contradiction of general relativity.

FORMALISM

Consider an N-dimensional real coordinate manifold,
and an associated pseudo-Euclidean linear vector space
PE,. Then there exist real-valued coordinates X’, i
=1, ..., N, such that the position vector x and the vec-
tor separation dx of infinitesimally near points may be
written

x=E, X!, dXx=E,dX}, (1)
where dx=0 if and only if dX’=0, all ¢; the {E,} are

789 J. Math. Phys., Vol. 15, No. 6, June 1974

stant basis vectors for PE,. The metric may be taken
as

GiiEEi'Ej:Gji=(0, i#fxl, i=j). (2)
This metric is constant, since the E, are. Define
E'=GYE,, GYG,,=6;=E'-E, (3)

The set {E’} is also a basis in PE,. Define the gradient
operator:

v=E! 0

X (4)

Consider a one—one (in general nonlinear) mapping to
coordinates x*:

xi= X, LX) — XP=F A L, xY). (5)
Define
_ oX* . .
€,=9X= e E, = covariant basis vector, (6)
e 0xt . .
ei=Vxi= B E* = contravariant basis vector, )]

associated with the coordinates x’. We use the notation
2,=28/8x'. The basis vector e, at a point is tangent at
that point to the coordinate curve x*=(const)?, all 2#1,
which passes through that point. The vector e’ at a
point is normal at that point to the hypersurface «°
=const, which contains that point. These interpreta-
tions apply mutatis mutandis in all coordinate systems,
including the reference pseudo-Euclidean system.
Define the metric:

gi;=ere,=g,;, gi=e'e'=g 8
then g'g,,=6i=e’+e,, and g;, is a tensor of second
rank, transforming as a product of basis vectors.
Coordinate dependence of basis
Consider

ae—a<aXm _ X aw
TET T Naxt T T axiaxt 53X T

where the last equality defines I';;°=T",°. Then

=I';;%,, (9)

e, 9,e,=g,1,°=[k, jil; e;-0,8,=[i, jkl;

adding these and manipulating, we find
ER jk]:%[ajgki+akgj{—aigij:gimrjkm’ (10)
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the Christoffel symbol of the first kind; then T i’} isa
Christoffel symbol of the second kind, equal to the
(negative of) the affine connection.! In our treatment
there is no need to consider parallel transport or arbi-
trarily defined affine connections.

Consider the second derivatives:

a3

0,0,8,= mEmz(akrﬂ +1",;"I‘k,;',)eq, (11)
3 3x™
ajakei=m E,,,:(a,.r‘,;; +T I‘j,,‘{)eq. (12)

These are manifestly equal, so their difference
vanishes:

e -390, =R";; =0, (13)
where
R i=00 T T Thn (14)

is the curvature tensor; naturally this is zero in a flat
space. We use the notation

ap b =a;0; =a;b, (15)

Note that we do not use the 3 usually associated with
index antisymmetrization brackets.

GLOBAL EMBEDDING

Consider the M-dimensional space obtained by placing
(N - M) constraints on the curvilinear coordinates
M 0., 2V Let

x*=(const)’, a=M+1,..., N, (16)

define the M-dimensional hypersurface Z,. The remain-
ing coordinates x*, u=1, ..., M, are coordinates for
T . Here and in what follows, Greek indices range and
sum over 1, ..., M; Latin indices (a, b, ¢, ...) from
the first part of the alphabet range and sum over

M+1, ..., N; Latin indices (i, j, &, I, ...) from the
later part of the alphabet range and sum over 1, ..., N.
Now notice that

aueu':rwllel:ruze)t_'-rvzea; (17)
that is, the change of a basis vector with respect to a
change of internal coordinate partakes not only of the

basis vectors in T, but also of those outside Z,, since
T,. #0 in general.

For the curvature tensor with all interior indices, we
have from Eq. (14),

R%,5 =0={3, T5)s" + Tprs Ty = Tat5 Ty (18)

where all quantities are evaluated on the hypersurface
Zy. Now

Toa=g"i,08l =g, 068] +g*a, 08| =T % +A%, (19)

where “T' %, AY, are defined by the first and second
terms in the last equality, respectively. The Christoffel
symbol #T' % belongs entirely to the hypersurface Z,.
From Egs. (14), (18), (19), we have on the hypersurface
Zy

Mpao __1Ta a o My o
R Bya—renr Gla-alr 818 rslsAm

_Aglb Mrtrxn "Ag[a Agm ‘(20)
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where the conventional curvature tensor in the M-space
is defined by

YR® 5,5 =81, T 15+ Thts “T5 ) (21)

Equations similar to Eq. (20), and to its three indepen-
dent companions which arise from

RaBdeos Rcha’= 0, Rabcd =0,

have been derived by a different method by Szekeres.?
If the coordinates are such that (g*“)=0 on £,, the
(A%)=0o0n<Z,, and Eq. (20) reduces considerably.

We see that our formalism, with global embedding,
restricts us to Riemannian curved spaces with symmet-
ric affine connections; but such spaces are the ones
pertinent to Einstein’s theory of gravitation, and to
successful modifications thereof. Theories with non-
symmetric metric and/or nonsymmetric connections
have been attempted, but none have been successful
enough to replace Einstein’s theory.

GEODESICS

In the curvilinear coordinates x' in our N-space, a
curve lying entirely in our embedded M-space is given
by x'=2z%(s), i=1, ..., N, subject to the constraints
x°=2%s)=k%=(const)’, a=M +1, ..., N. The N-vector
velocity is 2=¢e, 4'=e,*, since 2"=0; the dot means
d/ds. We take ds to be the (positive) element of arc
length along the curve, whereby ds®=+(dz - dz); the
signs are taken so as to make ds? >0. (We omit discus-
sion of null curves.) Therefore Z-z=+1, A (nonnull)
geodesic in our embedded M-space is a curve of ex-
tremal arc length between any two points; its equation
is the Euler —Lagrange equation

oL _d oL 22)

with
L=(xg; 28/ )%= (2"~ k%, (23)

where the ), are Lagrange undetermined multipliers,

a=M+1, ..., N. Combining the above equations and
constraints, we get
T5%5%%+g%x,=0, a=M+1, ..., N, (24)
(2" +9T5 2780 + (A5 2% g°0,) =0, u=1, ..., M,
(25)

where we have used Eq. (19). Equation (24) evaluates
the Lagrange multipliers. If we had followed the usual
development in an g priori curved Riemannian M-space,
then instead of Eq. (25), we would have the usual
geodesic equation

74T 2758 =0, (26)

In general Eqs. (25) and (26) disagree; but for the
Schwarzschild metric embeddings,* g°°=0on Z,, imply-
ing that A}, =0 on £,. Since tests of general relativity
are really tests of the (exterior) Schwarzschild metric,
there is no contradiction. [Note that the extra terms in
Eq. (25) always vanish if g*°=0 on £,, which is the case
for any ¥, if the x* are orthogonal coordinates. |
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SPHERICAL 2-SURFACE

Consider an example in a background Euclidean 3~
space E;, with coordinates X‘, metric G,;=96,,. Trans-
form to spherical polar coordinates x', (x', »%, &%)

=(0, ¢, 7):
X'=rsinfcosp, X2=rsinfsing, X =rcoss; (27)

with 0srs o, 0< ¢ <27, 0< 6< 7. We ignore singular
points. Then

dX dX'=g,; dx'dx’ =7 (d6) +(#* sin®0)(dd)* +(ar)?,
so the metric g;; is diagonal, with
gu=r=1/g", gp=7"sin*0=1/g%, gu=1=g%.
(28)

By using Eq. (10), the only nonzero Christoffel symbols
are easily found to be

T3=Ta=1/7, Ty=-sinfcoss, T,2=T7=coté,

29
T2=T2=1/7, Ti=-», T,=~rsind. (29)

A sphere of radius a centered at the origin has the equa-
tion x* =q =7, so that here (x*, +®) =(6, ¢) are interior
coordinates, and x®*=7 is the exterior coordinate.

By symmetry, the only independent non-zero com-
ponent of *R®, ; is

MR1212 = al rz; - azr‘xé + Fzé in = FLQ in = al Fz; = rlg rzé
= - cotf(—sind cosb) + a_aé(' siné cos#) = sin4.

(30)

Using the right-hand side of Eq. (20), we find the ex-
pected agreement:

T)3T,5 - T3 T3 = = (- asin®6)(1/a) = sin*¢ = R;;,. (31)

- It is trivial to check the zero-valued components of
Eq. (20). Notice that

8,6, =T'je,=—ae,,

9,8,=T,je,=cotbe,=0,e,,

3,8,=T,le,= ~sinfcosbe, —~asin®be,.
So, in general, interior derivatives of interior basis
vectors involve the exterior basis vector e,.
DISCUSSION

We should briefly discuss embedded vs conventional
a priovi curved Riemannian spaces, from the point of
view of our basis vector formalism.

In the a priovi formulation, the set of M coordinates
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{x*} is considered to be the whole coordinate manifold.
In a basis vector treatment, the vector separation of
infinitesimally near points would not be a perfect differ-
ential, We would write dx=e dx®, and we might be

tempted to write
aaeﬂzuf‘oﬁieh; (32)

where the ”f‘a*s are proportionality factors to be deter-
mined. For a space without torsion, we would then
arbitrarily take T} =#T';%. Then the definitions above
would yield “T' ;=T %, (intrinsic) Christoffel symbols
of second kind, as usual. But then we could not take
0,0,@y=040,8,, since, if we did so, the curvature ten-
sor would vanish, a contradiction. Yet it seems strange
that these mixed derivatives would have to be unequal,
since e, is merely a vector-valued function of the
coordinates. Our embedding formalism provides in-
sight here: For all curved spaces which may be globally
embedded in a pseudo-Euclidean space of higher dimen-
sion, the relation (32) above is clearly wrong; it should
be our Eq. (17), 9,e,=T e, +T% e, which leads to a
nonzero intrinsic curvature tensor even through ¢,9;e,
=040, ©,. Since it has been shown that all definite metric
Riemannian spaces without torsion,® and a great many
interesting indefinite metric ones,* may be globally
embedded in larger pseudo-Euclidean spaces, this in-
sight is of some significance.

It is clear that suitable contractions of Eq. (20) yield
equations formally identical with Einstein’s field equa-
tions, where the stress—energy tensor occurring on
the right-hand side of the latter is here a purely geo-
metrical object; it is an attractive speculation that
coordinates “exterior” to space—time may be associated
with “internal” coordinates of the fundamental parti-
cles.” Doubtless it is this possibility of total geometri-
zation which sustains physicists’ interest in the embed-
ding problem.

1For example, R. Adler, M. Bazin, and M. Schiffer, Intro-
duction to General Relativity (McGraw-Hill, New York, 1965),
’For example, see the article by G.C. Debney, R.P. Kerr,
and A. Schild, J. Math, Phys. 10, 1842 (1969).

3For example, A. Lichnerowicz, Tensor Calculus (Methuen,
London, 1962).

4C. Fronsdal, Phys. Rev. 116, 778 (1958); J. Rosen, Rev.
Mod. Phys. 37, 204 (1965).

5p. szekeres, Nuovo Cimento 43, 1062 (1966).

®For reference to the original work on embedding, see the
papers in Rev, Mod. Phys. 37, 201 (1965), Seminar on the
Embedding Problem, esp. the paper by A. Friedman, p.
201,

"For a discussion of this idea, see the paper by Y. Ne’emann,
Rev. Mod. Phys. 37, 227 (1965).
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An old but not well-known formal method is detailed and used to obtain the symmetrized
stress—energy tensor from Noether’s theorem applied to Poincaré-covariant Lagrangian field theories.
A variation in a standard method is presented and used to obtain the corresponding canonical
stress—energy tensor, valid in arbitrary curvilinear coordinates, in the limit of Lorentz metric. These
two tensors are shown to be equal, in each case, for scalar, Maxwell, Dirac spinor, coupled
Mazxwell-Dirac, and vector (non-Maxwell) Lagrangian field theories.

INTRODUCTION

In the Maxwell theory in Lorentz metric it is well
known that a straightforward application of Noether’s
theorem, under uniform space-time translation form
invariance of the Lagrangian, yields an asymmetric
stress--energy tensor,! which may be symmetized either
by educated guesswork, or by application of a formal
scheme. ? The formal procedure may be followed in
general for all Lagrangian field theories in Lorentz
metric.

On the other hand, there is the canonical stress—
energy tensor, > manifestly symmetric, with zero di-
vergence in an arbitrary curvilinear (or curved space)
Riemannian metric. This tensor is believed {o always
reduce to the symmetrized Noether stress—energy ten-
sor in the limit of Lorentz metric. To our knowledge,
this presumed equality of the canonical tensor with the
Noether tensor has never been proven in general. We
have not yet been able to give a general proof.

In what follows, we detail a formal symmetrization
method for the Noether tensor, and a formal method for
obtaining the canonical tensor in the limit of Lorentz
metric. Then we derive these tensors, and show that
they are indeed equal, for several Lagrangian field
theories: scalar, Maxwell, Dirac spinor, coupled Max-
well—Dirac and vector (non-Maxwell).

NOETHER'S THEOREM

We work in Lorentz metric, n, =diag(111 - I), co-
ordinates x* =(x, t), natural units, notation 8 =9 /ox®;
summation convention over all indices.

Consider fields ¢,(x) in a Lagrangian field theory with
Lagrangian density / (¢,, 9,¢,). Here the index ¢ runs
over different components of, say, a 4-vector field,
and/or over different fields. If / is a form~invariant
functional of its arguments under a transformation of
coordinates and/or fields, then there exists a quantity
with zero 4-divergence, ® For example, if / is form-
invariant under uniform space-—time translations, then
8, =0, where

tkuznlu L —(ax;@a) a—('g—ém (1)

is identified as the (unsymmetrized) stress—energy (SE)
tensor. This tensor is asymmetric in general,

If / is form-invariant under Lorentz rotations, then
a,7%,=0, where j,_,, is the angular momentum tensor:

ju).v:_:lu)w"—suhv’ (2)
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lukvzxktuv-xutu).’ (3)
_ oL »
Sun= 555 0) I)y" Do 4

and the {I,,) =- {/,,) are matrix representations of the
generators of Lorentz rotations. Note s, ,==5,,.

/ may also be form-invariant under certain gauge
groups, leading to conserved currents, which do not
concern us here.

SYMMETRIZED STRESS-ENERGY TENSOR

We sketch the development given by Belinfante, 2
Define

elugtlv+aufu)tu (5)
such that
e)wz evm fukvz_fhu.v; (6)

the last equality implies 9,6 =0.

Now
My =0=ty, ~ b, +3%s,,, (N
and
Oy = On=0="t,, = £, +3*(f s, —funds 8
so that we identify
Surw=Sure=Fum- 9

Simple manipulation leads to

fuhv:%(suhv—suux—'-s)wu)‘ (10)

We shall call 4,, the Noether SE tensor.

CANONICAL STRESS-ENERGY TENSOR

Given a Lagrangian field theory in curvilinear co-
ordinates with Riemannian metric g,,, symmetrix af-
fine connection. According to Landau and Lifschitz, the
quantity T,, satisfies D,7*=0, where D, = covariant
derivative, and

_ 2 a/-gl) -dV-g/[ )
T?w': \/—:—g (au a(auglv) \ ang * (11}
with
g=det(g,,), [ =/(d, 3,0, 8% 9,8°°).
We shall let
g),v:nap+hgpx g”"’ﬂ”-k”, (12)

and keep terms to first order only in »», 6uh*"; the se-
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cond equality above is valid to first order, where
) /%d En)«a nva hus’ th: hﬂa' (13)
Then we get

oL 8L } (14)

(T)w)h=0 {‘n)‘v L +2 55 h’“’ -2 a“ a(auh’“‘)

where the 7,, / term comes from 9v-g /0g*. We shall
call T,, the canonical SE tensor,

SCALAR FIELD
Noether SF tensor

Let

Le==33,0 0%¢; (15)
a mass term is irrelevant; ¢(x) is the scalar field.

Then the motion equations are

oL, Lo s -ia(a 8% $)=0. (16)

0=%% =%+ 50.9) o

Under a Lorentz rotation, a scalar field has no com-
ponents to be mixed (no spin part for the induced field
transformation), so that s%, =0. Using Eqs. (1), (16),
we find

=63, ==131,, 0,0 0“p+3,$ 3,0. (a7

Note that 6,, = 0; when possible for Boson field we
choose the over-all sign of the Lagrangian such that,
with our definition of 6,,, we find 6,,>0.

Canonical SE tensor

Ls(B)==30,0 3,6(n*? - hoF)., (18)
Using Eq. (14), we find

(Tiu)h=0 JL a ¢ au-d) + ax‘f’ av¢ e)w’ (19)

where, of course, in the last expression 3“¢=n**2,¢.

For conciseness in what follows, for each field theory
considered we shall merely list the crucial quantities,
and the results 6,,, (T,,)40-

MAXWELL FIELD

Lm:-(l/IGW)f;BfaB’ faBEaaAB— aBAa’ (20)
m gy fou_
sAm =02 =0,
F0)a" =100 85" = 8,050
M,, (1/4m) (f,MA f vAx)v
uku=(1/4’”)fu>¢Av’ auﬂtn).v:_(l/4ﬂ)f).vauAu’

t;‘n":_(nll‘/leﬂ)fmﬁfas_"(1/4Tr)f)¢u avAuv
L al)==(1/167)f,of,5 827 &% =/ ,+(1/167)f uf,s (N*"H™®
+n%pe),
(M, /16) f,of 8 +(1/4n)f,, f,* . (21)

(Note that the fully covariant f_, still involves only

(T;.nll)h=0 = elv ==
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ordinary derivatives of A , because of its antisym-
metry.) The equality T =6 is well known for the Maxwell
theory.

Dirac spinor field

We choose a real-valuedb Lagrangian in metric i,
Lp==5@v*2, 0= 0,by*) ~m o, (22)

where the y* are 4X4 constant matrices satisfying
[y*, "], =2n*"1, v,T=v,, v]=-v, and for definiteness

F=oT iyt (23)

We regard (¥, J) as independent (four-component) fields;
then

6—_4:0-"}/“aud)+mz,b=0,
o

qu = % O O = %['}’,n 7;]

d 3L -
sfku aéd)) v).w d) Iv)\ m == Elb[yur ] b,

D ==5WY %% NV YL

041, == M08, 0= by, 00 = 00md + 0,0r,0),  (24)
)«v_Z(z»b‘yxa KP ayZI)YA, d)) (25)
Note that / , =0 in virtue of the field equations.

The generally covariant Dirac equation was first
presented long ago®; it may be written

%3, = T,)9+mp=0, (26)

where 2*, T’ are 4X4 coordinate-dependent matrices
satisfying®

xl=2g471, T, =, pv]2?,

with [\, uv]=4(0,8,,+ 9,8,, — 8,4, ) = Christoffel symbol
of first kind, and Z**=1[x", \*].. The field equations (26)
are Euler—Lagrange equations of the Lagrangian

V=g [ ,(h), where

L oM ==3{on8,- 3,90 - 3[ax, T, ]9} - mPy.
To first order in k*8, 3 K8 we have
A=y ghty,, A, =y, +3R,eYE (27

ru = z(avh'xu)o.w"

ly«, T ], =3, ){[y* c”],+ " 0™]}=0, (28)

LM
=L ot TR0, 0+ Py, 0,00, 0 v b -3, U y,0).
(29)

Whether we combine Egs. (5), (24), (25) to get 62 or

Ap?
Eqs. (14) and (29) to get (T2),.,, we find

TP o= 05,
= Z(d) }’xaud) + w ’yva)‘d) - aﬁ Y)Ld) - ax—d—) yyd))-
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COUPLED MAXWELL-DIRAC FIELDS
LmDZLm+LD+juAu9 j“Eie$ .yuw_

[ pti,A*=0 in virtue of field equations,
A .
5—$ =0—y*3, —zeA“)zp+m(b=O,

SL _ 0~ [(3, +ieA,)ly* ~ mF=0,

5y
5L
=0-—8 fv“=—4'n'j“
SA, v ’
tﬁD=tTu+tfw ’:fvz Z‘Xv+ e)«v’

but 94f 70 is different than in the free field case. After
some manipulation, we get

610 =67, + 07, - 3UhA, + 1A (30)
We have for the curvilinear Lagrangian

LonpBY=[ o(B) + [ p(B) + 2(,Ag+ jsA ) (n%E = RF);
inserting this in Eq. (14), we get

(T3P heo = 637+
VECTOR FIELD

We use for the Lorentz metric Lagrangian density
Lo == 3(3,0)(0%¢°).

This will provide an example in which the Christoffel
symbols actually play a role:

oL v
=0—+29,0"¢* =0;
6¢u