
                                                                                                                                    

Theory of multibin tests: Definition and existence of extraneous 
tests 
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Dirac's sets of commuting observables, in the guise of lists of mutually orthogonal projections which 
add to the unit matrix, are readily extended to a convex completion. But, furthermore, there exist 
lists of nonnegative Hermitian matrices which sum to the unit matrix which do not even belong to 
this convex completion. It is shown that these "extraneous" lists appear as tests in ordinary 
quantum-mechanical experiments. This circumstance leads to simpler rules for injecting measurement 
theory into the social sciences than might otherwise be proposed. Various relationships between lists 
of orthogonal projections and more general tests are given. The problem of devising rules of 
inference by direct computation is very briefly engaged. 

1. INTRODUCTION 

The epistemology of the physics of the past half 
century is crudely conveyed by the formula Tr PA for 
the expectation value of an "observable" A in the state 
P. The notion of "observable" was a convenience for 
incorporating classical machinery into the new physics, 
yet it is desirable to clarify the epistemology as follows: 
ASSOCiated to each method of preparation designated as 
a state-producing method there is a state matrix P, and 
associated to each further continuation of procedures 
which could lead to b mutually exclusive and exhaustive 
results there is a list A = (AI' ... ,Ab) of matrices, such 
that Tr PA" is the probability that state P processed by 
b-test A lead to outcome k. 

Technical difficulties will be minimized throughout by 
using nXn matrices of complex numbers, n finite. Such 
matrices will be said to be of size n. The test is of 
size n and bin number b. A few more terms and notions 
are most concisely introduced in brief review of 
standard material: 

The primordial state of quantum mechanics is the 
pure state, a one-dimensional Hermitian projection. 
Landau, I von Neumann, 2 and Weyl3 observed that the 
feasible procedure of what I shall call rouletting states, 
namely producing any of several states by random 
choice with preassigned probabilities, extends the pure 
states to their convex completion, the body of states, 
nonnegative Hermitian matrices of trace 1. Indeed, 
unitary transformation of any state matrix to diagonal 
form displays it as a convex combination of (orthogonal) 
one-dimensional projections. The extreme states are 
the pure states. 

#1. Definition: The primordial tests of quantum 
mechanics are the lists (E l' ••• , E b) of mutually orthog­
onal Hermitian projections which sum to the unit 
matrix I. I call these sharp tests. 

A lingering commitment of scientific thought to an 
objective universe of states has led to little interest in 
generalizing4 the sharp tests. Yet a laboratory assistant 
who inserts different b-channel experiments between the 
state and a common array of b output bins or counters 
according to a predetermined schedule of probabilities 
is of course rouletting tests. The b-tests A k 

=(A~, ... ,A:) and rouletting probabilities Pk~O, ~Pk 
= 1, lead to the rouletted b-test A = (All' .. , Ab ) with 
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Aj = ~P~1. Indeed, the matrices Ai so defined do 
generate the rouletted probabilities of outcomes stem­
ming from any state if they are put together with the 
state matrix P into the Tr PAj formula, but no other 
matrices A'i will do provided enough states Pare 
available, since Tr P(Aj-Aj)=O for all one-dimen­
sional projections P already implies that Ai - A'i = O. 
Even if the original tests A k are sharp, the rouletted 
test A is sharp only if the A k coincide (#25). 

Therefore b-tests not themselves sharp are readily 
produced from sharp b-tests by such an annoying 
assistant, or else by imperfect sorting into the bins, a 
more likely defect. But are there yet other kinds of 
tests? 

#2. Definition of b-plex: #8 below shows that the only 
sensible b-tests have each A i nonnegative Hermitian, 
and ~~=~j =1. A b-tuple of matrices so restricted will 
be called a b-plex. 

These restrictions are similar to those for a state 
matrix, there being a clause for nonnegativity and a 
clause for normalization. 

#3. Definition: Convex combination of b-plexes A k 

with coefficients Pk will be related to the usual convex 
combination of matrices by requiring commutativity of 
convex combination with selection of the ith coordinate 
matrix, Le., ~p~k)j=~p~:. 

Convex combination of b-plexes corresponds to the 
physical notion of rouletting the corresponding tests. 

The b-plexes of nXn matrices obviously form a 
closed convex body for each b, n. 

Were the situation as simple for tests as for states, 
the following would hold: Convex completion of the 
sharp b-plexes would produce all the b-plexes, all 
sharp b-plexes would be extreme, and all extreme b­
plexes would be sharp. Indeed, all sharp b-plexes are 
extreme (#25), but the other statements are false for 
b;:" 3. 

#4. Definitions: The convex completion of the sharp 
b-plexes will be called the undersharp body (under­
sharp b-body in size n). Those b-plexes which are not 
undersharp are extraneous. If the matrices Ai of b­
plex (AI' ... ,Ab ) commute, the b-plex is commutative. 
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We will see that commutative b-plexes are undersharp 
(#44). Since a 2-plex is necessarily commutative there 
is no extraneous 2-plex. Extraneous 3-plexes and 4-
plexes of 2 x 2 matrices will be constructed, however 
(Sec. 5). Even though corresponding physical tests can­
not be achieved by any rouletting of sharp tests, it is 
shown in Sec. 7 that physical tests nevertheless exist 
corresponding to arbitrary b-plexes-provided that any 
unitary transformation is regarded as physically 
achievable by a motion. In a subsequent paper a mag­
netic spin system is described wherein the unitary 
transformations and other constructions of Sec. 7 are 
indeed physically achievable. It would therefore be un­
advisable to restrict the following summary of quantum 
matrix epistemology, for example, by imposing under­
sharpness on the tests. 

#5. The matrix format (MF): If state procedure i 
together with test procedure j yield probabilities P IJk 

for the several outcomes k = 1, ... , b i of the test, then 
nonnegative Hermitian matrices P j and A Jk are to be 
sought fulfilling 

Tr P j = 1, 6AJk=I, 
k 

Tr P,AJk=PjJR' 

A fit of MF could inject the methods of modern 
physics into empirical domains where quantum inter­
ference effects might be large but unsuspected. Es­
pecially if n is small, the clarity achieved by having 
few parameters could make further prior theoretical 
assumptions unnecessary. Schrodinger equation-like 
drift of "isolated states, " for example, could be de­
tected by comparing state preparations which differ only 
in respect to a variable "coasting" time, without any 
prior knowledge of a Hamiltonian, of existence of a 
Hamiltonian, or surety as to what constitutes 
"isolation. " 

I have presented elsewhere5 the guess that this sort 
of analysis might prove interesting for data taken in 
"p Uk" form in the study of visual perception. Several 
groups of workers in quantum logic have similar hopes 
of finding quantum interference effects in psychology or 
elsewhere in the social sciences. 

So as to avoid misunderstanding, note that I am using 
ordinary density matrices for initial states, but avoid 
them so meticulously for "final states" as to even avoid 
using the term "final state. " Nevertheless the test 
matrix A Jk associated with bin k of test j is nonnegative 
Hermitian, hence differs from a "final state density 
matrix" only in its normalization. (Tr Aik may be any­
thing from 0 to the format size n. ) In an empirical 
domain where n is known and n2 -1 real-linearly inde­
pendent state matrices are physically available, each 
new test matrix A Jk may be fixed in terms of its n2 

- 1 
probabilities against these states; it is not mandatory 
to talk about the whole test A = (Ail' ••. ,AJb ). Then 
"unnormalized final state denSity matrices" will do. 

The plan of the sequel is as follows. First, #8 re­
cords the elementary argument for not looking at any­
thing more general than b-plexes (within the main con­
text of this paper, namely, the Tr PA formula for 
probabilities from complex matrices). Then the study 
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of extreme points among the b-plexes is related to 
linear independence of spaces X(Aj) of 2-sided non­
negative variation or of spaces Y(A j ) of 2-sided 
"spindle" variation. The nonnegative variation version 
gives a lemma, #23, that (AI' ... ,Ab) extreme requires 
all Aj to be singular (except when b-1 of them vanish), 
which later helps determine all extreme b-plexes of 
2 x 2 matrices. The spindle-variation version estab­
lishes the extremity of the sharp b-plexes almost 
immediately. 

The possibility that summing some of the A j together 
produce a sharp b' -plex introduces a notion of seg­
mentation, unsegmentability, and a reduction of any 
b-plex into its unsegmentable parts; the opposite pro­
cess of assembling segments in particular can be used 
to generate more extraneous examples. 

A different sort of extraction of a sharp structure 
from a b-plex yields a "reduction" into a sharp b-plex 
and a b-plex of matrices none of which has 1 for an 
eigenvalue, in the manner of a direct sum. 

The existence of extraneous b-plexes is established 
in Sec. 5 by finding all extraneous extreme b-plexes of 
2 x 2 matrices without zero matrices; for these b = 3 or 
4. 

It is proved in Sec. 6 that commutative b-plexes are 
undersharp, whence 2-plexes, also called questions, 
are necessarily under sharp. This result together with 
the common emphasis upon sharp and mixed4 questions 
is held to account for a lack of attention to the 
phenomenon of extraneity. 

The issue of whether extraneous b-plexes can occur 
as physical tests is at this point very interesting, be­
cause such b-plexes indeed exist, but cannot of course 
be reached as physical tests by rouletting the usual 
sharp tests. Section 7 is a construction not involving 
convexity arguments which settles the issue by showing 
how any b-plex may occur as a physical test, provided 
that any unitary transformation may be eigeneered as a 
motion. The construction is similar to Landau tracingl 
for state matrices, which as is well known leads from 
pure states to mixtures and so simulates rouletting, 
yet for tests is more powerful than rouletting in that 
extraneous tests appear, not only mixtures of sharp 
tests. 

Two kinds of sufficiency for undersharpness are given 
in Sec. 9, the first depending upon dominance of one 
bin over all others, the second upon special hypotheses 
involving close relationship of a test to questions by at­
taining the b bins through b-1 successive bifurcations. 

An ideally simple fit (Sec. 10) of MF to "data" in­
volving lots of orthogonality opens the final and most 
important topic, the praxiS of fitting MF. Improvement 
of computability by elimination of invariance (Sec. 11) 
leads to a conjectural alternative "Sparse Format" (SF). 

#6. Notation: Vor V" will denote the Hilbert space of 
complex n-tuples on which the nXn matrices may act. 

X(M) will denote the space of eigenvectors of matrix 
M belonging to X. Thus, X(M) = {Or unless X is an eigen­
value of M, and O(M) is the dernel of M. If M is normal, 
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EAlIaA(M) is the orthogonal complement (O(M»l of OeM). 
Orthogonal projection on this space of M will be denoted 

EM' 

lor In denotes the nXn unit matrix. Thus, E[= V. 
diag(al'~' ... ) is obvious notation for a diagonal 
matrix. The elements of matrix Ak are akiJ" 

A· B:; Tr A t B defines a positive definite Hermitian in­
ner product on the nXn complex matrices, real for A, 
B Hermitian. If A . B = 0, A and B will be said to be 
trace-orthogonal. The accompanying norm 11A11 
5: (A • A)1 /2 is the positive square root of the sum of the 
~bsolute squares of A's matrix elements. Thus 11111 = n1 /2. 

A matrix with nonnegative real eigenvalues is non­
negative. If furthermore it is nonsingular it is positive. 
A ;" B means matrix A - B is nonnegative. 

#7. Topology: Topological statements relating to 
various sets of matrices will always refer to the norm 
topology on the relevant set. TopolOgical statements 
about sets of b-tuples of matrices refer to the topology 
induced on subsets by the Cartesian product of the 
aforesaid norm topology for each of the b coordinates, 
equivalently, to a norm topology wherein the norm of a 
b-tuple of matrices is the positive square root of the 
sum of the absolute squares of all the matrix elements. 

Inasmuch as all matrices of interest will be nonnega­
tive nXn Hermitian matrices ';'1, the matrices all lie 
within the closed ball of radius n1 /2, which is compact. 
A b-tuple of such matrices has b-tuple norm ';'(bn)I/2; 
all b-tuples of interest thus also lie in a compact ball. 
This comment should make the compactness of various 
sets (b-plexes, states, the spindle, the under sharp 
body, commutative b-plexes) obvious upon definition. 

2. PHYSICAL BASIS FOR THE B-PLEX CONDITIONS 

Part 1 of the following theorem is standard material, 
worked out for the sake of comparison with part 2. 

#8. The b-plex theorem: If probabilities Pk' Pk;" 0, 
I;,jJk= 1, are to be computed from the rule Pk=Tr PAk 
and state matrices P and b-test bin matrices Al' ... ,A

b
, 

then 

1. If any sharp n-plex represents some test, then 
p=pt, P;"O, and TrP=1. 

2. If any I-dimensional projection represents some 
state, then (AI' ... ,A b ) is a b-plex. 

#9. Proof of 1: Matrix Al may be any I-dimensional 
proj ection I x)(x I, hence Tr PI x)(x I = (x I P I x) is a 
probability, therefore nonnegative. Hence P;" O. Also 
(xIP- ptl x ) =(xIPlx) - (x IPlx)*=O, so p=pt, I;Pk 
= 1 = I;Tr PAk= Tr PI;A k= Tr P if any b-plex A occurs 
as a test, and sharp n-plexes are given to occur. 

The hypothesis of part 1 is stated with unnecessary 
strength in order to refer to an analog of Dirac's com­
plete sets of commuting observables. 

Proofof2:Pk=Tr Ix)(xIAk=(xIAklx);"O, all x, 
shows both A k ;" 0 and Ak=At. I;Pk= 1 yields (x I I;Ak 
-Ilx)=O for all x, whence I;Ak=I. QED 
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#10. Definition of spindle: The intersection {ilIA =A t, 
A ;"O}n {BIB=Bt, B=I-A, A ;"O} of the nonnegative 
cone with the I-shifted nonpositive cone will be called 
the spindle, or spindle (n): n being the size, as always. 

#11. Remarks: A 2-plex A is defined by its first co­
ordinate AI' which is an element of the spindle. Con­
versely any element Al of the spindle paired with I -AI 
forms a 2-plex. This correspondence is obviously a 
convexity isomorphism. 

The spindle also appears as the set of aU possible 
matrices which may occur in a fixed place, e. g., place 
1, of a b-plex. 

#12. Definition: For A Hermitian nonnegative, 

{X Ix =xt and '3 ~ > 0 such that 

- A .;,u.;, A implies A + uX;" O} 

will be called the space of 2-sided nonnegative variation 
of A, and denoted X(A). The characterization X(A) 
= {E AME A 1M =Mt} of #17 shows X(A) to be a real linear 
space. 

#13. Definition: For A Hermitian nonnegative, 

{Y I y = yt and =i A> 0 such that 

- A ';'u.;, A implies A + uY E spindle} 

will be called the space of 2-sided spindle variation of 
A. 

#14. Remark: yeA) =X(A) n XCI -A) shows yeA) to 
be a real linear space and is otherwise useful. 

#15. Lemma for offdiagonal zeros: If a nonnegative 
Hermitian matrix M has a 0 in a diagonal place, it has 
0' s in the corresponding row and column. 

#16. Proof: The result is a direct consequence of 
nonnegativity of the 2 x 2 minors mjjm jj - mjjm ji = 0 
- Imjjl2 with mii=O. QED 

#17. Theorem: If A is a nonnegative Hermitian matrix, 
X(A) is the set of Hermitian matrices of form EAMEA, 
i. e., which act in E A V. If A is diagonalized, say A 
=diag(al , ••• , ak , 0, ... ,0) with a j > 0 for i .;,k, aj=O 
for i> k, then X E X(A) if and only if X is Hermitian with 
o elements outside the upper-left kxk bloc. 

#18. Proof: Since A + AX, A-AX must both be non­
negative for A> 0 small, it is clear why X must vanish 
in the lower right-hand bloc. The "lemma for off­
diagonal zeros" applied to A + AX shows A + AX, hence 
X itself, to have zeros everywhere else outside the up­
per left-hand bloc. Continuity in A of the upper left 
minor determinants of A + AX and positivity of A con­
sidered as a matrix in the upper left bloc shows that X 
may not be further delimited. The form E AME A gen­
eralizes this to A not necessarily diagonal, inasmuch 
as it specializes correctly when A is diagonal. QED 

#19. Corollary: dimX(A)=(rankA)2, for a non-
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negative Hermitian matrix A. 

#20. Corollary: The following are equivalent for non-
negative Hermitian A: 

A is of rank 1; 

A is a positive multiple of a I-dimensional projec­
tion; 

ali=xTxi or A= Ix)(xi with x",O not necessarily 
normalized; 

A is proportional to a pure state; 

dimX(A)= 1; 

X(A) = {r A I r real}. 

#21. Theorem: The following are equivalent conditions 
for b-plexA=(A1, ••. ,A&): 

A is an extreme b-plex; 

the spaces X(A1), ••. ,X(A&) are linearly independent; 

the spaces Y(A1), ..• , Y(Ab) are linearly independent. 

#22. Proof: Failure of extremity depends on the 
ability to express A as a midpoint of varied b-plexes, 
A ±X, X *0. That A ±X be b-plexes requires only that 
the Ak±Xk be nonnegative (hence also Ak + uXk '" ° for 
-1 ~u ~1), and that ~0k±Xk=I. Since ~0k=I, this 
reduces to ~~k=O, a relation of linear dependence 
among the b elements Xl' ... ,Xb of the spaces of 2-
sided nonnegative variation. 

The alternative statement in terms of the Yk(A) 
follows by observing that whenever an expression as a 
midpoint is achieved, each X k involved belongs to Y(A k), 

not only to X(A k). This is so because each matrix of a 
b-plex belongs to the spindle. Hence Ak + uXk '" ° above 
may be replaced by Ak + uXkE spindle. QED 

#23. Singularity lemma: If b-plex A is extreme, 
either each Ak is singular or else b-1 of them are 0, 
the remaining one being I. 

#24. Proof: Suppose A is extreme and Al for example 
is nonsingular. Then #17 shows X(A1) to be all of V. 
Linear independence of the X(A k) (#21) then requires 
X(Ak) = {O} for k * 1, whence Ak=O for k * 1, again by 
#17. QED 

#25. Theorem: Sharp b-plexes are extreme. 

#26. Proof: If E is a Hermitian projection, X(E) 

= {XIX=EME, M=Mt} and X(I -E)={XIX=(I -E)M(I 
-E), M=Mt}. Hence Y(E)=X(E)nX(I-E)={O}. Since 
the coordinates Ak of a sharp b-plex are projections, the 
Y(A k ) are all {O} and hence are linearly independent. 

QED 

4. NOTIONS OF REDUCIBILITY 

Two notions of a separation of sharp structure out of 
a b-plex will now be given: segmentation and I-elimina­
tion. Applied to an extreme b-plex they will lead to 
extraneous extreme b' -plexes of smaller size and bin 
number. This general knowledge is interesting in itself, 
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and will slightly streamline the subsequent discussion 
of extreme b-plexes of 2 x 2 matrices. 

A. Segmentation 

#27. Definition of fusion: A b' -plex A' obtained from 
a b-plex A by adding together some of the matrices, so 
that b' < b, will be said to have been obtained by fusion. 
The corresponding bins will be said to be fused. Fusion 
corresponds empirically to gathering the counts in the 
b bins into b' subtotals. Also, A is said to be finer 
thanA' . 

#28. Definition of segmentation: If b-plex A fuses to a 
sharp b' -plex E, E is a segmentation of A. If a seg­
mentation of bin number'" 2 exists, A is segmentable, 
if not, A is unsegmentable. 

#29. Definition of (b, E)-plex: A list A = (AI' •.. ,A&) 
of b nonnegative Hermitian matrices which sums to 
matrix E will be called a (b, E)-plex. This notation 
seems useful only for E a projection; therefore the 
notation will imply that E is a projection. Thus a b­
plex is a (b, I)-plex. The rank of E will be said to be 
the rank of a (b, E)-plex. 

#30. Segmention theorem: Every b-plex A has a 
unique finest segmentation E = (El' ... ,Es )' finer than 
each other segmentation of A. The bk matrices AI of A 
which fuse to projection Ek form a segment of A which 
(listed in any order) is an unsegmentable (bk,Ek)-plex. 
Each original matrix AI is of form E0IEk. Ek is the 
segment projection of AI. If the (E1, ••• ,E.) are simul­
taneously diagonalized with the 1 eigenvalues of each E .II 

conveniently together, then each AlE 01' ... ,Ab} has 
nonzero elements only in the diagonal square bloc cor­
responding to the l's of its segment projection. If A is 
a convex combination A = L:.pTAT, then each AT has E for 
a segmentation, and the combination is attained by per­
forming the corresponding combination within each seg­
ment. A is extreme if and only if each segment is 
extreme among the appropriate (b k , E k)-plexes. 

A sharp b-plex segments into its Single projections. 

The study of extreme b-plexes may be considered to 
be reduced to the study of unsegmentable extreme b­
plexes, by the segmentation theorem. 

#31. Proof: More generally, the reduction to bloc 
form and the reduction of convex combination applies to 
any segmentation, in particular to a segmentation into 
two projections, E, F, E+F=I: by renumbering 
matrices, Al + ... +Abl =E, Abl+l + ... +Ab=F. Al ~E 
with E in diagonal form shows Al to have diagonal zeros 
where E does, and therefore to be in bloc form Al 
=EA1E by the "lemma on offdiagonal zeros." 

If A = L:.pTAT, then Al = ~PrAi; hence Ai ~Al ~E and 
Ai=EAiE as above: not only Al but each Ai is zero out­
side the E-bloc. 

It remains only to show that there is a finest seg­
mentation. The essence of this is obviously that if 
(E, F), (G, H) are segmentations, then all four projec­
tions E, P, G, H commute and define a finer segmenta-
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tion (EG, EH, FG, FH). Indeed, each matrix Ak of the 
original b-plex (A l , ••• ,Ab ) is either of form EA"E or 
FA~, and is also either of form GAkG or HAJI. There 
are altoghether four types of A k: if A k = EA,.E = GA kG it 
is of type (E, G), etc. Sum all Ak of each type, to get 
four subtotal matrices A EG' AE H' A FG' A FH' Since the 
sum of all the Ak with Ak=EA"E is E itself, A EG +AEH 
=E. Similarly, A FG +AFH=F, A EG +AFG=G, AEH 
+AFH=H. 

Since A EG is a sum of terms of form EA,.E, EAEGE 
=AEG . Similarly, GAEGG=AEG . Since EF=FE=O, 
FA - FEA E=O and also AEGF=O: Each ApQ is unaf-EG- EG 
fected by P, Q multiplication but is annihilated by the 
other two projections. Hence E multiplication left and 
right ofAEG+AFG=G yieldsAEG=EG andAEG=GE. 
Thus, E and G commute. Similarly for other pairs 
among E, F, G, H. It follows that (EG, EH, FG, FH) 
is a 4-plex of mutually orthogonal projections. In the 
guise of A EG, AEH, A FG, AFH we already know that A 
fuses to the 4-plex in question. (More precisely the 
fusion may be to a 3-plex or a 2-plex if one or two of 
EG, EH, FG, FH vanishes. ) 

B. 1-Elimination 

#32. Definition: If l(M) =0, M is I-free. (Av "" A b) 

is I-free if each Ak is I-free. 

#33. Theorem: All the matrices of a b-plex of nXn 
matrices may be simultaneously unitarily transformed 
to bloc form, with an upper left s x s bloc sharp struc­
ture which is diagonal (l's and O's on the diagonal), a 
lower right (n - s) x (n - s) square bloc of matrices 
which form a b-plex of I-free (n- s)X(n- s) matrices, 
and O's connecting the blocs. 

#34. Proof: If one of the matrices of a b-plex has 
eigenvalue 1, say A l , go to a representation where Al 

is diagonal with 1 at upper left. All the other matrices 
Ak must have 0 in the upper left place, hence zeros 
elsewhere in the first row and column by the "lemma on 
offdiagonal zeros." Consequently,AI =1 - ~mAk also 
has zeros off the diagonal in row 1 and in column 1. 
Iterate this extraction of l's until the residual (n- s) 
x (n - s) matrices have no more 1 eigenvalues. QED 

If such a form is a convex combination, it is so by 
virtue of a corresponding decomposition in its I-free 
bloc, inasmuch as the sharp bloc is extreme and hence 
is merely repeated in each term of the decomposition. 
Thus: 

#35. Theorem: An extreme b-plex is unitarily equi­
valent to a direct sum of a sharp bloc and a I-free 
extreme bloc in the sense of #33, and conversely each 
such direct sum is extreme. 

The following is easy to verify. It unites both of the 
above notions of reduction. 

#36. Theorem: The segment projections E k of the 
finest segmentation of a b-plex are obtained from the 
segment projections e k of the finest segmentation of its 
I-free part by fusing the associated sharp parts. 
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Each zero matrix in the b-plex of I-free parts is in 
particular a segment, the corresponding segment of the 
whole b-plex then being the corresponding single sharp­
part projection filled out with zeros. The I-free part 
may not consist entirely of zero matrices, but there 
may be no I-free part, in which case the b-plex is 
sharp and so segments into its Singleton projections 
anyhow: an empty I-free part may be regarded as 
segmenting into singletons for the sake of #36. 

#37. Definition: An unsegmentable extreme I-free 
b-plex is primitive. 

A primitive b-plex is necessarily extraneous: other­
wise it would be under sharp and extreme, hence sharp, 
hence not 1-free. 

The finest segmentation of any extreme b-plex com­
prises any number of I-bin zero matrices, and seg­
ments free of zero matrices: Zero matrices are always 
allowed becauseX(O)={O}. 

5. EXISTENCE OF EXTREME EXTRANEOUS 8-
PlEXES AND DESCRIPTION OF All EXTREME 
8-pCExES OF 2 X 2 MATRICES 

#38. Theorem: The extreme b-plexes of 2 x 2 matrices 
are as follows: (I), (P, Q) sharp with rank P = rank Q = 1, 
primitive 3-plexes, primitive 4-plexes, and the b­
plexes obtained from these by listing zero matrices. 
Each coordinate of a primitive 3-plex or 4-plex is of 
form I a II + a· CT in terms of a real 3-vector a and the 
Pauli matrices. Primitive 3-plexes correspond to al' 
a2 , a3 which form a triangle of nonzero area and perim­
eter 1, primitive 4-plexes to aI' a2 , a3 , a4 which form 
a quadrilateral of perimeter 1 which does not lie in a 
plane. 

#39. Proof: For n=2, segmentability of an extreme 
b-plex after the zero matrices are omitted implies a 
splitting into blocs of size 1, hence sharpness. Thus an 
extraneous extreme b-plex of 2 x 2 matrices segments 
into zeros and only one unsegmentable segment. It is 
easy to see by I-elimination that this nontrivial segment 
must be primitive. 

Each 2 x 2 Hermitian matrix M is conveniently rep­
resented in terms of a real scalar part mo and a real 
vector part m by expansion in the Pauli matrices, M 
=mJ + m· CT. By #23, each AI"" ,Ab is singular; hence 
mo = I m I. Also I m I > 0 as zero matrices have been 
cast out, Thus each Ak is a positive multiple of a 1-
dimensional projection, with a multiplier < 1, being 1-
free. By #20, X(A k) = {rAkl r real}. The condition of 
linear independence of X(A l ), ••• ,X(Ab) (see #21) be­
comes linear independence of the 4-vectors (Iakl, ak ). 

Extraneous b-plexes are impossible for b < 3, linear 
independence is impossible for b> 4; hence the only 
possible cases are for 3 and 4 bins. The b-plex con­
dition is here ~klakl =1, ~ak=O. A 3-plex, 4-plex of 
such rank-1 matrices is represented in terms of vector 
parts by a closed triangle, quadrilateral of unit perim­
eter. If the triangle encloses nonzero area, it is easy 
to see that the I a k I scalar parts lead to linear indepen­
dence of the three 4-vectors and hence to extremity for 
the 3-plex; if not, not. For b = 4, the quadrilateral must 
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be nonplanar, in which case the I a k I components pro­
duce nonzero 4-volume, hence extremity. 

Since there is no room in size 2 for two primitive 
segments or for I-eigenvalue structure together with a 
primitive segment, the exhaustive listing of #38 follows. 

QED 

#40. Remarks: Each of the four types of extreme 
point listed in #38 comes in several connected com­
ponents, one for each placement of extra zero matrices. 
The real dimensionalities of these four types are ob­
viously 0, 2, 5, 8, respectively. The 5-dimensional 
types built on a primitive 3-plex of course are available 
only for b ~ 3; the 8-dimensional types built on a primi­
tive 4-plex only for b ~ 4. Thus, for b ~ 3, there are 
many more extraneous extreme points than sharp ones 
(i. e., 5> 2). 

As the triangle and quadrilateral figures for the 
extraneous extreme 3-, 4-plexes have unit perimeter 
with no side vanishing, I-freeness is geometrically 
evident. Similarly non commutativity is evident as non­
collinearity of the vector parts. 

As one side of a 4-plex quadrilateral tends to 0 with 
the perimeter kept 1 and the resulting triangle non­
degenerate, we find the general primitive 3-plex with 
one zero matrix to be a limit of primitive 4-plexes. 
Similarly the general sharp 2-plex of orthogonal I-di­
mensional projections together with one zero matrix 
is a limit of primitive 3-plexes, the "bilateral" of 
perimeter 1. 

6. COMMUTATIVITY AND UNDERSHARPNESS 

It is possible to comment on why the phenomenon of 
extraneity has esc.aped attention heretofore economically 
as an aside, in the development of other material 
relating commutativity and undersharpness. 

#41. Theorem: For extreme b-plexes, commutativity 
is equivalent to sharpness. 

#42. Proof: Sharpness obviously implies com­
mutativity. 

To show the converse, simultaneously diagonalize 
the b matrices Ak=diag(ak1 , ... , akn) of the commutative 
b-plex A. If any of these diagonal elements akJ is 
neither 0 nor 1, then ~~=l aki = 1 shows that there is 
another aii' i *k, also properly between 0 and 1. Re­
placing akJ , aii by aki ± E, aii'f E represents A as a mid­
point of b-plexes, provided 0 < I E I <s aki and I E I <s air 

Therefore, all the elements are 0 or 1. ~~=l akJ = 1 
shows that there is only one 1 to a bin, i. e., the pro-
jections are mutually orthogonal. QED 

#43. Corollary: All extreme 2-plexes are sharp. All 
2-plexes are undersharp. Sharpness and extremity are 
equivalent for b = 2. 

Thus extraneity is not present for b = 2. It has been 
common to replace a b-bin test by its various fusions 
into questions4 or 2-bin tests (A, B), or even to consider 
only the sharp 2-tests (E, F), equivalent to projections 
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E or subspaces l(E). The association of 1(E) with "yes" 
and O(E) with "no" introduces a closer linguistic paral­
lel to conventional logic than a dire.ct study of the b­
tests without fUSion, yet misses the phenomenon of 
extraneity. The argument that extraneous b-plexes can 
actually occur in a physical test is deferred until after 
another commutativity-undersharpness corollary: 

#44. Corollary: Commutative b-plexes are under­
sharp; the closed convex hull of the commutative b­
plexes is the undersharp b-body; there is no point 
extreme in the closed convex hull of the commutative b­
plexes which fails to be extreme among all b-plexes. 

#54 or #56 makes it obvious that there are noncom­
mutative undersharp b-plexes for b ~ 3. 

#45. Remark: The spindle is compact, whence the 
set of b-plexes is compact; Similarly for the set of 
commutative b,...plexes, which is obviously closed. The 
real dimension of the b-plex body is (b _1)n2

, finite. An 
extreme point of the closed convex hull of a compact set 
C in a finite-dimensional space itself belongs to C. 6

,7 

#46. Proof: An extreme point P of the closed convex 
hull H of the commutative b-plexes is itself commuta­
tive. It has been shown in #42 how to express a non­
sharp commutative b-plex as a midpoint between dis­
tinct commutative b-plexes A and B. Were P not itself 
sharp, P would therefore be such a midpoint. This 
would contradict P's extremity in H, a body which con­
tains the segment AB. Hence P is sharp: The extreme 
pOints of H are all sharp. Since all sharp b-plexes are 
commutative and extreme, they are conversely all 
extreme pOints of H. QED 

7. THE EXISTENCE OF EXPERIMENTS INVOLVING 
TESTS CORRESPONDING TO ANY B-PLEX 

#47. Theorem: For any given b-plex of nXn 
matrices, there exists a physical b-bin test whose b­
plex is the given b-plex. 

#48. Discussion: "Physical test" must be formulated 
in terms of metaphysical conventions of physical­
mathematical correspondence in order to develop the 
assertion into a clear-cut theorem, but the mathemati­
zation is half the story. Therefore both the mathemati­
zation and the verification are lumped in #51 below. 
The clear-cut theorem is: 

#49. Technical theorem: Let U be a unitary matrix 
acting on V n® Vb' p a state on V n, e a sharp b-test on 
Vb' I the unit matrix on V n, and a the b-plex on Vn de­
fined by 

'fIP, 'fIk, Tr U(p® e1)Ut(I® ek)=Tr pak: 

this map from bnxbn unitaries to b-plexes of nXn 
matrices is surjective. 

#50. Metaphysical requirements: A sharp b-test 
must exist as a possible test procedure upon a system, 
the probe, which is describable in terms of b x b 
matrices. The probe must be in the corresponding 
eigenstate of the sharp b-test immediately after the test 
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is effected. It must be possible to assemble the probe 
in one of these eigenstates el together with an arbitrary 
state of a system of interest, describable by an ar­
bitrary nXn matrix p. The joint development of the 
system-probe complex thereafter must eventuate in a 
unitary transform in the usual way of the initial state 
p®el • By imposing various "fields" on the system­
probe complex, possibly space and time dependent, it 
must be possible to engineer an arbitrary unitary trans­
form of the complex. It must be possible then to im­
pulsively query the probe with the sharp b-test. Briefly, 
a Dirac complete set of commuting observables exists 
for observation of the probe, and any unitary motion of 
the system-probe complex is possible. 

It should be noted that not only the probe but also the 
system of interest may be engineered to fit in con­
veniently with these reqUirements. The assertion is that 
all b-plexes are attainable in some physical domain of 
states and tests; not that for any physical n-dimensional 
state space one can devise so many b-tests as to 
saturate all b-plexes for each b. 

An example using spin-~ magnets in which the arbi­
trary unitary transformations and the other details of 
the construction are indeed phYSically achievable, is 
given in the following paper. 

#51. Proof: Consider a system of interest, the 
system, which is coupled to an instrument by means of 
immediate contact with a portion of the instrument 
called the probe. The remainder of the instrument con­
tains the registers or bins for recording a result, and 
will be called the register. The state space of system, 
probe, and register if needed would be taken to be the 
tensor product of three individual state spaces. How­
ever, the role of the register will be merely to effect a 
sharp test (El! ... ,Eb ) upon the system-probe complex 
at some "final" time. Therefore the probabilities as­
sociated with the b bins k = 1, ... , bare 

( 1) 

where P' is the system-probe state at the final time. 
The matrices P', E k thus act on system-probe space, 
with the register not formalized further: the states and 
probabilities are relative to the register as 
observer. 8,9 

The system is originally in state p, the probe origi­
nally in a speCial state el , a I-dimensional projection, 
hence the original state P of the system-probe com­
plex is the Kronecker product P=P® e l • 

The subsequent measurement consists of a unitary 
motion U of the system-probe complex, producing 
state P' = UPU t at the final time, at which time the 
register enters to make its observation or bin-reduc­
tion. 

U does so much for us that this final observation need 
only interact with the probe; thus, Ek=I® ek in terms of 
a probe-space sharp test (e l , ••• ,eb ), and a unit matrix 
called I acting in the n-dimensional system space. The 
notation has antiCipated the convenience that the probe's 
initial state e l be prearranged by a similar earlier 
measurement of the probe by the register which has 
noted and set outcome 1. It is also convenient to have 
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each ek a I-dimenSional projection; thus probe space is 
b-dimensional Hilbert space. 

Hence 

Pk=Tr U(p® el)Ut(I® ek). 

It remains to compute the b-plex system-space 
matrices ak such that also 

Pk=Tr p ak, 

by summing over the probe-space indices. In obvious 
index notation, 

So that (5) be true for arbitrary states p, the matrix 
elements of a k must be 

(2) 

(3) 

the summation convention being dropped. Index g labels 
a state-space basis, hence assumes n values. Hence 
matrix ak is a sum of n matrices, the gth one having 
general e, c matrix element of form ;Ce ;Cc in terms of 
n vectors ;C. If the u,k,el are provisionally regarded as 
free complex numbers, not entries from a unitary 
matrix, the various vectors x are arbitrary. But x:xc 
= (b e I x*>(x* I be> is the (e, c) element of a general non­
negative multiple of a I-dimensional projection. A 
general nonnegative Hermitian matrix may always be 
represented as a sum of n such, inasmuch as it is even 
a sum of n nonnegative multiples of mutually orthogonal 
diagonalizing I-dimensional prOjections. Hence aside 
from the provisionally dropped constraint of unitarity, 
expression (7) would show matrices a k to be free non­
negative matrices. (9) below shows that unitarity of U 
requires a = (aI' ... ,ab) to be a b-plex; the problem is 
to see that any b-plex can be achieved under the con­
straint of unitarity. 

We only wish to show (aI' ... ,ab) to be a free b-plex, 
not an entirely free b-tuple of nonnegative matrices. 
Thus, 

( 8) 

is imposed. (8) is translated by (7) into 

(9) 

on the u's. Equation (9) can be expressed as orthonor­
mality of the columns labeled (1, 1), ... , (n, 1) of matrix 
U. Any n columns of complex numbers which meet (9) 
can have nb-n further columns of complex numbers 
adjoined such that all nb columns are orthonormal, by 
means of the well-known Schmidt process; of course the 
U so achieved is indeed unitary. QED 

The other columns of U produce b-l other b-plexes 
corresponding to replacing the initial register setting 
e1 by e2, ... ,eb. Thus (9) generalizes to a notion of b 
associated b-plexes, which however is not examined 
further. 
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8. TESTS AS OBSERVABLES 

If an experimental test is formally a convex com­
bination of other tests, its bin outputs are indistinguish­
able from those of a test concocted by rouletting those 
other tests, whether it is under sharp or extraneous. 
Such a test may therefore be felt to be dirty, in provi­
ding a confusion of information from the other tests 
which had better be kept separate. A laboratory as­
sistant who mixes tests with a roulette wheel is of 
course not recommended. This conceptual rejection of 
mixity is particularly moot if the other, less mixed 
tests are empirically unfeasible. But mixity is not even 
formally available for resolving a test into sharper 
components if an accepted fit in the matrix format finds 
the test to be extreme, even if the test is thus also 
found not to be sharp. An extraneous extreme test 
represents a maximally resolved observable wherein 
the grossly separating output bins do not correspond to 
a sharp resolution of states into mutually orthogonal 
compartments. We may therefore look upon a sharp 
test as an unusually fortunate success in seeking clas­
sical Aristotelian sorting, not just freedom from mixity. 
If there are enough physical tests, it pays to use sharp 
tests for labeling states. But a paucity of tests owing 
perhaps to emphasis on tests of a certain type could 
interfere with this. 

If states and tests are unknown except as procedures 
which can be coupled to yield inaccurately known 
probabilities, the attempt to choose a special form for 
some of the matrices could distort the statistical analy­
sis which would be tried to fit MF. Extraneous and 
undersharp tests would here necessarily be on an equal 
footing, with perhaps no test being known to be clearly 
one or the other prior to effecting a fit. 

9. UNDERSHARPNESS THEOREMS 

Despite the existence of extraneous tests, it is fre­
quently possible to argue undersharpness. 

#52 Theorem: Fusion preserves undersharpness. 

#53. Proof: This follows straightforwardly from the 
obvious lemma that fusion of two bins preserves 
sharpness. QED 

#54. Theorem: If the sum of the maximum eigen­
values PI"" 'Pb-l of bin matrices AI"" ,Ab-! of b-plex 
A does not exceed 1, then A is undersharp. 

#55. Proof: Form the commutative and therefore 
undersharp b-plexes A k = (0, ... ,p-,/ A k, 0, ... , I - p~l A k) 
with zero matrices except in places k and b, using zero 
for p-,/A k if Pk = O. The original b-plex A is represented 
by A = 2:~:~P"P + (1 - 2: ::~Pk) (0, ... , 0,1) as a convex 
combination of under sharp b-plexes. QED 

#56 Corollary: The body of undersharp b-plexes of 
nXn matrices has the same real dimenSion, (b _1)n2 , 

as the body of all b-plexes. 

#57. Concatenation model: The following model for an 
idealized succession of "measurement stages" produces 
an undersharp test, it if is analyzed in b-plex language: 
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Output states are defined for each bin at each stage m. 
The idea of an m-output P being split into m + 1 outputs 
EPE, FPF by orthogonal projections E, F can be made 
grammatical in terms of b-plexes, by considering a 
sharp b-test A = (AI"" ,Ab_I,Ab) to be replaced at the 
next stage by a (b + I)-test, A' = (AI"" ,Ab-l,A~,A~+I)' 
where only bin b has been split, according to A~ =A"EAb' 
A~+l =AbFAb' This can be shown to be undersharp by 1-
elimination. If A' is defined for A a specific convex 
combination of sharp tests as the corresponding convex 
combination, then although the coefficients of convex 
combination to be used in the next stage are not gen­
erally defined, they may be shown to be defined if E is 
of rank 1. Hence the model is limited to a succession of 
such (E, F) bifurcations with rank E = 1. 

#52 shows that lumping data together cannot engender 
extraneity. #54 shows that if there are b-l bins of 
interest and one last ''beam dump" which collects the 
lion's share of events (as defined), one hasn't got 
extraneity. 

10. REPERTORIES 

ConSiderations relating to a fit of ideally simple data 
to MF are developed in order to illustrate the pos­
sibility of a fit. #66 provides an idealized lower-bound 
argument for the format size. 

#58. Lemma: For A, B nonnegative Hermitian 
matrices, A· B '" O. If furthermore A· B = 0, then 
AB=BA=O. 

#59. Proof: Diagonalize A. A· BETr AB=&ak bu is 
a sum of nonnegative numbers, whence A· B '" O. 

If A· B = 0, ak = 0 or b kk = 0 for e'ach k. Renumber the 
positive a k so that they lie together on the upper left 
part of the diagonal. B is zero in these places. The 
"lemma for offdiagonal zeros" shows B to be zero else­
where, except in the lower right bloc. Therefore, AB 
=0. BA=O merely repeats the conclusion, so as to 
emphasize that A and B commute. QED 

#60. Trace characterization Of sharpness: A b-plex 
is sharp if and only if its matrices are mutually trace­
orthogonal. 

#61. Proof: Let the b-plex be (AI"" ,Ab). A~J=O 
for i oI'i follows from #58. Therefore, Aj2:mAJ=O, 
henceAN-Aj)=O. ThusAj=A~ is a projection. AjAJ 
= 0 for i"* j shows the projections to be mutually 
orthogonal. QED 

#62. Definition: A family of b states PI' ••• 'Pb and 
one b-test (AI"" ,Ab ) such that P j .AJ =6 jJ will be 
called a b-repertory. An n-repertory will be called a 
repertory. 

#63. Remark: Since state-test traces are empirically 
attainable as probabilities, the notion of b-repertory is 
empirical. #66 therefore exemplifies a manner of 
gaining an empirical lower bound for n. 

#64. Repertory theonm: If PI"'" p., (AI"" ,A.) 
constitute a repertory, then P j =A j • Thus these are 
mutually orthogonal I-dimensional prOjections. 
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#65. Proof: If i#j, Pj.AJ==O. By #58, P,AJ==O 

==AJPI • Hence L"pIAk==P,Aj' But also L"P,Ak==Pl==p/. 
Hence P,A/==Pj==A/P j • Bring AI and p/ to simulta­
neously diagonal form diag(ai , ••• ,all)' diag(Pl , ••• , PII). 
P,Aj==p/ reads a~k==Pk' k== 1, ... , n. Therefore either 
ak== 1 or pk==O, each k. Therefore Tr Aj '" rank P j '" 1, 
and also Tr Aj > 1 unless ak == 1 for precisely one k, in 
which case Pi == A j is a 1-dimensional projection. But 
Li Tr Ai==TrI==n==Li 1 shows that none of the in-
equalities may hold. QED 

#66. Theorem: If there is a b-repertory of nXn 
matrices, b -'S n. 

#67. Proof: Suppose there is a case with n< b. En­
large the P matrices to b x b matrices P' by writing 
extra rows and columns of zeros; enlarge the A 
matrices to b x b matrices A' by writing extra diagonal 
ones and offdiagonal zeros in A~, extra zeros generally 
in A~, ... ,A6• The new matrices constitute a repertory 
of b x b matrices with ~ *Ai in violation of #64. QED 

11. THE PROBLEM OF COMPUTING MATRICES 
FROM PROBABILITY DATA 

The problem posed by MF is not of course solvable in 
terms of specific matrix elements, owing to unitary and 
antiunitary conjugation invariance. U enough dot pro­
ducts p. A are given, the dot products of each matrix 
with the matrices of a sharp n-plex will be known, as 
exemplified in #64. This will at least fix the solution 
modulo conjugation. 

Since most of MF is given in terms of dot products, 
it may seem that the invariance is a broader O(n2) 
orthogonal invariance in the n2-dimensional real 
Euclidean space of Hermitian matrices. The invariance 
is however cut down to conjugations by the requirement 
that the P, A be nonnegative, and by the fact that I· I 
==n does not specify I adequately. Indeed, the positive 
cone is not orthogonally invariant for n'" 3. The sub­
group of O(n2) which leaves I fixed as a point and which 
leaves the positive cone fixed as a set is of course 
precisely the conjugations; this is a restatement of a 
theorem of Wigner. lO •u 

The direct computation of unknown dot products (pre­
diction of probabilities) from known dot products (data) 
is conceivable, free of the ambiguity of conjugation, 
provided that one can usefully state the following con­
dition: The figure delimited by the dot products must be 
O(n2 )-congruent to a subset of the nonnegative cone by a 
congruence which carries the vector representing I into 
the positive cone axis. The axis is that subset of the 
positive cone which remains pointwise fixed under all 
congruences which leave the positive cone setwise fixed. 
I have been unable to do this explicitly without resorting 
to extra dot products with a basis, which restores the 
aspect of conjugation-variant elements in lack of de­
finition of the basis, modulo conjugation. The formal 
removal of the matrices of a basis by an existence 
quantifier is of course not computationally effective. 

The use of matrices becomes an advantage if very 
many dot products appear between fewer matrices, 
with n small. The conjugation invariance does not get 
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so long as n need not be enlarged. It is indeed the calcu­
lation of various properties from few simply determined 
states and observables which convinces us of the sound­
ness of quantum mechanics. This is to say that MF 
may be good enough. 

The following is conjecture on how nevertheless to 
avoid it. 

All dot products between vectors in the computation 
are required to be nonnegative as a general precaution 
(#58) and I is not defined beyond I· 1== n. This will hope­
fully make the shape staked out by many vectors roughly 
congruent with the shape of the positive cone, and will 
identify I by "self-centering" on the axis of this shape, 
provided that there exists a unique and much over­
determined solution correctly subjected to MF in size n. 
It is conjectured that sufficient overdetermination gives 
enough dot products to freeze everything rigidly in the 
geometry of O(n2) congruence with only a rule against 
obtuse angles to replace pOSitivity so as to keep the 
vectors from fanning out. In other words, if such a very 
good solution 0/ the unexamined matrix format exists, 
then the following format will find it: 

#68. SParse format (SF): List all the state and test 
"matrices" relevant to the experiment consecutively: 
(Mi' ... 'MS• bl ..... bt) == (Pi' ... ,p., Au, ... ,Albl , ••• , 

A tl , ••• ,A
lbt

), regarding these as symbols, not as 
matrices, not even as vectors. The symbols MR' M S 

which occur below are to be regarded as known or un­
known numbers X RS with the following restrictions, 
stated where convenient in terms of the old symbols: 

and 

XSR==XRS ' and X RS '" 0, each R,S, 

rank of matrix (RS - X RS) -'S n2, 

PI' A ik== Pjjk for measured probabilities, 

L; A H' M has a value independent of j called 1 0 Ms ' 
k • 

I·PI ==1. 

Values of P / . A Jk computed from this for unmeasured 
probabilities constitute the "predictions. " 

#69. Disatssion: It is easy to select vectors from the 
cone of all vectors at angles -'S 45° from an axis, whose 
mutual dot products satisfy X RS '" 0, but which form a 
shape not congruent to a subset of the nonnegative 
cone-when n'" 3. I is of course laid off along the axis. 
This exemplifies a solution of SF "spurious" in not cor­
responding to a solution of MF. The true nonnegative 
cone is more complicated. But if some of the data 
themselves fill in the shape of the true nonnegative cone, 
then nonobtuseness would hold thu rest to the nonnega­
tive shape. Unfortunately, it is hard to prove that any 
data will freeze in SF, even if the same data freezes, 
say, by virtue of #64, in MF. 

SF itself may be taken as a generalization of quantum 
mechanics (can it make sense if n is not an integer 
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but n2 is?) provided that SF may freeze itself, before 
all the PIJ• are given. (Freezing of the unphysical p. P 
and A . A dot products is unclear even when all PI jk are 
given. ) If freezing to shapes which won't fit into the 
nonnegative cone is pOSSible, it is pertinent to ask 
whether actual data support ordinary quantum mechanics 
by SF-freezing to shapes which do fit into the non­
negative cone without being told to do so in advance 
through MF. 

Although no formal invariance blocks SF from 
freezing on definite values X RS ' both SF and MF might 
be approached in practice by varying parameters so as 
to reduce the numerical discrepancies between Pi' A jk 

format expressions and P iJk data. Such a computational 
approach incorporating deus-ex-machina introduction 
of numbers to break symmetry deadlocks (e. g., choice 
of i or - i to first step away from the reals in MF), 
would proceed to successively improved solutions with­
out any particular difficulty owing to existence of con­
jugation-equivalent solutions. In practice, therefore, 
the conjugation reason for seeking to replace MF by SF 
could be moot. 

Indeed, direct inference from measured probabilities 
to predicted probabilities is in itself unlikely to reveal 
much. MF, SF are more likely to be useful with the 
help of exhaustive data to search for low-n fits, for the 
purpose of seeking the familiar matrices of simple 
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quantum-mechanical physics in unfamiliar contexts. 
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It is shown that a system of N spin-(1/2) magnets can be constructed so freely manipulable that an 
experimenter can impose any unitary transformation upon its state space, N any positive integer. 
This is then used with N ~ b -1 + 2 log2n to construct arbitrary states over an n-dimensional 
Hilbert space and to perform arbitrary b -tests upon these states. 

1. INTRODUCTION 

In a previous paper (MB) on multibin tests, I it was 
shown that b-bin tests of all sorts can be achieved in the 
ordinary atomic phySiCS of a system associated with an 
n-dimensional Hilbert space, n finite, provided that an 
experimenter could force a probe-system complex to 
undergo motion P- UPU t with a unitary conjugation 
which may be selected freely by the experimenter. 

It is shown here how this may actually be done for a 
specific class of systems. The constructibility of gen­
eral unitary motions is the essence of thiS, and may be 
of more general interest than its use in MB. Hence the 
free-unitary construction is first presented separately, 
the details of application to MB being done at the end, 
in Sec. 4. 

2. ACHIEVABILITY 

A phySical system is given together with certain basic 
motions. The states of the system are described by 
denSity matrices P, and the basic motions by unitary 
conjugations, P - UP Ut • These will correspond in the 
usual way to basic Hamiltonians H: U==exp(-iHt), where 
time t may be chosen free nonnegative by the experi­
menter. By varying external fields and other external 
parameters, the experimenter may also choose various 
Hamiltonians. By succession of these operations, the 
semigroup of achievable unitary transformations of all 
products of basic operations U may be attained by the 
experimenter. If all elements of the I-parameter semi­
group {exp(- iHt) It9 o} are achievable, then H will be 
said to be achievable, too, even if H is not a basic 
Hamiltonian. In recognition of the nonempirical charac­
ter of sufficiently small discrepancies, a limit of 
achievable motions or of Haniiltonians will also be said 
to be achievable. The U will be of determinant 1, the H 
of trace 0, without loss of generality. 

The sequel is limited to systems with finite-dimen­
sional Hilbert spaces. This immediately turns the 
closure of our semigroup into a group. This is most 
conveniently formulated for the ensuing computations in 
infiniteSimal terms, in #1 and #3: 

#1. Inversion lemma: If H is achievable, then -H is 
achievable. 

#2. Proof: It suffices to show that if U is achievable, 
then U-I is a limit of achievable matrices. The positive 
powers U, Cf2, U3

, ••• are all achievable by repetition. 
Compactness of the set of unitary matrices implies 
that either U is of finite order r, so that U r -

I == U-I is 
directly achievable, or else that there is a point of 
accumulation and also a Cauchy subsequence UPI, 
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lJP2, ••• of increasing powers near it. Hence for any 
E>O, there are integers r, s, r>s>O, with IIUPr 

- UPSII <E. If W is unitary, II WAil == (TrAt wtWA)I/2 
==IIAII. Hence, also IluPr-Ps-I_U-111 <E. SincePr-ps-l 
is a nonnegative integer, uPr-Ps-l is achievable. QED 

#3. Theorem: If a set of Hermitean matrices is 
achievable, then its Lie algebra is also achievable. 

#4. Sketch of proof: To achieve a combination of 
HI' ... , Hm with small nonnegative coefficients 
Pu ... ,Pm' effect HI motion for a time proportional to 
Pu then H2 motion for a time proportional to P.. etc. 
To first order, the resulting motion, exp( - iHmPm) ••• 
xexp(- iHIP!) apprOximates the desired exp(- i"EP,/l,,). 
In order to avoid the second-order commutators for 
large P k , Pk may be replaced by Pk/v for large v, with 
the whole process "compounded" v times. 

The inversion lemma immediately extends this to 
arbitrary real linear combinations. 

If A and B are achievable, then a motion generated 
by the Lie bracket i(AB - BA) for a short time t2 is 
apprOximated by performing the A motion for time t, the 
B motion for time t, the -A motion (apprOximately if 
necessary) for time t, then the - B motion (approximate­
ly) for time t; the result is exp[ - it2 i(AB - BA) 1 to order 
f. (The approximations for -A, -B must be good to 
order t2

.) Larger times may be attained by 
compounding. QED 

3. THE SPIN SYSTEM 

#5. Notation: The tensor products 10 .. ·0 (J i 0· .. 0 
I with Pauli matrix (Ji (i. e., either au a2 , or (J3) as the 
kth factor and 2 x2 unit matrices I as the other N-l 
tensor factors will be denoted (Jki' A tensor product of 
1 Pauli matrices and N -l unit matrices will be said to 
be an elementary matrix of length l. A linear combina­
tion of such objects of a fixed length 1 will also be said 
to be of length l. "E~d(Jki(Jmi=CTk'CTm' 

#6. Theorem: The real Lie algebra of Hermitian 
matrices with bracket operation [A, B 1 == i(AB - BA) 
generated by the (Jki (all k) and the "k' "m (all k, m) is the 
set of all traceless Hermitian 2N x2N matrices. 

#7. Proof: The elementary matrices of length 9 1 are 
Hermitian, traceless, and mutually trace-orthogonal. 
There are 4N - 1 such elementary matrices. Hence they 
constitute a real vector-space basis for the (4N -1)­
real-dimensional space of all traceless Hermitian 
2N x2N matrices. 

It therefore suffices to show that the given generators 
generate all the elementary matrices of length 9 1. 
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Those of length 1 are given, together with special com­
binations of length 2. The general objects of length 2 can 
be obtained by computing a few commutators: 
HO'l 0 I, 0'1 0 0'1 + O'a0 O'a +0'300'3] =0'20 O's - 0'30 O'a. Then 
- H0'2 0 I, 0'300'2 - O'a 00'31 = 0'1 00'a. Finally HI00'3' 0'1 0 0'21 
= 0'1 0 0'1' Thus all 0' i 0 0' j are gene rated. If N - 2 extra 
tensor factors I are carried in all ways, all the elemen­
tary matrices of length 2 are obtained. 

-t[O'i 0 O'a0 1,100'30 Ml =0'10 0'10 M shows how to in­
crease the length of M by 2, essentially arbitrarily. 
Since all objects of lengths 1 and 2 are already avail­
able, this length-increasing operation inductively 
reaches to the remaining elementary matrices of all 
lengths '" 1. QED 

#8. The physical spin system: The kinematical situa­
tion of #5 obviously suits a system of N spin-~ sub­
systems, or "spins." Let these have magnetic moments. 
Construct these so well mutually isolated that a magnet­
ic field can be applied to any single spin in an arbitrary 
direction, while the other N - 1 spins are at ° field. 
Hence the 0'_1 are achievable (and the -O'kl even without 
using #1). Furthermore, let the spins be independently 
movable so that any two spins (the kth and mth) can be 
juxtaposed so closely as to develop a nonzero Heisen­
berg interaction Hamiltonian ">..ak 'am , ">..,*0, for any 
chosen length of time, then again separated: while one 
pair is so interacting, the N - 2 other spins do not 
move. Now the CT_· CTm (or the - CTk • CTm if ">.. <0) are also 
achievable, whence from #6 all motions are achievable. 

4. APPLICATION TO THE CONSTRUCTION OF 
MUL TIBIN TESTS 

The N spins will be used to construct both the state 
space Ba (an n-dimensional Hilbert space Vn ) and the 
probe space D (a Vb)' needed in MB. First a Vn2 =B is 
constructed instead of a Vn for the luxury of obtaining 
arbitrary mixed states2 without outside rouletting. In 
order to make the measurement of the probe simply 
feaSible by means of Stern-Gerlach experiments, b-1 
other spins, enough in principle for a V2b-l, will be used 
to construct D. Thus, 

i. e., N'" b - 1 + 2 log2n spins are needed for the present 
construction. 

Let the whole thing first be set with all N spins down, 
say, by USing a thermal contact with a sufficiently cold 
reservoir and an overall magnetic field. Call this state 
VacN • Then contact with the reservoir is broken, and 
the reservoir is not used any further. 

Achievability of arbitrary unitary motions is so con­
venient that the arbitrary states as well as the arbitrary 
tests are constructed by using motions. VacN is a tensor 
product of states down for each spin; in particular, 
VacN = VacN _b+10 Vacb_H with VacN _b+1 EA, Vacb _1 E C, 
A and C being the V2N - b+1 and the V2b - 1 corresponding to 
a partition of the spins into N - b + 1 spins and b - 1 
spins. Choose an n2-dimensional sub-Hilbert space B of 
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A such that VaCN_b+l E B, and choose B1 and B2 so that 
B = B1 0 B a, where both Bland Ba are Vn's. Thus the 
whole V2N is of form OB1$Ba)$R)$C, where R is the 
orthogonal complement of Bin A. 

In order to produce an arbitrary pure state I x)(xl with 
x E B without other effect, perform a unitary motion 
which rotates VacN _b+1 into x and leaves Vacb_1 un­
changed. Landau-tracing I x)(xi over B1 produces an 
arbitrary mixed state2 p over B2 appropriate for com­
puting probabilities against the subsequent test, since 
the test will not involve B1 • [Indeed, to get general p 
=~'j=1 wllxl)(xll, wl",O, ~wI=1, xjEB2' (x1Ixj )=l5 jj , 

arrange to produce the B state 1;1=1 W / /2 b 10 X I' where 
(bu • .• , bn) is any convenient orthonormal basis of B 1 .] 

C is a Vab - 1 , a system of b -1 spin-~ 'So Vacb_1 E C has 
all these down, hence has total angular momentum j 
=Hb-1)and"z"componentj~=-j. The (b=2j+1)­
dimensional subspace corresponding to this j for more 
general j. will be the probe space, D. Thus, C = D $ R' , 
with R I another residual space. 

The general unitary motion of system and probe to­
gether required in MB will now be imposed upon the 
space B 2 0D, with no motion in B1 , R, or R'. 

The final measurement of the probe required in MB 
will seek its j. value. Since this value is the sum of 
separate ~O's values of the b -1 spins which constitute 
the C system, it can be measured by performing sepa­
rate spin-~ Stern-Gerlach experiments: The construc­
tion has the spins so foreign to each other for other pur­
poses as to make a simpler, direct measurement ()f 
the j. of system C or D possibly awkward. 

The arguments given, including the processe 'I of 
generation of Lie algebra elements, are all construc­
tive, so that experimental procedure for demonstratmg 
arbitrary tests, including the extraneous tests of MB, 
has been given. The fact that such general tests can in 
principle be effected is, however, of more interest 
than a laboratory demonstration, hence no care has been 
taken to seek easy laboratory procedures. The moral 
is already made in MB, that a rule in any way restrict­
ing b-tests of n Xn matrices to any set more limited 
than b-tuples of nonnegative Hermitian matrices which 
sum to the unit matrix, could not be tolerated in con­
ventional quantum mechanics. This provides guidance 
in extracting rules of quantum epistemology from atomic 
physics, for possible application elsewhere. 

IE. Lubkin, J. Math. Phys. 14, xxx (1974), hereafter des­
ignated MB. Terminology of MB will be used freely. 

2Ability to produce an arbitrary pure state in B2 would have 
sufficed to compute the test matrices of the subsequent test. 
If arbitrary mixed states are nevertheless desired they can 
instead be obtained by rouletting pure states. Thus the device 
of constructing and using Bl is not strictly needed for the 
purpose of establishing the existence of arbitrary tests. The 
device is adapted from J. von Neumann, Mathematical 
Foundations of Quantum Mechanics, translated by R. Beyer 
(Princeton V.P., Princeton, 1955). 
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Minimax principles for a subset of the real eigenvalues of the quadratic eigenvalue problem (CJl2A +CJl 
B + C)~ = 0 are presented, where A, B, and C are formally self-adjoint operators mapping a dense 
subspace I!J. of a complex Hilbert space E into E, and A > O. These results are applied to the 
problems of the small oscillations about equilibrium of a vertically stratified, viscous, heterogeneous 
incompressible fluid in a gravitational field and the oscillations of a rotating thin annular disk, and it 
is shown that the minimax principles characterize infmitely many eigenvalues of these systems. 

I. INTRODUCTION 

The linear analysiS of the oscillations and/or stability 
of many conservative dynamical systems about states of 
steady motion (gyroscopic Lagrangian systems) and 
certain nonconservative dynamical systems about states 
of equilibrium leads to the quadratic eigenvalue problem 

(w2A + wB + C)~ =0, 

where A, Band C are formally self-adjoint linear 
operators mapping a dense subspace ~ of a complex 
Hilbert space E into E, the eigenvalue w is a real or 
complex number, and ~ (an eigenvector corresponding 
to the eigenvalue w) is a nonzero element of ~.1-11 A 
fairly large body of literature dealing with various 
aspects of this problem and certain generalizations has 
recently developed, with the major part devoted to the 
establishment of the completeness properties of the 
eigenvectors and generalized eigenvectors in certain 
special cases. An extensive list of references can be 
found in Ref. 12. Relatively little attention has been 
paid to the important question of stability. 2-5,8-11,13,14 

Several authors15- 20 have considered the subclass of 
"overdamped" systems, i. e., those systems where A, 
B, and C satisfy the additional restriction (called the 
overdamping condition) (1], B1])2 - 4(1], A1])(1] , C1]) > 0 for 
all nonzero 1]E~' In particular, Duffin15 obtained mini­
max principles for the eigenvalues of finite-dimensional 
overdamped systems, and Turner18 has obtained cor­
responding results for a special class of infinite-di­
mensional overdamped systems. 

In this paper, with suitable restrictions placed on the 
operators A, B, and C so as to insure the existence of 
a point spectrum, we obtain minimax prinCiples for a 
subset of the real eigenvalues of nonoverdamped 
systems. Our results generalize previous results for 
overdamped systems and contain them as a special case. 
An extension of this type is highly desirable in view of 
the fact that the vast majority of problems arising from 
the analysis of physical systems do not satisfy the over­
damping condition. A different set of minimax principles 
for finite-dimensional nonoverdamped systems has been 
given by the author in Ref. 21. 

Two applications of these results are discussed in 
Sec. IV, after the development of the minimax princi­
ples in Secs. II and III. The first application concerns 
the well-known problem of small oscillations about 
equilibrium of a vertically stratified, viscous, hetero­
geneous incompressible fluid in a gravitational field. 
The second concerns the oscillations of a rotating thin 
annular disk. We show, in particular, that infinitely 
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many of the eigenvalues of these systems are given by 
the minimax principles developed herein. 

II. THE MINIMAX PRINCIPLE 

We adopt the following hypothesis, denoted as (H1), 
throughout this paper: Let E be a complex Hilbert space, 
~ an infinite-dimensional subspace of E, and let A, B, 
and C be linear formally self-adjoint operators from ~ 
into E [an operator F is formally self-adjoint on ~ 
provided that for all,/), /;E~, (1], F/;) = (F1], 1;)]. Further 
restrictions on A, B, and C will be imposed as we 
proceed. 

We define C",=w2A + wB+ C, - 00< w< 00. For each 
real w, C", maps ~ into E and is formally self-adjoint 
on~. Let Sk denote the set of all k-dimensional sub­
spaces of~, k = 1, 2, 3, .••. For each positive integer k 
and every real w, we define the extended real-valued 
function 

(1) 

(it is to be understood that the infemum is over all non­
zero~EV), Clearly, Ak(W)~Ak+l(W), k=1,2,3, .. •. If 
A, B, and C are bounded above on ~ by a, b+, and c, 
respectively [(1;,AO <:;all~1I2 for all ~E~, etc., where 
a, b. and c are finite], then for 0 <:; w < 00 Ai w) is finite 
and is bounded above by w2a + wb + + c, while if A and C 
are bounded above and B is bounded below by b_ on ~ 
[(~, BO ~ b-'I~1I2 for some finite b_ and aU ~ E ~], then, 
for - 00< w <:;0, A,,(w) is finite and is bounded above by 
w2a + wb_ + c. Let q, = {CPI' ¢2, ... , CPk} denote any set of 
k orthonormal vectors from ~. Then V = spanq, E Sk' and 
inft<-Y[(~'C",~)/(~, ~)] equals the least eigenvalue x:(w) 
of the k x k Hermitian matrix whose ijth element is 
(cp;, C",CPJ)' i,j= 1, "', k. Hence 

X:(w) <:;Ak(w) (2) 

for all positive integers k and all real w. In particular, 
if C is bounded above by c and A and B are bounded on 
~, then Ak(w) is finite for all real wand we have 

X:(w) <:;A k(w)-'fw2IIAII+ IwIIlBII+c. (3) 

Furthermore, Ak(w) is continuous, as we now show. 

Lemma 1: Let C be bounded above and A and B be 
bounded on~. Then for each fixed positive integer k, 
Ak(w) is continuous in w, - 00< w< 00. 

Proof: Let wand 0 be real. 

Ak(w±o)= sup inf (~,C"'~5~) 
YES" tEY (1;,~) 
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= sup inf I(~.C .. ~) +(a2±2wa)(~·A~) 
VES.tEV\(~'~) (~.~) 

±a (~. B~») 
(~, E) 

E; sUP inf (~,CwE) +(a2 +2Iwllal)11A1l 
VEl" lEV (~,~) 

+ laIIlBII), 

so that 

A/I(w±O) E;Ak(w) + la I [(21 wi + la 1>l1A1i + IIBII]. (4) 

Replace w by W =F I) in Eq. (4) to obtain 

A.(w) E;Ak(w =F I)+ 15/[(2Iwl +3151lIlAlI+IIBliJ. (5) 

Equations (4) and (5) imply 

IAk(w + 6) -A/I(w) IE; 151[(21wl + 3161)11A1l + IIBII], 

which proves the continuity of Ak(w). 

We use this result together with some additional as­
sumptions on A, B, and C to establish the eXistence of 
zeros of A/I(w), 

Theorem 1: Let C be bounded above and A and B be 
bounded on~. Suppose that for some real 0 there exists 
a subspace A. of A with M = dim~. < 00 such that 
SUPlE.1J(E,CnE)/(~, 0]<0, where ~.=A~n~. Suppose 
further that A > 0 on some subspace ~ of A with 
N = dim ~ > M. Then for each positive integer k satis­
fying M + 1 E;k E;N, there exists W;E (0, 00) and 
w; E (- 00, 0) such that wk•l :;;. wk' wi+l E; wi. and AII( w;) == O. 

Proof. Let q; == {cp J}t' be an orthonormal set of ele­
ments from~. Let~" denote the span of {CPl' "', cp,,}. 
TbenA>O on ~ implies that inflE!:k[(E,AE)/(~. ~)]>O, 
1 E;k E;N. 

Since 

it follows that X:(w) - 00 as Iw 1- 00 for 1 E;k E;N, and so 
Eq. (2) implies that A,.{w) - 00 as I w 1- 00 for 1 E; k E;N. 
Let k :;;. M + 1 and V E S k' Then there exists a nonzero 
1)E Vn A., so that 

inf (E, CoE) E; (1), Co1) E; SUD (E, Cn~) . 
lEv (~, E) (1J,Tj) tEA. (~,~) 

Thus for k:;;.M + 1, Ak(O) E;SUPlE.1 [(~,Cn~)/(~' ~)]< O. 
The existence of zeros w; of A" in (- 00, n) and (0, 00) now 
follows from the continuity of A,,(w) (Lemma 1) and the 
fact that A/I(w) - 00 as I w 1- 00 for 1 E; k E;N. Since 
A ... (w):;;'Ak+1(W) for all real wand all positive integers k, 
it follows that Ak.1(W:) ~O and therefore that Ak+1(W) has 
a zero in (- 00, Wi) and in [Wk, 00), M + 1 ~k E;N -1. Hence 
we may always select the w: so that Wi.l :;;. w; and 
wk•l ~Wk' 
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We proceed to obtain a minimax principle for certain 
of the zeros established in Theorem 1; however, we 
shall adopt a somewhat modified hypothesis: 

(H2) For some real 0, there eXists a subspace ~+ of 
A with M =dim A. < 00 such that SUP'E.1[(~' Cn~)/(~' ~)] E;O, 
where ~. = ~~ n A. 

(H3) A >0 on~. Let D={~ I ~ E A, d(O :;;'O}, where 

d(~)= (~, B~)2 - 4(~,A~}(E, CO = (~, Bn~)2 

- 4(~,A~)(~, Cn~)' 

where Bn=2nA+B. Clearly ~.cD. For all nonzero 
~E D, we define 

Q(O=-(~,B~)±[d(~)ll/2 • 
• - 2(~,A~) 

(6) 

(H4) r+=inflEDQ+(~»_oo, r.=sup'EDQ.(~)<oo. Let 
k :;;. M + 1. Then for any V E S k' V n ~. contains a non­
zero element so that V n D is nontrivial. Hence the real 
numbers 

and 

0;= inf sup Q.(O. k:;;'M+l, 
VESk tEVnD 

0;= SUD inf Q.W, k:;;'M+l, 
VEl1" lEV~ 

are well-defined and we have 

(7) 

(8) 

(9) 

(10) 

With the aid of the following lemma, we obtain suf­
ficient conditions thatAI/( 0:> = O. 

Lemma 2. Let (HI) and (H3) hold, let X be a real 
number, e> 0, 2wA + B be uniformly bounded above on ~ 
by y for all WE (x, X + e), and let V be a subspace of A 
such that for every nonzero ~EVnD, Q.(~)<x+e. Then 
for all nonzero ~E V, (~,CA~)/(~'~) :;;'-e!y!. 

Proof: Let ~E V, ~*O. If ~¢.D, then (~,C"'~)/(~, ~»O 
for all real w. Suppose ~E D. If Q.(~) ~A or Q.n) :;;.x, 
then(~,CA~)/(~'~):;;'O. IfQ.W<A<Q.W, then by the 
mean-value theorem 

f,fQ.W] - nX)=f{(x)[Q.W - xl 
for some XE (X, Q.( m, where f,(w)= (~, Cw~)/(~' ~), 
- 00< W < 00. Now fl[Q.W]=O, 0< Q.m - x < E, and f{(x) 
=(~, [2xA+B]~)/(~,~) E; Iy!. Therefore, -fleX) '" lylE, 
i. e., (~, CA~)/(~'~):;;' - E!y!. Hence, in any case, 
(~, CA~)/(~'~):;;' - Ely!. 

Let J. denote the set of all positive integers n for 
which there exists an E(n) > 0 such that 2wA + B is uni­
formly bounded above on A for all WE (n~, O~ + E). 
Similarly, we define J. to be the set of all n for which 
an e(n) > 0 exists such that 2wA + B is uniformly bounded 
below on A for all w E (O~ - E, O~). 

Theorem 2: Let (Hl)-(H4) hold. Then if 0; :;;. r. for 
somel:;;'M+l, A~(n~) Oforallk:;;.Z, kEJ •. 

Proof: Since r _ ~ O~ '" 0; for k "" Z, it suffices to show 
that o;:;;.r., kEJ., implies Ak(O;> =0. Suppose o;:;;.r., 
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and let V E S k' Then 

O;~ sup Q.W= sup Q.W, 
lEV!ID lEVnDo 

where Do= {~I ~ ED, II~II= I}. Since dim V< 00, Vn Do is 
compact andQ.(~) is continuous on VnDo and thus as­
sumes its supremum there. Hence there exists a non­
zero ~ E V n D such that Q.W;;, 0;;;' r_ ;;. Q_W. which 
implies that (~, Cot~)/(~,~) ~o; therefore, 
inflEV'[(~' Co~~)/(~' ~)] ~o; This last result holds for 
arbitrary V E S k' and we conclude from Eq. (1) that 
Ak(O;) ~o. Let kEJ. and 0i.;;' r_. Then there exists 
Eo> ° and Yo such that 2wA + B is bounded above on t. by 
Yo for all wE (0;, 0: + Eo). Given any positive E < Eo, there 
exists V, E S k such that 0; ~ sUPlEvenD Q.(~) < 0; + E. 
Hence for all nonzero ~E V,nD, Q.(~)<O;+E, and 
Lemma 2 implies (~, Col; O/(~, ~);;. - EI Yo I for all non­
zero ~EV,. Therefore, inflEV [(~,COk~)/(~,O];;'-EIYol 
so that 0;;. Ak(O;) = sUPVE S infl~v [(~, C Ok~)j 
(~, ~)];;. - EIYol. Since thiskholds for all sufficiently 
small E> 0, Ak(Q;) = 0. 

Theorem 3: Let (Hl)-(H4) hold. Then if Qi ~ r. for 
someZ;;'M+l, Ak(O~)=Oforallk;;'Z, kEJ_. 

Proof: Let fj = - B. The proof consists of replaCing B 
by B and using Theorem 2. Consider the triple of opera­
tors (A, B, C) in place of (A, B, C). Obviously (A,.8, C) 
satisfies (HI) and (H3) since (A, B, C) does. For the 
triple (A,.8, C), C w is replaced by Cw =w2A+w.8+C 
=C_ w' Since (H2) holds for (A, B, C), it holds for 
(A, iJ, C) with the same t.. and t._. but with - 0 replacing 
O. Corresponding to Ak(w), dW, D, Q*W, r., and O~, 
we have: 

- (~,Cw~) ( ) 
Ak(w)= :~~k l~t (~,~) =Ak -w , 

dW= (~, B02 - 4(~,AO(~, q)=d(~), 

D={~I~Et., dW;;.O}=D, 

Q-(t)= -(~,B~)±[dW]1/2 =_Q (t) 
.<,- 2(~,A~) ~<;. 

r = inf Q W= inf [-Q_W]=- r_> - 00, • lEI!'· lED 

r_ = sup Q_W= sup[- Q.W]= - r. < 00, 

l~ lED 

n; = inf sup Q.W = - sup inf Q _W = - Ok' 
VESk lEvni> VESk lE':-vnn 

Finally, we observe that 2wA + B is uniformly bounded 
below on t. for WE (0i.- E, 0;;) if and onll if_2wA + jj is 
uniformly bounded above on t. for WE (0;, 0; + E), so 
that J =J . Now 0- ~ r implies n;;;. r , and Theorem 

+ --_ I + ..... - .......... 

2 gives_Ak(O;) = ° for all k;;.l, kEJ •. Since Ak(O;) 
=Ak(- 0;)= Ak(O;;), the theorem is proved. 

III. SUFFICIENT CONDITIONS FOR THE 
EXISTENCE OF EIGENVALUES 

The minimax principles for certain of the zeros of 
the functions Ak(w) being established, we next consider 
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the problem of whether a zero 0 of Ak(w) is indeed an 
eigenvalue of the system Cw~ =0, i. e., whether Co 
has a nontrivial nullspace. Two sufficient conditions 
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for an affirmative answer are given in this section. The 
first (Theorem 4) requires that at the given zero 0 the 
operator Co is decomposable into K-P, where K and P 
are Hermitian, K is compact, and infE[(~' P~)/(~, ~)] > 0. 
The second (Theorem 5) requires that Co=T-L, where 
T is Hermitian and L admits a pOSitive, compact, 
Hermitian inverse. The latter result is particularly 
useful in applications to physical systems. 

Theorem 4: Let A, B, and C be bounded linear 
Hermitian operators from E into E, and let Ak(O)=O 
(with t. = E) for some real 0 and all k E U, where U is 
some subset of the positive integers. Suppose further 
that Co =K - P where P is a positive Hermitian operator 
and K is a compact Hermitian operator, with 
infE[(~' P~)/(~, ~)] > 0. Then U is a finite set, and for 
each kE U there exists a nonzero ~kEE such that CO~k 
=0, where (~k' ~/)=O if k*l, k,ZE U. 

Proof: Let k E U. Then 

( ) 'nf (~, Co~) 
0= Ak 0 = sug 1 (t t) 

VEklEV <;,<, 

= sup inf (~, [K - p]~) 
VESk tEV (t~) 

- su inf (~,P~) ((~,K~) -1), 
- VE~ tEV (~, 0 (~, P~) 

which implies 

. f (~,K~) 1 k U sup 10 (t pt) =, E. 
VESk tE v <" <, 

(11) 

Now P admits the positive bounded Hermitian square 
root p l

/
2 with the positive bounded Hermitian inverse 

p-l/2. We set !;=pl/2~ and obtain from Eq. (11) 

. f (!;,K!;) 1 k U sup 10 -(--)- =, E , 
vESk ~Ev !;,!; 

(12) 

where K =p- l
/

2 KP- l / 2 is compact and Hermitian. 
Clearly (12) implies that IIKII > 0. It follows from well­
known theorems on compact Hermitian operators that 
K admits of a nonempty set of real nonzero eigenvalues 
{Il au {Il j} with corresponding orthonormal eigenvectors 
{cpnu{cpj} possessing the following properties22

: 

[each of the sets {Ili} and {Il~} may be finite, infinite, or 
(but not both) empty]; limi.~ lli=O (if {Ili} is infinite); 
limj.~llj=O (if {Ilj} is infinite); and for all !;EE, 

(!;,K!;)=6 Ilil(!;, cpnI 2 +6Iljl(!;, CPj)12. (13) 
i j 

For kE U, Ak= 1, and we have AI;;' Ak= 1 for all positive 
integers l ~k, where A/=suPVES/ inftEV[(~,K~)/(~, ~)], 
l = 1, 2, 3, .. ·. This implies that J.1.~, ••• , J.1.; all exist. In­
deed, suppose that {Il j} consists of preCisely n < k 

positive eigenvalues. Then given any V E S k' there 
exists a nonzero!; E V such that (!;, cPj) = ° for all the 
n cp~. Therefore, Eq. (13) implies (!;,K!;) ",,0, so that 
inft~v[(~,K~)/(~,~)]""o. Since Vwa~arbitrary, we 
conclude that Ak= SUPV<:Sk inflEv [(~,K~)/(~, ~)] ",,0, a 
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contradiction. Hence J..Li, .•. , J..L~ exist. Let Vo 
Espan{</>i, ... ,</>j. Then for I:EVo, 1I1:1I2=Lfl(I:,</>j)1 2 

and it follows from Eq. (13) that 

. f (I:,ih) . f ~f J..Ljl(l:, </>1>12 + 
In --)- = In '( +) 2 = J..L k • CEVo (I:, I: CEVo ~11 1:, </>1 I 

Hence 1 = Xk ~ J..L~. On the other hand, let V E Sk' Then 
~re exists a nonzero I: E V such that (I:, </>j) = 0 for 
i = 1, 2, ... , k -1. Equation (13) yields 

(I:,KI:) _ 4j .. , J..Ljl (I:, </>j)1 2+ ~J J..Ljl (I:, </>j)1 2 

(I:, 1:) - 111:112 

'" 41 .. k J..L t I (I:, </> j) 12 
~ 111:112 

where the last estimate follows from Bessel's inequality 
Therefore, inffEV[(~,KO/(~, 0] ~J..L~, and since V was 
an arbitrary element of Sk' it follows that Xk ~ J..L~. Thus 
kE U implies J..L~=Xk= 1, K</>~= </>~, and therefore 
(K - P)l:k=O, where I:k=p'l/2</>~*0. Since J..L;= 1 for 
kE U, U must be a finite set (J..Lj= 1 for infinitely many 
i contradicts liml_~ J..Lj = 0). Let m denote the number of 
elements in U. The set of m vectors T = {I: k IkE U} is 
obviously linearly independent and is a basis for 
S=spanT, so that m=dimS. Let {l/IJ}}:!l be an orthonor­
mal basis for S, and for each kE U, ·set ~k=l/IJ' where 
U = {kl' k2' ..• , km} and j satisfies kJ = k. Since the ~k are 
linear combinations of the I:k, we have Cn~k=(K -P)~k 
= 0 for all k E U. This completes the proof. 

UJrollary 1: Let A =Kl , B =K2 - P2, and C =Ks - Ps' 
where K l ,K2, and K3 are compact Hermitian operators 
from E into E, P2 and Ps are bounded Hermitian opera­
tors from E into E, and K1 > O. Let (H2) and (H4) hold, 
with t::..=E. [Note that if C ~O, (H2) and (H4) hold with 
M=O=O, t::...=E, and r.~O~r+.]Thenthefollowing 
conclusions hold: 

(A) If infE{(~' [WP2+PS]~)/(~' m>O for w>wo and if 
a;. ~ r. and 0;' > Wo for some positive integer m, then 
for all k ~ m there exists a nonzero ~;E E such that 
Cnk ~;=O; furthermore, (~;, ~;)=O if O;=O~, k*l. 

(B) If infEM, [wP2 + ps]~)/(~' m> 0 for w < Wo and if 
0;;' ~ r + and a;;, < Wo for some positive integer m, then 
for all k ~ m there exists a nonzero ~~ E E such that 
Cn'~k=O; furthermore, (~k' ~i)=O if O~=Oi, k*l. 

k 

(C) If infE[(~,P2~)/(~' ~)]>O, then limk-~O;=oo, and 
the numbers m and Wo required in (A) exist. 

(D) If SUPE[(~,P2~)/(~' ~)]<O, then limk-~a~=- 00, 
and the numbers m and Wo required in (B) exist. 

Proof: (A) By hypothesis, (H1)-(H4) hold with t::..=E. 
Thus 0; is defined by Eq. (7) for all k ~M + 1. If 
0;';. ~ r., Theorem 2 implies Ak(O;) = 0 for all k ~ m. 
If 0;';. > wo' the stated conclusion then follows from 
Theorem 4, since k ~ m implies a; ~ 0;" > Wo and we 
have Cn+=K-P, where K=(O;)2A + O;,K2+Ks is compact 

k 
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and p=a;P2+P3 satisfies infE[(~'P~)/(~, ~)]>O for 
k ~ m. The proof of (B) is similar. To prove (C), let 
a=infE[(~' P2~)/(~' ~)]> 0, let N be any given positive 
number, and let 0< €< a/4N. Since K2 is compact, there 
exists a finite-dimensional subspace E1 of E such that 
SUPEi[I(~,K2~)I/(~,~)]<a/2. Since A is compact, there 
exists a finite-dimensional subspace E2 of E such that 
SUPfEs2 [(~,A~)/(~, ~)]< e. Let nl =dimEl , ~ = dimE2' 
and set S = {~ I ~ = a l ~l + ~~2 + ds~s' ~l E E 1 , ~2 E E 2 , ~s E t::..., 
a l E Z, i = 1,2, 3} [Z is the set of all complex numbers 
and t::..+ is defined in (H2)]. Then S is a subspace of E 
with dim S ~ nl + ~ + M, and I: E S~ implies I: E t::... n Ei n E;. 
Let k ~ nl + ~ + M + 1, and V E S k' Then there exists a 
nonzero I: E V such that I: E S~. Hence I: E V n D and 

so that SUPfE vilD Q +( 0> N. Since this holds for any 
VES k , a;~Nforallk~nl+~+M+1. Finally, we note 
that Wo may be taken to be a-lIlPsll. Statement (D) fol­
lows by applying (C) to C. w =w2A+w(-B)+C. 

We consider next the case where Cn contains an 
operator with a positive, compact, Hermitian inverse. 

Lemma 3: Let (H1) hold, let An(a)=O for some real 
o and positive integer n, and suppose that Cn = T - L, 
where T is a bounded Hermitian operator from E into 
E and L admits the positive compact Hermitian inverse 
K such that KL =1 on t::... Then sUPVESninfCEkL(V){(I:, [f 
-11/:)/(1:, /:)}=O, where k=Kl/2 and T=kTk. 

Proof: Let VES n• Since An(O) =0, infCEv[(~,Cn~)/ 
(~, ~)] ~O, so that given €>O, there exists ~E V with 
II~II = 1 such that (~, CnO< €. Set l:=kL~. Then I: *0 and 
kl:=KL~ =~. Hence €> (~, Cn~) = (~, [T - L]~) = (kl:, Tkl:) 
-(kl:,L~)=(I:,[T-l]I:), and 1=1I~1I2=lIkI:1I2 
=(I:,K/:) ~ 11K1I(t, /:), so that (1;, [T - 11/:)/(/:, t) < €IIKII. 
Therefore, infcFkL(V){(t. [T-l]t)/(t, t)}< €IIKII, which 
implies that infCEkL(v){(/:, [T -11/:)/(t, t)}~O. Since V 
was an arbitrary elem,!mt of S n' it follows that 
sUPVESn infcEkL(V) {(t, [T - I]b)/(/:, t)} ~O. Given €> 0, 
there exists VE Sn such that inffEV[(~' CCIO/(~, ~)] > - €, 
sothat(~,CCI~)/(~,~»-dorallnonzero ~EV. Let 
tE kL(V), /:*0. Then l:=kL~ for some nonzero ~E V, 
kl:=~, and we have (1:, [T-l1/:)/(t,Kt)=(~, CCI~)/ 
(~, ~) > - e, which implies that (I:, [T -I]b)/(I:, 1:) > - €IIKII. 
Since this holds for all nonzero I: E kL( V), 
infCEkL(V) {(t, rT -I]b)/(I:, I:)} ~ - €IIKII, and therefore 
sUPVES infCEkL(V) {(I:, [1' -1]t)/(I:, tH~ - ellKll. This 
holds for arbitrary € > 0, so that 
sUPVESn infcEkL(vd(l:, [T-I]I:)/(I:, t)}~O, which com­
pletes the proof. 

Lemma 4: Let the hypothesis of Lemma 3 hold, and 
suppose that kL(t::..)=E. Then suPvEan infCEV{(I:, [7-
-1]1:)/(1:, I:)} =0, where an is the set of all n-dimensional 
subspaces of E. 

Proof: Let V E an' 0 < € < t, {</> J}~ be an orthonormal 
basiS for V, and P=suPxEEnlxl/llxll, where En denotes 
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the complex Euclidean n-dimensional vector space 
{xlx=(X1 ,X2, ... ,xn), xJ complex, j=I, ... ,n}, Ixi 
=~7=1lxJI, and IIxI12=~J=llxJI2. Since kL(~)=E, there 
exists 1/J j E kL(~) such that II<PJ -1/JJII < Ep-l, j = 1, '" ,n. 
The set {1/JJ}~ is linearly independent. Indeed, suppose 
~~CtJ1/Jj=O. Then 

~ I Ct j 12 = II~ CtJ<pJI12 = lit CtJ( <P j -1/Jj)112 

~ (t I ajlll<P j _1/Jj ll)2 

~l?p-2 (~lajl)2 ~~~ la,12, 

which implies ~~I ajI2=0. Since 1/J j E kL(~),there exists 
a nonzero XjE ~ such that 1/J,=kLX" j= 1, ... ,n, and 
the set {Xj}; is clearly linearly independent. Let V, 
=spanfxj}~' Then V.ESn. Let1'/EkL(V.), 11*0, and set 
~=1'//II77I1. Then ~=~;aA, and we define b=~~a,<PJ 
and y-1= IIbll =(~~I a, 12)1/2. Now 

11-y-
1

1 = III ~ aj1/J,II-II~ aj<pjlll ~ II~ aMj - <pj)11 

~~ I CtJ 1111/Jj - <pjll < EP-l~ I a j I ~E')I-l, 
so that I y - 11 < E <~, and y-l < 2. Therefore, we have 

II~ - Ybll = II~ aM, - y<P ,) II 

~11~aM'-<PJ)II+ 11-ylllt a j<PJII 

~ ey-l + E')I-l < 4e, 

so that 

I (1'/,[T -1]11) (b, [1' - I]b) 
(b, b) I (1'/,1'/) 

= 1(~,[T-I]~)-(Yb,[T-I]yb)1 ~1(~,[T-I][~-Yb])1 

+ I([~-Yb]' [f-I]Yb) I ~211~-YbIIIIT-III<8eIlT-IIi. 

Thus we have shown that given any V E CTn and ° < E < ~, 
there exists a V; E Sn such that for any nonzero 
1'/E kL(V.), there exists a nonzero be:: V such that 

(b,[T-Ik) < (1'/,[T-I}rj) +BEIIT -III. 
(b, b) (1'/,1'/) 

Hence infeEv {(b, [f - I]b)/(b, m ~ inf~E kL(V.) {(1'/, [T 
-I}rj)/(1'/,1'/)}+ 8eliT -III, and it follows from Lemma 3 
that infcEV{(b, [T-I]b)/(b, b)}~8EIIT-IIi. This holds for 
all sufficiently small positive E, so that infCE v {(b, [T 
-I]b)/(b, b)}~O, which implies that 
sUPVEon infeEv{(b, [f -I]b)/(b, b)}~O. We now establish 
the opposite inequality. For any VE Sn' kL(V)E CTn, so 
that 

( >- [T I]b) (~, [f -I]~) sup inf b ,- ?c sup inf 
ve::on CEV (b, b) YESn tEkL(V) (~, 0 

=0, 

and the lemma follows. 

Theorem 5: Let (HI) hold and suppose that An(51) = ° 
for some real 51 and all n E U, where U is some subset 
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of the positive integers. Let Co = T - L, where T is a 
bounded Hermitian operator from E into E, L admits 
the positive compact Hermitian inverse K, and KL =1 
on~, TKT(E)cL(~), and L(~)=E. Then U is a finite 
set, and for each nEU there exists a nonzero bnE ~ 
such that CObn= 0, where (bn, bm) = ° if m *n, m, nE U. 

Proof: Let k denote the pOSitive, compact, Hermitian 
square root of K. Suppose that O=(<P, kLb) for some 
<PEE and all bE~. Then O=(k<P,Lb) for all be::~, and 
since L(~)=E, k<p=O, so that <p=0. Therefore, 
kL'(3:J~={0}, and kL(~)=E. By Lemma 4, 
sUPVEo

n 
inf.JEV{(b, [f -I]b)/(b, b)}=O for all nE U, 

and since T = kTk is compact and Hermitian, it follows 
from Theorem 4 that U must be a finite set, that there 
exists for each ne:: U a nonzero ~ne::E such that (T-1)~n 
= 0, and that {~n I n E U} is linearly independent. Let 
s={k~nlnE U}. Since k> 0, S is linearly independent. 
Let {b n I n E U} be an orthonormal basis for the span of 
S. Then (KT -I)bn=O for all nE U. Indeed, (KT -I)bn 
=(KT -1) ~UaJk~J =k~UaJ(f -I)~J=O. It remains to 
show that CObn=O, nE U. We have bn=KT bn, T bn 
= TKT bn, and since TKT(E) c L(~), there exists ~nE ~ 
such that Tbn=L~n' Therefore, bn=KTbn=KL~n= ~n' 
and so Tbn=Lbn, i.e., CObn=O. 

IV. APPLICATIONS 

The results presented in the last two sections have 
application to a large number of physical systems, as 
we mentioned in the introduction. Two such examples 
are discussed herein. The first is the problem of small 
oscillations about equilibrium of a vertically stratified, 
viscous, heterogeneous incompressible fluid in a 
gravitational field. The second concerns the oscillations 
of a rotating thin annular disk. We show that infinitely 
many of the eigenfrequencies of these systems are 
characterized by the minimax principles given in Eqs. 
(7) and/or (8). We make no attempt here, however, to 
determine precisely all the eigenfrequencies so 
described. 

We shall have occasion to make use of certain well­
known results from the theory of linear differential 
equations, which for convenience are summarized 
below. 

Proposition: Let L be the nth-order linear differential 
operator given by 

n 
L~(x) ="EP (xH(n-J) (x) 

J=O J 

where the PJ(x) are complex-valued functions of class 
en-J on the closed interval a ~ x ~ band Po(x) * ° on 
[a, b]. Let F and G be constant n x n matrices, 
~a =(~(a), ~(l) (a), . .. , ~(n-ll(a»T, and suppose that L is 
formally self-adjoint on S = {~(x) I ~ E cn[a, b], F~. + G~b 
=O}. Then the following conclusions hold: 

(1) The operator L possesses a denumerably infinite 
set of eigenfrequencies, all real, with corresponding 
orthonormal eigenfunctions (in S). The eigenvalues have 
no finite limit point. 

(2) Every ~ e:: S can be expanded in a uniformly con­
vergent series of the eigenfunctions. 
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(3) If ° is not an eigenvalue of L, then L admits the 
compact Hermitian inverse K defined on L 2[a, b] such 
thatKL=I on S, RKcC[a,b], K(C[a,b])=S, and LK=I 
on C[a, b]. 

For a proof of these results, the reader is referred 
to Ref. 23. 

A. The stratified heterogeneous incompressible fluid 

We consider small disturbances about the static 
equilibrium of a vertically stratified horizontal slab of 
viscous incompressible fluid, in a gravitational field. 
The fluid is confined between rigid horizontal walls at 
z = ° and z = b > 0, where z denotes the vertical co­
ordinate. The pertinent equation and boundary conditions 
are given in Eqs. (22) and (23) of Ref. 24, viz.: 

HA~(Z)=(:\.2L1 +XL2+LsH(z)=0, ° ~z ~b, (14) 

~(O)= ~(b)= ~'(O)= ~'(b)=O. (15) 

Here ~(z) denotes the vertical component of the fluid 
velocity, :\. is the eigenfrequency of the disturbance (a 
time-dependence of the form eAt has been assumed), 
L1 = - dpd + Irp, Ls = -Irgp', and L2 = ~ IJ.~ - 2k2dIJ.d 
+ k4 IJ. + ~IJ.", where IJ.(z) is the fluid viscosity, p(z) is 
the fluid mass denSity, g> ° is the gravitational ac­
celeration, k is the magnitude of the horizontal wave 
number, ( )' =d( )/dz, and d denotes the differential 
operator d/dz. We assume that IJ. E C4[0, b], PE C2[0, b], 
IJ.>O on [O,b], p>O on [O,b], k>O, and take E 
=L2[0,b] and ~={~(Z)I~EC4[0,b], ~(O)=~(b)=~'(O) 
= ~'(b)=O}. For ~ E~' ~ *0, we have 

(~,L1~)=.r: p(I~'12+1r1~12)dz>0, (16) 

(~,L2~)= ~b IJ.( I~" + Ir~ 12+ 4k21~' 12)dz > 0. (17) 

The operators L 1, L 2 , and Ls are all formally self­
adjoint on ~; furthermore, for each real :\. *0, HA is a 
formally self-adjoint fourth-order differential operator 
on ~, and the PropoSition applies to HA with S =~, 

Case 1: Arbitrary (1. We set w=:\., A=L1, B=L2, 
and C = L 3 • Obviously (HI) and (H3) hold. It is easily 
seen that for all w < 0, C w is bounded above. Indeed, for 
w<O, ~E~, )1=min ro ,bllJ., j}=maxro,bIP' r=minro,bIP', 
a: = I w I p., f3 = 2k2 a: - w2j), and y = k4 a: - w2k2j} + k2gr, Eqs. 
(16) and (17) give 

(~, - Cw~) ~ fob [a:( W + k2~ 12 + 4k21~' 12) 

_ w2j}( I~' 12+ k21 ~ 12)+ k2rgl ~ 12 ]dz 

= J: ( O! 1 ~" 12 + f31 ~' 12 + y I ~ 12)dz 
o 

= [b[\ va~" _ 2~ ~12 + (Y- ~:) 1~12]dZ 
(18) 

Let n < 0. Then by the Proposition, Co has an infinite 
set of real eigenvalues {l'in};" with corresponding ortho­
normal eigenfunctions {cf> n};" c~, and, since Co is 
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bounded above, the {on};' cluster only at - "", so that 
there are only a finite number M of positive eigenvalues. 
We may assume, without loss of generality, that the 
eigenvalues are enumerated in decreasing order, viz.: 
1'i1~1'i2~"" ThenI'iM>O, I'in~Oforn~M+l, so that 
for ~. = span{cf>l' ... ,cf>M}' PropOSition (2) implies that 
(~, Co~) = L;+1I'i nl (cf>n' ~) 12 ~O for any ~ E ~_= ~~n ~. 
Thus (H2) holds. Consider (H4). Since A> ° and B > ° 
on~, Q'(~)< ° for all nonzero ~E D and r_ ~O. Let 
~ED, ~=O, andsetx=(~,B~)/2(~,A~»0, y=2(~,CO/ 
(~, B~). If Y ~O, Q+W ~ ° while if y > 0, 

Q.W=-x+v'x(x-y)~-x+vrx=YF =-y (19) 

with 

Hence in any case, Q'(~) ~ 2)1-1g k-2min{0, r}, so that (H4) 
holds, By a process of estimation similar to that used 
in Eq. (18), it is readily seen that 2wA + B is bounded 
below on ~ for all real wand that J_ contains all positive 
integers n ~ M + 1. We now show that n~ - - "" as n - "". 
Let N> 0. Then B -NA is bounded below on~, and it 
follows from the Proposition that B - NA admits an 
infinite set {an};" of real eigenvalues with corresponding 
orthonormal eigenfunctions fxn};"c~, and that the only 
limit point of the {O!n};" is + "". Thus there are only a 
finite number m of negative eigenvalues, so that, as­
suming the eigenvalues to be enumerated in ascending 
order (i. e., 0!1 -'" 0!2 -"""), an ~O for all n~m + 1. Let 
El = span{X1"'" Xm} and E2= {'I7I'17 = ~1 + ~2' ~1E E1, 
~2 E ~.}, so that E2 is a finite-dimensional subspace of 
~ with dimE -"'m +M. For n -"'m +M + 1, given any 
VE Sn' there exists a nonzero ~ E V such that ~ 1 E 2 , 

and so ~lE1' ~l~+, ~E ~_cD, and ~=~:+1(Xi' OXp the 
last result following from Proposition (2). Hence 

2Q W-"'- (~,B~) =-N- (~,[B-NA]~) =-N 
- (~,A~) (~,A~) 

so that inf'lE VnD Q.( '17) ~ - N /2, Since V was an arbitrary 
elementofSn, n~~-N/2forn~m+M+l, i.e., 
lim ..... n~ = - 00. Thus there exists a positive integer 
1 ~ M + 1 such that n; ~ r., and it follows immediately 
from Theorem 3 that An( n~) = ° for all n ~ 1. For each 
fixed n ~ M + 1, n~ < ° and Co;; is bounded above on ~, 
so that for some positive number p, L =PI - Co~ is 
positive on ~. We conclude from Proposition (3) that L 
has a positive compact Hermitian inverse K on E such 
thatKL=Ion~, C[O,b)::,K(E), andL(~)=C[O,b]. Since 
CIQ,b] = L 2[ 0, b], the hypothesis of Theorem 5 is satis­
fied (set T = pI) for each n~ with n ~ 1. We have thus 
shown that the system defined by Eqs. (14) and (15) 
possesses an infinite set of negative eigenfrequencies 
:\.~= n~, n ~ l, with :\.~ - - 00 as n- "". 

There remains the question of whether any of the 
n; are eigenvalues. Here we run into the problem that 
J+ is empty (2wA + B is not bounded above for any real 
w) so that Theorem 2 is useless. We can circumvent 
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this difficulty, however, in the two special cases dis­
cussed below. 

Case 2: p' ..: 0 on [0, b J. Suppose that P' ..:0 on [0, b J 
and that {z I P' (z) == 0, 0 ~ z ~ b} has Lebesgue measure 
zero. Then (~, L 3 0 = k2g r~(- p') 1 ~ 12 dz > 0 for all non­
zero ~ E A, so that the equilibrium is exponentially 
stable. We set w=x-1

, and rewrite Eq. (14) as 

~EA, (20) 

withA=L3' B=L2 , and (;=L 1 • Obviously (HI) and (H3) 
hold for the triple of operators (..4, B, C). For w".O, 
C = w2C -1, and therefore (H2) holdS with n = 0-1 and 
-'" '" A. = A., where 0 and A. are as given in Case 1. Fur-
thermore, Eq. (18) implies that (;", is bounded above on 
A for w < O. Consider (H4). Since B > 0 and A> 0 on 
A, Q_(~)<O for all nonzero ~ElJ=D, and so r_ .;:0. Let 
~ED, ~"'O, andsetx=(~,Bn/2(~,A~»0, y=2(~,C~)/ 
(~, BO > O. By Eq. (19), Q.W:;' - y == - 2(~, L1~)j 
(~, L2~):;' - 2pk-2 11-1 , and therefore (H4) holds. Obviously 
2wA + B is bounded below on A for all real w, and J_ 
contains all positive integers :;.M + 1. We show that 
O~ - - "" as n - "". The fourth-order differential opera­
tor B is formally self-adjoint and positive on A, and it 
follows from the Proposition that B possesses an in­
finite set of positive eigenvalues VI';: V2 .;: ... with cor­
responding orthonormal eigenfunctions {ljIn}~ cA. The 
eigenvalues cluster only at + "". Given N> 0, there 
exists a positive integer q such that vn > 211A liN for all 
n> q. Let E3= span{1/J1"'" 1/J.} and E4={~ I ~ = ~1 + ~2' 
~1 E E 3 , ~2 E A.}, so that the dimension of the subspace 
E 4 cAdoes not exceed q+M. Forn:;'q+M+1, given_ 
any V E Sn' there exists a nonzero ~ E V such that ~ lE4, 

and so ~lE3' ~l A., ~EA_cD, and ~==L,;'l(1/Jn,~)ljIn' 
where the last result follows from Proposition (2). 
Hence 

Q W ~_(211A1I)-1 (~, B~) 
- ~ (~,~) 

=-(211A-1I)-1 L:;'lvnl(1/J",~)12 ":-V (21IAII)-1<-N 
l:;'11(ljIn,~)12 •• 1 , 

and therefore inftEvnDQJ~)< -N. Since l::: was an 
arbitrary element of Sn' we conclude that O~ ..: - N for 
n:;'q+M+1, i.e., n~--""asn-"". In particular, 
there exists a positive integer (3 such that nii ..: r., and 
Theorem 3 implies that An(O~) = 0 for all n:;. {3. For any 
given positive integer n:;. M + 1, n- < 0 and (5;:_ is 

" Un 
bounded above on A. We proceed exactly as in Case 1 
to 20nclude from Theorem 5 that for each n :;. {3, X~ 

=(0~)-1 is an eigenfrequency of the system described by 
Eqs. (14) and (15). The A~ are all negative, and X~-O 
as n-"". It is readily verified that Q_(~)==[Q'(O]-l<O 
for every nonzero ~ E D, and therefore that (n~)-l = O~ 
for all n:;.M + 1. Hence X;= O~, n:;. {3. 

Case 3: P' :;. 0 on [0, b J. Suppose that p' :;. 0 on [0, b] 
and that {z I p' (z) = 0, 0., z ., b} has measure zero. Then 
(~, L3~) < 0 for all nonzero ~ E A, so that, referring back 
to Case 1, C < 0 on A and the "overdamped" condition 
d(~):;'O on A is satisfied. With 0=0, we have M=O and 
A_ = D = A, and since Q J~) < 0 < Q.(~) for all nonzero 
~ E A, r_.,o.;: r •. Thus we may take l = I in Case I and 
conclude that X~= O~ < 0 is an eigenfrequency of the 
system described by Eqs. (14) and (15) for all n:;. 1. 
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We now use our minimax principle to construct an 
infinite set of positive eigenfrequencies. We set w = X-I 
and rewrite Eq. (14) as 

C",~=(w2A+wB+C)~::::0, (21) 

with A:::: - L 3, B:::: -L2' and C:::: - L 1 • Obviou..slY., (HI) 
and (H3) hold for the triple of operators (A, B, C). Since 
C < 0 on A, the system is overdamped with D = A, and 
(H2) holds with M:::: 0 and A_ = A. We have 
Q_(~) < 0 < ~k2(2gmax[Q,b[ p't1 

., Q.W for all nonzero 
E E A, and therefore r_ ~ 0 < r •. The operator 2wA + iJ 
is clearly bounded above for all real w, J. contains all 
the positive integers, and it follows from Theorem 2 
that An( O~) = 0 for all n:;. 1. The operator C", is bounded 
above for w > 0, and so we may proceed as in Case 1 to 
conclude from the Proposition and Theorem 5 that 
X~ = (!l:t1 is an eigenfrequency of Eqs. (14) and (152 for 
each n ..: 1. It follows easily from the definition of O~ 
and the fact that the eigenvalues {vn}~ of the positive 
operator B = - iJ cluster at + "" (see Case 2) that 0; - "" 
as n - 00; thus X ~ - 0 as n - "". Finally, one readily 
verifies that Q'(E):::: [Q.WJ-1 > 0 for all nonzero 
~E A, so that the X~ are given directly in terms of Q.(~) 
by the max-min principle 

X:== sUP inf Q.W. (22) 
YES" tE v 

Note that x;;< 0:. 

This special case of p' :;. 0 on [0, b J has been investi­
gated by Turner18 and Eisenfeld. 25 Turner obtains mini­
max principles for the eigenvalues-however, they are 
not given directly in terms of L 1 , L 2 , and L 3 • Eisenfeld 
shows that the eigenfunctions are complete. Their re­
sults depend critically on the requirement that L3 < 0 
on A. 

B. The rotating annular disk 

We consider the planar oscillations of a thin annular 
disk rotating about its center with a given angular 
velocity 0, and restrict our attention to rotationally 
symmetric modes. The pertinent equation is Eq. (13) 
of Ref. 9, viz.: 

L ( ~ 3-2) 1=')11 - (fXa+ 4X , 

Al = {j(x) IfE C2[a, 1], f(a) == 0 == f' (1) - t( 4')12')1i1 - 1)f( I)}, 

Aa == {f(x) IfE C2 [a, 1], f(a) == 0 == f'(l) - if(l)}, 

0< a < 1, and ')11 and ')12 are positive constants satisfying 
the inequality 4')12> ')11> 2')12' The appropriate Hilbert 
space is E== L2[a, l]X L2[a, 1]. A time dependence of 
the form exp(iwOt) has been assumed. 

It is readily verified that L1 and L2 are formally self­
adjoint and positive on Al and A2 , respectively. We 
infer from the PropOSition that L1 and L 2 admit the 

. compact Hermitian inverses K1 and K2 defined on 
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L2[a, 1] such that K,;Ln=1 on An' Ln(An)=C[a, 1], and 
Kn{[2[a, 1])cC[a, 1], n= 1,2. Thus L is formally self­
adjoint and positive on A, L possesses the compact 
Hermitian inverse K = (~l ~) defined on E such that 
KL=1 on A, and L(A)=C[a,21]xC[a, 1]. Since ~l=~ 
=C[a, 1] = L2[a, 1], we have ~=L(A)=E. For each 
realw, T wKTw(E)cC[a,1]xC[a,1]=L(A), whereTw 
=w2A + wB +1 = (W2+1 2~W) -2iw w +1 . 

We now show that the minimax principles of Eqs. (7) 
and (8) each generate infinitely many eigenfrequencies 
of the disk. The pertinent results of the preceeding 
sections are collected together in the following theorem, 
which is convenient and appropriate for application to 
numerous problems relating to the oscillations of 
rotating elastic systems. 

Theorem 6: Let A, B, and H be bounded Hermitian 
operators from E into E, a =infE[(~,A~)/(~, ~)] > 0, let 
A be an infinite-dimensional subspace of E, L be a 
formally self-adjoint positive operator from A into E 
with compact inverse K on E such that KL =1 on A, C 
=H -L, ~=~=E, K(E)cL(A), and TwKT wcL(A) 
for all real w, where T = w2A + wB + H. Then the sets 
N+ = {n I n~ ~ r _} and N_ ",{n I n~,,; r J are both nonempty, n~ 
and n~ are eigenvalues of C w ~ = 0 for all m ~ inf N + and 
n ~ infN., and n~ - 00 and n~ - - 00 as n- 00. 

Proof. By hypothesis, (H1) and (H3) hold. Since L is 
formally self-adjoint on A and I'(A) =E, K is Hermitian, 
and L > 0 on A and ~ = E imply that K> O. It follows 
from well-known theorems on compact Hermitian 
operators22 that K admits an infinite set of positive 
eigenvalues J.J.1 ~ J.J.2 ~ ... > 0 with corresponding ortho­
normal eigenvectors {CPnto that spanK(E), and limn-~ J.J. n 
=0. We have J.J.nCPn=KCPn=Ll/!n for some l/!nr=. A (K(E) 
cL(A», so that J.J.~CPn=KLl/!n=l/!n' and therefore LCPn 
= AnCPn' An'" (JJ.n)-I, n = 1, 2, 3, ..•. Thus every CPn is an 
eigenvector of L with eigenvalue An' and {CPn};' spans A, 
since KL =1 on A implies K(E):J A. Obviously An - 00 as 
n- 00 and therefore An> IIHII for all sufficiently large n. 
Let M be the least integer such that AM+l ~ IIHII. Let 
A+ '" span{ CPl' ... , cP M}' Then for ~ E A_ '" A~ n A, ~ 
= L: ;.1 (CPn' ~) CPR' and 

(~,L~)=Y., (~, CPn)(CPn' LO='E Anl(CPn' 01 2 ~AM+11I~1I2, Mtl M+l 

so that 

(~, CO = (~, H~) - (~, L~) ,,; (IIHII- AM+1) II~ 112,,; O. 

Hence (H2) holds with n = 0 and the above choice of A+ 
and M. Consider (H4). We have, for all nonzero ~ E D, 

QW_-(~,B~)+[dm]l/2 ~_.!.(~,BO~_.!.IIBII, 
+ - 2(~,A~) 2 (~,A~) 2 a 

Q( t) __ (~,B~)+[dm]1/2 ,,;_.!.(~,B~),,;.!. IIBII 
• " - 2(~,A~) 2 (~,A~) 2 a ' 

so that r+ ~ - ~ liB II/a , r_,,;~ IIBII/a, and (H4) holds. 
Since 112wA+BII ,,;2IwlllAlI+ IIBII for all real w, J+ and 
J _ contain all positive integers n ~ M + 1. We show that 
n; - 00 and n~- - 00 as n- 00. Given N>O, there exists 
a positive integer m ~M such that Am+1 > IIHII + IIAII(N 
+ II BII/2a)2. Let V m '" span{ CP1' .•. , CPm}:J A+, and let 
n> m. Then given any V E S n' there exists a nonzero. 
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~ E V such that ~ 1 V m' and so ~ = 'l,;+l(CP", ~)cp", II~ 112 
= 'l, :.1 1 (CP", ~) 1

2, 

- (~, CO = (~, L~) - (~, H~) 

~£ A"(CP,,, ~)12 m+1 

- IIHIIII~ 112 ~ (Am+1 - IIHII) II~ 112 > 11A11(N 

+ IIBII/2a)211~1I2. 

Now ~ E V and ~ 1 V m implies ~ E A_ cD, and we have 

Q ( t)~_ IIBII+IIAU-1/2(-(~,C~))1/2 >N 
+ "2a (~, 0 ' 

Q_W,,; I~II _11A1I·1/2 (- ~:: ~)~)) 1/2 < -N, 

so that 
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sup Q.(''1)~Q+(~»N, inf Q.(l1)";QJ~)<-N. 
~EVnD ~EVnD 

Since V was an arbitrary element of SR' we conclude 
that n~~N and n~ ,,;-N for all n> m, i. e., n;- 00 and 
n~ - - 00 as n - 00. In particular, the sets N+= {nl n~ ~ rJ 
and N_ ={nl n~.,; r.} are nonempty, and since J+:JN. and 
J.:JN., we conclude from Theorems 2·and 3 that 
A,,(n;) = 0 for k ~ infN+ and A,,(n;) = 0 for k ~ infN .. The 
remainder of the theorem now follows immediately from 
Theorem 5. 
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Concerning conservation laws resulting from geometric 
invariance groups for field theories 
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A geometric symmetry group is defmed as a point transformation of a Riemannian manifold 
combined with a transformation law for the field as a geometrical object. A covariant definition of 
invariance of an action integral is given. It is shown that geometric invariance groups can be 
determined from knowledge of a tensor S ft which can be computed from the density function L in 
the action integral. A general form for conservation laws due to geometric symmetry is given. 
Results are applied to electromagnetic fields and it is shown that the Bessel-Hagen conservation laws 
represent all of the possible conservation laws for electromagnetic fields arising from geometric 
symmetry. 

1. INTRODUCTION 

It is well known that if field equations can be derived 
from a variational prinCiple, then symmetries of the 
action integral correspond to conservation laws for the 
physical system. This correspondence between sym­
metry groups and conservation laws is stated mathe­
matically in the Noether theorems.l In the early work 
by Noether and Bessel-Hagen2 the concept of a sym­
metry group was very broad. In fact Bessel-Hagen 
viewed a symmetry group as simply a change of vari­
ables in the action integral which left the integral in­
variant. In recent years authors concerned with ap­
plications of the Noether theorems to physical theories 
seem to have adopted a more restrictive view of sym­
metry transformations. Given an integral 

w= f dxgl/2 L(epA' a",epA) 

where epA is a geometrical object representing the field, 
a coordinate transformation in infinitesimal form 

(1) 

is introduced and object epA is transformed according to 
its mathematical nature as a geometrical object. From 
the fact that L is assumed to be a scalar, invariance 
under coordinate transformations from the Lorentz 
Group results. 

So far as the methematical statement of the Noether 
theorems is concerned, it is possible to transform co­
ordinates x"' and field varibles epA independently. If in 
fact transformation (1) represents a coordinate trans­
formation, it seems logical to try transforming epA as a 
tensor or vector, perhaps, but it is not necessary to do 
this if symmetries can be found by transforming epA in 
some other way. Hence, in this paper the combined 
transformation 

x"' = x'" + Ax"', 
epA(X) - (f>A(X)' 

(2) 

where (fA (X) is determined by the transformation prop­
erties of a epA as a geometrical object, will be called a 
geometric transformation of an action integral to in­
dicate its special nature. However, the transformation 

j("'=x"' + Ax"' 

will not be treated as a coordinate transformation. This 
may sound contradictory, but it is not. As just pointed 
out the transformations of x"' and epA are independent so 
far as application of the Noether theorems is concerned. 
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Hence, the transformation of epA selected above was 
singled out simply because it is the usual choice in the 
literature and not because of any assumptions about the 
nature of the transformation of variables x"'. Any trans­
formation such as (1) can be interpreted either as a 
coordinate transformation or a point transformation. 3 

In this paper Eq. (1) will be interpreted as a point 
transformation for a good reason. In the calculations 
to follow we assume only a Riemannian manifold as the 
underlying space. Then to achieve covariant results in 
our calculations, it becomes apparent that AX"' in (1) 
must be a vector. That is the case if (1) is a point 
transformation, but it does not make sense to treat Ax"' 
as a vector when (1) is a coordinate transformation 
(many authors do so, however). Hence 4>A in (2) is not 
being transformed to a new coordinate system, but is 
being dragged along as we move from point x to point j( 
in the manifold. 

Specification of our viewpoint toward (1) is crucial 
when we decide how to handle metric tensor g",s in the 
following calculations. We shall agree not to introduce 
any local variation of the metric and operate at all 
times within a fixed coordinate system. Hence, given 
point transformation j("' = x"' + Ax"', gl'v(x) transforms 
to gw(X)' 

Under the above conditions it is possible to give a 
very general analysis of invariance of action integrals 
and a description of all possible conservation laws re­
sulting from geometric symmetry. It must be kept in 
mind, however, that other kinds of symmetry groups 
are conceivable. In fact, the arguments in this paper 
prove that other symmetry groups must exist for elec­
tromagnetiC fields and perhaps others, because con­
servation laws are known to exist which do not fit the 
pattern produced in this paper for conservation laws 
arising from geometric symmetry. 

2. GEOMETRIC SYMMETRY GROUPS FOR 
INTEGRALS 

We shall assume real numbers (Xl, x2 , x 3, x4 ) are co­
ordinates of points in a Riemannian manifold with 
metric tensor gatS' The coordinate system will be kept 
fixed and the metric tensor will not be given any local 
variation. To illustrate the ideas we shall study an 
integral 

w= 10 dxgl/ 2 L(ep"" Veep",), (3) 

but similar calculations can be made for other kinds of 
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geometrical objects cf> A' A geometric transformation 
group is specified by 

x'" =x"'+ ~"'=x'" + ~~ ek 

_ _ axs 
cf>",(x) = cf>s(x) ax'" 

(4) 

where generators ~~ are functions of the x'" and EI, ... , 
er are independent parameters. We assume tensor Vscf>", 
is transformed by rule 

-- ax" axv 
V'" cf>s = V" cf>v aX'" axe' 

It is convenient to let V" cf>s = F "'s in the following, so we 
shall do so. The usual total variations of cf> '" and F "'s 
are defined by 

lP",(X) = cf>",(x) + Acf>", 

F ",lx) == F ",s(x) + AF "'s. 

Variations Acf>", and AF "'s are not vectors or tensors, 
however. This causes difficulties in attempts to produce 
convariant results in the following. It was shown by 
Plybon in a recent paper4 that covariant forms of the 
Noether theorems could be produced by redefining total 
variations as follows. Given Acf>" as above the local 
variation of cf> '" is 

ocf>", = ~",(x) - cf>",(x) 

and ocf>", can be computed from Acf>" by ocf>", = Acf>", 
- aBcf>",~B. Let 

(Acf»", =6cf>", + V>.cf>", Ax>'. (5) 

Similarly, let 

(AF)",s= of ",B + V>.F "'s AX>'. (6) 

For geometric transformation (4) we find 

(7) 

and 

(8) 

Now using these vector total variations we define the 
total variation of integral (3) by 

AW= ~ dx "j-/2 L[cf>", + (Acf»", , F "v + (AF)"J 

-10 dx gl/2L(cf>"" F"v)' (9) 

We say geometric transformations (4) form a geometric 
symmetry group if AW=O. This is similar to the usual 
definition of a symmetry group for an integral, but not 
quite the same due to use of vector total variations. 
This can be expected to have some effect on the re­
sulting symmetry group. In flat spaces nothing has been 
changed but in Riemannian spaces in general we have 
a new concept of a symmetry transformation. The 
precise nature of a symmetry transformation in a gen­
erally covariant theory does not seem clear in current 
literature, so some definition is in order. The defini­
tion selected here seems necessary to this author in 
order to produce covariant results. We shall now com-
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pute AW and show how geometric symmetry groups can 
be determined. We have 

? /2 =g{X)1/2 =gl/2(1 + r:", Ax"') 

and 

Hence, 

drtlf/2 == dxgl/ 2(1 + V",Ax"). 

Substitution of (10) into (9) and some rearrangement 
yields 

(10) 

AW==!o dxgl/ 2 (LV",AX"'+ aa~ (Acf»", + a~~p (AF)>.p). 

(11) 

Now using (7) and (8) we find 

AW= r dxg 1 / 2 SB V AxV Ja v s (12) 

where 

Given (3) we can compute SBv from (13). Tensor SSv 
determines AW for a given point transformation. From 
the form of SB v we can determine which point trans­
formations will lead to geometric symmetries. 

3. SOME SPECIAL CASES 

Suppose SBV = svs. Then 

SB vVB~v = ~SBV(V sAxv + V vAXs)' 

Hence 

AW=O if VBAxv+VvAxs=O. (14) 

Equation (14) is Killing's equation and we have found 
x'" = x'" + ~'" produces a geometric symmetry if Ax'" 
is a Killing vector. In this case our point transformation 
is a motion for the manifold. Such transformations are 
well known in the literature and have been studied ex­
tensively. 5In the case of a Minkowski space we have 
the Lorentz group as the group of motions. 

Suppose further S",B == SS'" and S "'''' = O. Now we find if 

Vs~v + V vAxs = l/J(x)gvs 

for some scalar l/J(x), then 

SSv VsAxv=~S"'", l/J(x) =0. 

IfAxv satisfies the above condition then 

x"'=x"+~'" 

is a conformal point transformation. Hence the group of 
conformal transformations yields a geometric symmetry 
group if S",s=Ss", and SOl", =0. 

The preceding results look familiar since all of the 
above is well known if S"'v is the energy-momentum 
tensor for a field. However, S"v as defined above has 
not been shown to be such an energy-momentum tensor. 
In fact, in covariant theories it is not easy to explain 
what an energy-momentum tensor should be in general. 
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The special cases of S"s examined above are probably 
the most important ones for classical field theories, 
but it is conceivable that some other special properties 
of S"B might arise in a given theory leading to other 
geometric symmetry groups. 

A particularly interesting application of the preceding 
to electromagnetic fields can be made. Let 4> .. be the 
4-potential and let 

fu"==VIJ.cf>"-V"cf>u· 

Let L =- tfuJIJ.". 

Then 

W=! dxg%L 

is an action integral for the electromagnetic field in 
vacuum, From (13) we find 

(15) 

(16) 

which we recognize as the conventional energy-momen­
tum tensor for the field. Since SB" = S"B and S .... = 0 in 
this case, then the conformal group of point transforma­
tions yields a geometric symmetry group for the field 
by our preceding arguments. This result is well known 
in flat spaces. The argument given here shows it to be 
true in any Riemannian manifold. The nature of the 
conformal group varies from one manifold to another, 
however, and in fact some manifolds do not admit any 
conformal point transformations. 

4. FORM OF THE CONSERVATION LAWS 

When a symmetry group exists this implies existence 
of conservation laws. It will be shown now that a rather 
general form can be given for all the conservation laws 
ariSing from (3) because of geometric symmetries. It 
was shown by the author4 that if any symmetry trans­
formation as defined above exists, then V .. P" = 0 where 

and 

T OI L 01 oL F 
1.= 01. - ifF AB' 

OIB 

Suppose 

Ax). == ~~ ek
• 

Then 

and 

Due to independence of parameters ek we conclude 

(17) 

(18) 

(19) 

These are the desired conservation laws. It is worth­
while to express vectors P~ in terms of S"B to illustrate 
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the explicit nature of these conservation laws. 

In the following let 

~=LOIB. 
oFOIS 

Now from (19) we have 

~ ==T"). t;_LOIB 4>IJ.VB ~~. 

But 

Hence 

P~ = T,\~~ + LOIS FBI. ~~ - L'''BVB(4)IJ.~~) 

or 

P~ = (Lo~ - L",B F AS + L"'BFB).H~ - L",BV B(cf>IJ.~.)' 

Using the definition of SOIA' we see 

- VB(L"'B4>IJ.~~) + VBL'''B(4)IJ.~~) 

where BO'" =Lo", + L"'o. 

Assuming 4> a satisfies the field equations, then 

~=V L B",. 
04>", B , 

so we find 
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P~ = (S"').!;~) + BPOlFo).~~ + VaBB",( cf>).!;;) - VaCL",s4>).W.(20) 

Derivation of (20) was motivated by the author's ob­
servation that most conserved vectors for field theories 
have the form 

SOIA !;~ 

which appears as the first term of (20). So it was felt 
that possibly all conserved vectors associated with 
geometriC symmetries were of this form. In the attempt 
to show this (20) arose. We see the situation is not so 
Simple as expected. Tensor S"'B and generators !;~ do not 
determine conserved vectors by themselves. Although 
more complicated than expected (20) does represent all 
possible conserved vectors ariSing from geometric 
symmetry and can be useful in recognizing such con­
servation laws. 

For instance, in recent years several papers have 
appeared describing infinitely many divergenceless 
expressions believed by some to represent new con­
served quantities for electromagnetic fields in vacuum. 6 

These so-called conservation laws should be related to 
some symmetry transformations for the action integral. 
In the case of electromagnetic fieldS L ",s == - LB", so B .. B 
= 0 and (20) reduces to 

(21) 

All conserved vectors for electromagnetic fields in 
vacuum connected with geometriC symmetries must be 
of this form. In Minkowski space we have 

° OIP~ = ° ",(S"'A~~) - ° ",oB(L0I8 4>). W 
and the second term vanishes because of anti symmetry 
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of L"'8. Hence all conservation laws due to geometric 
symmetries have the form 

(22) 

The symmetry group in this case is the conformal group 
and (22) yields the fifteen Bessel-Hagen conservation 
laws. These are the only possible conservation laws for 
electromagnetic fields in vacuum related to geometric 
symmetries. The recent conservation laws due to Lipkin 
and others are not of this form so they cannot be related 
to geometric symmetries. 

5. SUMMARY OF RESULTS 

It has been pointed out that the symmetry transforma­
tions employed by most authors today when applying the 
Noether theorems are more restricted than necessary. 
This suggests defining geometric symmetry transforma­
tions as those in current use with some clarification 
concerning the real meaning of these transformations. 
It has been shown the geometriC symmetry transforma­
tions for a given integral are determined by tensor S"'8 
defined by (13). By use of this tensor we fint' once more 
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the geometric symmetry group for electromagnetic 
fields is the conformal group in any Riemannian mani­
fold. If we do not insist on geometriC transformations 
then other symmetry transformations may exist and ap­
parently do. It is possible to write down a general form 
(20) for all conserved vectors related to geometric 
symmetry. In the case of electromagnetic fields we find 
the Bessel-Hagen conservation laws are the only ones 
which can arise from geometric symmetry. 

iE. Noether, Nachr. Ges. Wiss. Gottingen n, 235 (1918); 
E. L. Hill, Rev. Mod. Phys. 23, 253 (1951). 

2E. Bessel-Hagen, Math. Annalen. LXXXIV, 258 (1921). 
3T. Fulton, F. Rohrlich, and L. Witten, Rev. of Mod. Phys. 
34, 443 (1962). 

4B. F. Plybon, J. Math. Phys. 12, 57 (1971). 
5K. Yano and S. Bochner, Curvature and Betti Numbers 
(Princeton D.P., 1953). 

8D.M. Lipkin, J. Math. Phys. 5, 696 (1964); T.A. Morgan, 
J. Math. Phys. 5, 1659 (1964); D.B. Fairlie, Nuovo Cimento 
37, 897 (1965). 
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The most general vertex model defined on a honeycomb lattice is the eight-vertex model. In this 
paper it is shown that the symmetric eight-vertex model reduces to an Ising model with a nonzero 
real or pure imaginary magnetic field H. The equivalent Ising model is either ferromagnetic with 
e 2HlkT real or antiferromagnetic with e 2HlkT unimodular. The exact transition temperature and the 
order of phase transition in the former case are determined. As an application of the result we verify 
the absence of a phase transition in the monomer-dimer system on the honeycomb lattice. 

1. INTRODUCTION 

The vertex model in statistical mechanics plays an 
important role in the study of phase transitions in lat­
tice systems. A case of current interest is the eight­
vertex model on a square lattice.l,a This is a rather 
special model in which only a limited number of the 
possible vertex types are allowed. The most general 
one on a square lattice would be the sixteen-vertex 
model. 3 Unfortunately, except in some special cases, 4,5 

the behavior of this general model is not known. 

In this paper we consider the counterpart of the six­
teen-vertex model of a square lattice for the honey­
comb lattice. That is, we consider an eight-vertex 
model defined on the hexagonal lattice. It turns out that 
we can say a lot more in this case. While the exact 
solution of this model still proves to be elusive in most 
cases, we can make definite statements about its phase 
transition. In particular, the exact transition tempera­
ture can be quite generally determined. An application 
of our result is the verification of the absence of a 
phase transition in the monomer-dimer system on the 
honeycomb lattice. 

2. DEFINITION OF THE MODEL 

In the study of a vertex model one is interested in 
the evaluation of a graph generating function. Consider 
a honeycomb lattice and draw bonds (graphs) along the 
lattice edges such that each edge can be independently 
"traced" or left "open." Denote the traced (resp. open) 
edges by solid (resp. broken) lines; then, as shown in 
Fig. 1, there are eight possible vertex configurations. 
With each type of vertex configuration we associate a 
vertex weight a, b, c, or d (see Fig. 1). Our object is 
to evaluate the generating partition function 

~ " nl n n Z = Z(a, b, c, d) = LJ a 0 b cad 3, 
G 

(1) 

where the summation is over all possible graphs on the 
lattice and, for a given graph G, ni is the number of 
vertices having i solid lines (or bonds). This defines 
an "eight-vertex" model for the honeycomb lattice. 

Since all possible vertex types are allowed, this 
eight-vertex model is the counterpart of the sixteen­
vertex model of a square lattice. Note that we do not 
distinguish the bonds in different directions. Whereas 
it is possible to consider the further generalization of 
eight different weights, we shall not go into this com­
plication in this paper. As a motivation we point out 
some special cases of interest. When c = d=== 0, the 
partition function (1) becomes the monomer-dimer gen-
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erating function for the honeycomb lattice. When b === d 
= 0, Z reduces to the partition function of a zero-field 
Ising model, which can be evaluated by pfaffians. 

In a statistical model of phase transitions, the vertex 
weights are the Boltzmann factors 

a=== exp(- €o/kT), b === exp(- e/kT), 

c=== exp(- f.z/kT), d=== exp(- €3/kT) 
(2) 

where €j is the energy of a vertex having i bonds. While 
the weights (2) are always positive, the symmetry re­
lations to be derived below are valid more generally for 
any real or complex weights. 

3. SYMMETRY RELATIONS 

The partition function (1) possesses a number of 
symmetry properties. Interchanging the solid and 
broken lines in Fig. 1, we obtain the symmetry 
relation 

Z(a, b, c, d) === Z(d, c, b, a). 

Also since both the total number of vertices, N, and 
the number of vertices with odd number of bonds are 
even, we have the negation symmetry 

Z(a, b, c, d) === Z(- a, - b,- c, - d) 

===Z(-a,b,-c,d) 

= Z(a, - b, c, - d). 

(3) 

(4) 

The weak graph expansion6 yields an additional sym­
metry relation. For its derivation it is most convenient 
to use Wegner's formulation7 of the weak-graph expan­
sion. Denote the vertex weights by w(i,j,k), where 
i,j,k===±l are the edge indices such that +1 corresponds 
to no bond and - 1 corresponds to a bond on the edge. 
I.e., w(+,+,+)===a, w(+,+,-)===w(+,-,+)===w(-,+,+) 
===b, w(+,-,-)===w(-,+,-)===w(-,-,+)===c, and 
we-, -, -) ===d. Define a set of new vertex weights 
w* (+ , + , +) === a*, etc. by 

b b c c d 

FIG. 1. The eight vertex configurations and the associated 
weights for a honeycomb lattice. 

Copyright © 1974 American Institute of Physics 

(5) 

687 



                                                                                                                                    

688 F.V. Wu: Eight·vertex model 

where the 2 x 2 matrix V having elements V ~I satisfies 

VV=I, 
1 being the identity matrix. We then have the weak­
graph symmetry 

(6) 

Z(a, b, e, d) = Z(a* ,b*, e*, d*). (7) 

There are two possible choices for V: 

V(y) = (1 + 1)-1/2 (1 y) (8) 
y -1 

or 

U(y) == (1 + y2)-1/2 ( 1 y) 
-y 1 

(9) 

for aribitrary (real or complex) y. The explicit trans­
formation generated by (8) is 

a* = (1 + y2)-S/2[a + 3yb + 3y2e + ySd], 

b* = (1 + y2)-3/2[ya - (1- 2y2)b + (yS - 2y}c _ y2d), 

e* = (1 + y2)-3/2[y2a + (y3 - 2y)b + (1 - 2y2)c + yd], 

d* = (1 + y2)-3/2[ysa - 3y2b + 3ye - d). 

(10) 

The transformation generated by (9) leads to identical 
vertex weights subject to the negation symmetry 
b* - - b*; d* - - d* hence is not independent. We shall 
write (10) in the short-hand notation 

w*(y)= V(y)w. (11) 

It is also seen that two consecutive transformations are 
equivalent to a single one: 

(12) 

In particular we have 

V(y)V(y)=!, (13) 

4. SPECIAL SOLUTIONS 

Before we consider the model with general weights, 
it is useful to first consider some special cases whose 
solutions are known 

A. b=ua, c=u2a, d=u3a 

The vertex weights in this case can be converted into 
the bond weight u2 • Since all graphs are included in (1), 
we then obtain 

Z = aNZ(l, u, u2, US) 

==aN(l +U2)3NI2. (14) 

Here we see a simple example for which the partition 
function (1) does not exhibit a phase transition, 

B. b=d==O 

Here only the vertices with even number (0 or 2) of 
bonds are allowed. The graphs in (1) are then precisely 
those encountered in the high-temperature expansion of 
a zero-field ISing model. Writing 

e/a==tanhK, (15) 

we then obtain 

Z ==Z(a,O, e, 0) 
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= aNZ(l ,0, tanhK, 0) 

= aN2-N(coshK)-SN laZIalng(O ,K), (16) 

where more generally ZISlng(L ,K) is the partition func­
tion of an ISing model on the honeycomb lattice with 
interactions - kTK and a magnetic field - kTL. From 
the known expressionS of ZIslng(O,K) given by (A1) we 
obtain, in the large N limit, 

~lnZ= (16-rr2)-1 J:a. de 12drplt{a4+3e4 +2(c4 - a2e2) 

x [cose + cosrp + cos(e + rp)]}. (17) 

We remark that (17) is valid for arbitrary (real or 
complex) a and e, although the phYSical range of an 
Ising model is restricted to real values satisfying 
I e/ al.;; 1. The expression (17) is nonanalytic at 

a/e=±..f3. (18) 

Other established properties of ZIslng(L,K) for L*O are 
summarized in the Appendix. 

C. a=d, b=c 

The vertex weights are now symmetric under the 
interchange of the solid and the broken lines in Fig. 1. 
In this case we can again reduce the partition function 
to the form of (16). Indeed, taking y=l in (10), we 
obtain 

Z =Z«a + 3b)/v'2,0, (a - b)/v'2, 0). 

The phase transition now occurs at 

a/b=3± 2-13. 

D. ad==bc 

(19) 

(20) 

In this case we define the ISing parameters Land K 
by 

z = tanhK = e/ a, 'T::: tanhL ::: b/ v'aC. (21) 

Then 

Z == aNZ(l, .f"iT,Z, ZS/2T ) 

== aN2-N (coshL)-N (COshK)-3N 12 Z Ising (L, K) 

= (2a3e)-N(ae - b2 )N (a2 - e2)3N 12 ZIalng (L,K). (22) 

Here the second step follows from the generalization of 
(16) to the high-temperature expansion of ZISlng{L,K). 

E. b 2 ==ac 

In this case we have 

Z == aN Z(l, u-1 , u-2 , d/ a), (23) 

where u=a/b. The partition function on the rhs of (23) 
is in a form Similar to that considered in Ref. 5. We 
then obtain in a similar fashion9 

Z = (b/ a)2N (1 + a2/b2)3N 18 (ad/be _l)N /2 ZIalng(L,K), (24) 

where 

exp(4K) = 1 + a2/b2, 
(25) 

exp(2L) = (1 + a2/b2)3/2 (ad/be _1)-1, 

We see that the Ising model is ferromagnetic for real 
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a/b. For the Boltzmann weights (2) (subject to 2fl ==eo 
+e) we find the model in general exhibits no phase 
tr~~ition, except for eo < e1 (a> b) and 'Yo < (es - eO)(e1 - eo)-l 
< 0 the model has a first-order phase transition at 
exp(2L) = 1 or 

(til + b2 )3/2 = a2d - bS
• (26) 

Here Yo=3 - 21n(27 +15 /3)/ln(6 +4/3) = -0.1022204···. 

5. GENERAL CASE 

We are now in a position to discuss the general solu­
tion for arbitrary (positive) vertex weights (2). The idea 
is to introduce the weak-graph transformation (10) and 
choose Y to make the new vertex weights satisfying 
either a*d* =b*e* or b*2=a*e*. We can then use the 
results of the Appendix to determine the critical behav­
ior of the vertex model. For clarity we use subscripts 
1 and 2 to distinguish the two cases. That is, in analogy 
to (11), we write 

wj==W*(Yj)=V(Yj)W, i=I,2, (27) 

and consider the two cases separately. 

(i) atdt=btet: From (27) and (10) we find Yl given 
by 

y~ - 2AY1 -1 =0, (28) 

where A = (b2 - ae + bd - e2)/ (ad - be). The new vertex 
weights wi = {at, bt, et, df} are real if we take the posi­
tive solution 

Yl =A + (A2 + 1)1/2 > O. 

Then, from (10), at >0. Also et is real since 

at + et == (1 + y~)-1/2(a + bYl + e + dYl) > O. 

The partition function is now 

Z = (2at 3et)-N(atct - bt2)N(at2 - et2)3N /2 

XZISlng(Lt ,Iq), 

where 

exp(2Iq) = (at + et)/(at - et), 

(29) 

(30) 

(31) 

exp(2Lt) = [(atet>1/2 + biJ/[ (atef)1/2 - bt J. (32) 

We observe that exp(2Iq) <1, Lt ==pure imaginary if 
et <0. Since not much is known about ZISlng(Lt ,Iq) for 
Iq and Lt in these ranges, we shall be interested only 
in et > 0, We observe in particular that, for at and ei 
positive, exp (2Lt) 4' - 1. 

(ii) b:2 = at e:: From (27) and (10) we find Y2 given by 

(bd- e2)y~ + (ad- be)Y2 + (ae- b2)=0. (33) 

The partition function is then 

Z = (b:! a:)2N(1 + at2/b~2)3N /8 

X (ata:/b:e: -1)N'/2 ZIalng(L: ,Iq). 

Here the weights 4, b: , e: ,a: are real if the 
discriminant 

a == (ad - be)2 - 4(bd - e2)(ae - b2) 

(34) 

(35) 

is positive. The parameters Iq and Lt are given by (25) 
with a - at, etc. After some steps we find the simple 
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result: 

exp(4Iq) = 1 + t::./(bd - c2 + ae - b2)2 > O. (36) 

We shall consider t::. > 0 which corresponds to Iq being 
ferromagnetic. The similar expression of Lt, which is 
not needed for our discussions, is rather complicated 
and will not be given. 

The two transformations (i) and (ii) are obviously 
related. To see the relationship, we observe from (27), 
(12), and (13) that 

wt == V(Y2) V(Yl) wi 
(37) 

== U (Yl - Y2\wt. 
1 +YIY2) 

Since (34) is invariant under the negation of b: and a:, 
there exists a single transformation which relates wt 
to wt. To effect this transformation, we set ad = be in 
(33) and obtain Y2 == (a/ e)1/2. The new weights are then 

4 = 4(1 + a/ c)-s/2 (a/ e)1/2 (b + 1iiC), 

b: = 2(1 + a/ e)-S/2 (a/ e -1)(b + .fiG), (38) 

e: =b:2/4, 
dt = (1 + a/ e)-3/ 2 (rf>/2/ eS/2 - 3ab/ e + 3 ..rae - be/ a). 

Now (36) becomes, for ad==be, 

exp(4Iq) == [(a + e)/(a - e)J2. 

Also using (38), we find 

exp(2L:) == (1iiC + b)/ (1iiC - b), if a/ e > 1, 

==(b+ 1aC)/(b- /tiC), if a/e<1. 

(39a) 

(39b) 

Letting a=at, b=bi, e=et, d=di in (39) and com­
paring with (32), we then obtain the relation 

exp(4K:) = exp(4Iq), (40) 

exp(2L:)==±exp(2Lt), foraUet~1. 

Note that while exp(2Kf) can be taken to be positive, 
exp(2Iq) can be either positive or negative. We obse~e 
from (40), (32), and (36) that t::. > 0 and et > 0 are eqUlv­
alent. Hence, for a> 0, Iq is ferromagnetic and 
exp(2LV is real. 

Using the results of the Appendix, we conclude that, 
for a> 0, the nonanalyticity of Z can occur only at 
exp(2L~) = + 1 or -1. To distinguish these two cases, 
we turn to Lt. Since exp(2Iq) may be negative, it is 
then convenient to consider the following situations 
separately: 

(i) at> et > 0: From (40) and exp(2Lt) 4' -1, the non­
analyticity can occur only at exp(2Lt)=exp(2L~)==1. 
By using (32) this is equivalent to 

bt =dt =0. 

A little algebra using (28) reduces (41) to 

2(ab - ed)[(b2 - ae + bd - e2)2 - (ad - be)2] 

+ (ad - be)(b2 
- ae + bd - c2) 

X (a2 + ~ - 3b2 - 3e2 
- 2ae - 2bd) = 0 

(41) 

(42) 

which defines T == Te' To see whether indeed a phase 
transition occurs at Te , we observe that Iq and Iq are 
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equal and positive. Then from the result of the Appendix 
we need to compute zc=(ct/at)T=T • The vertex model 
will exhibit a first-order transitio~ if Zc > 1/13, a 
second-order transition with an infinite specific heat if 
Zc = 1/13, and no transition at all if Zc < 1/13, even if 
(42) has a solution. The following useful expression of 
Zc is obtained by combining (29), (10) and (41): 

Z = c 

(ae + bd)A2 + 4(ab - ed)A + (3b + dHd - b) + (a + 3e)(a - ciI] . 
4(a2 + tf)A2 + 12(ab - ed)A + (3b + d 2 + (a + 3e)2 Tc 

(43) 

(ii) cr > at > 0: In this case the nonanalyticity occurs 
only at exp (2q) = - exp (2Lt) = - 1. Then Tc is again 
given by (41) or (42). Now Iq >0 and exp(2L:)= -1; 
hence the vertex model always has a first-order transi­
tion. Note that we can reach the same conclusion by 
conSidering K!. In this case exp(2Iq) < -1 and exp(2Lt) 
= 1. We need only to reverse the signs of exp(2K!) and 
exp(2Lt) which leaves ZISiIlll(Lt,K!) unchanged, as can 
be seen from the low-temperature expansion. 

Combining the results in (i) and (ii), we conclude 
that a phase transition occurs for t::.. > 0 only if 
Zc ~ 1/13. 

A special case is that (41) or (42) is an identity. 
Then, for all t::.., Lt =0 and Z reduces to that of a zero­
field Ising model. The vertex model now exhibits the 
Ising-type transition (logarithmic specific heat singu­
larity) at T c defined by 

t::../ (bd - c2 + ae - b2)2 = (2 + f3)±2 - 1. (44) 

Unfortunately we are unable to make any general 
statement for t::.. < O. For t::.. < 0, Iq is antiferromagnetic 
and exp(2L:) is unimodular and lies on the unit circle. 
Presumably the zeros of an Ising antiferromagnet also 
distribute along the unit circle in the thermodynamic 
limit. 10 The vertex model then in general shows a 
unique transition. 

6. SUMMARY 

We have established the following results for the 
vertex model (2): 

(i) If (42) is an identity, then an Ising-type transition 
occurs at Tc defined by (44), where t::.. is given in (35). 

(ii) For t::.. ~ 0 and (42) not an identity, a phase transi­
tion occurs at Tc defined by (42) if Z ~ 1/v'3, where Zc 

is given in (43). Otherwise (ZC <1/73) there is no phase 
transition. The transition is of first-order except that 
'Ie specific heat diverges for Zc = 1/13. 

(iii) For t::.. < 0 and (42) not an identity, the vertex 
model is related to an Ising antiferromagnet with a 
pure imaginary magnetic field. Nature of the transition 
is not known. 

It is instructive to illustrate with some examples. 

(i) a= d, b = e: Since (42) is an identity, we find from 
(44) the critical condition 

(a2 + 2ab - 3b2)/ 4b2 = (2 ± 13)2 - 1 , 
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which agrees with (20). 

(ii) b2=ae: We find t::..={a2d-b3)2/a2>0 and exp{4Iq) 
= 1 + w/b2

• This is in agreement with (25). It can be 
verified that the condition (42) is the same as that ob­
tained from exp(2L)=1 in (25). 

(iii) b=e=d: We find t::..=b2{a-b)2>0 and exp{4Iq) 
= 2. Since Iq is a constant with Z~l = 3 + 2 .f2 > v'3, 
there is no phase transition. 

(iv) Monomer-dimer system: For e=d=O the parti­
tion function (1) becomes the monomer-dimer generat­
ing function Z"m{a, b2

) where a and b2 are, respectively, 
the monomer and dimer activities. It is known that this 
system does not have a phase trahsition. ll We verify 
this by observing that t::.. = 0, Iq = O. Also (42) has no 
solution for e=d=O, ab*O. 

To obtain a closed expression for ZMD' we find that, 
for e=d=O, either exp(2Iq) =1, exp{2LV=-1 or 
exp(2Iq) = -1, exp(2Lt) = 1. In either case the Ising 
partition function is identically zero. Therefore we 
must take the limit e = d - 0 appropriately. This leads 
to the expression 

ZMD(a,b2
) = lim (b/4e)N ZIslag(L:,K:) 

c·O 

where (for small e) 

exp{2Iq') = 1 +4e/b, 

exp(2LV = -1 ± 2a ..fC/b3 / 2 • 
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APPENDIX: ISING PARTITION FUNCTION 

We summarize in this Appendix the relevant proper­
ties of the Ising partition function ZISl",,(L,K). 

A closed expression is known for L =0. In the large 
N limit, one hass 

1 3 1 127 (27 
:NlnZrsl",,(0,K)=4In2+16r 0 de J

o 
dcp 

Xln[e3 + 1 - S2(COS e + coscp + cos(e + cp))], 

(AI) 

where 

e = cosh2K, s = sinh2K. 

The second derivative of (AI) diverges logarithmically 
at tanhK =± 1/13. 

A unique property of the honeycomb lattice (coordi­
nation number = odd) is that the partition functions at 
L = i~7T and L = 0 are related. To see this connection, 
consider the high-temperature expansion of ZIsl",,(L,K). 
Using the identities for L = it7T, 

~ a exp (La) = 2 sinhL=2i, 
(J:a*l (A2) 
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6 exp(LO') = 2 coshL = 0, 
a=>l 

we see that only the vertices with odd number of bonds 
contribute in the expansion. Thus we obtain 

ZISing(ih ,K) = (2i)N (COshK)3N /2 Z(O, rz, 0, Z3/2) 

= ZIsing (O,lh , 
where 

tanhl( tanhK = 1. 

(A3) 

The last step follows from the symmetry relation (3) 
and (16). Note that ZIsing(ih,K) is analytic for real K. 

Most of the established properties for L *" 0 are for 
ferromagnetic interactions (K>O). ForK>O, ZIsIag(L,K) 
can be nonanalytic in L or K only at I exp (2L) I = 1. 12,13 

This means exp(2L) = ± 1 for real exp(2L). At exp(2L) 
= 1 the analyticity extends to all 0 < z < 1/ V3 while the 
first derivative w. r. t. L is discontinous for all1/V3 
< z < 1. At exp(2L) = -1 this first derivative is presum­
ably discontinuous for all 0 < z < 1. This is similar to 
the result of a square lattice14 and can be easily seen to 
hold in both the high and low temperature limits. We 
hope to return in the future for an exact calculation of 
this discontinuity. 
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We investigate some kinetic properties of an isotopically disordered harmonic crystal. We prove 
rigorously that for almost all disordered chains the transmission coefficient of a plane wave with 
frequency w, t N(W), decays exponentially in N, the length of the disordered chain, with the decay 
constant proportional to w2 for small w. The response of this system to an incident wave is related 
to the nature of the heat flux J(N) in a disordered chain of length N placed between heat 
reservoirs whose temperatures differ by /:;.T >0. We clarify the relationship between the works of 
various authors in the heat conduction problem and establish that for all models J(N)-1J as N ~oo 
in a disordered system. The exact asymptotic dependence of J(N) on N eludes us, however. We 
also investigate the heat flow in a simple stochastic model for which Fourier's law is shown to hold. 
Similar results are proven for two-dimensional systems disordered in one direction. 

1. INTRODUCTION 

There does not exist at the present time any dynam­
ical system for which kinetic laws can be proven to hold. 
A kinetic law relates fluxes to gradients, e. g. , 
Fourier's law of heat conduction. Indeed the two "stan­
dard models" of equilibrium statistical mechanics, that 
of the noninteracting gas for an ideal fluid and the per­
fect harmonic crystal for the ideal solid do not obey any 
macroscopic kinetic laws. The next dynamical model, 
in order of complexity, is the isotopically disordered 
harmonic system where the masses of the individual 
particles are independent identically distributed random 
variables. This paper studies the transport properties 
of such a system, particularly those of the disordered 
harmonic chain: We give new rigorous proofs of some 
already known (or conjectured) results and derive a few 
new ones. 

We consider a disordered chain in which left and right 
end particles are coupled by some mechanism to heat 
baths at different temperatures; call them T Land T R' 

T L - T R = /:;'T. Using some description of the coupling 
to the heat baths, 1 we can compute the steady state 
energy flow across the chain. If J(N) is the flow across 
a particular chain of length Nand (J(N) the average of 
J(N) over the different choices of the N masses we 
identify N-i /:;.T as the "temperature gradient" across the 
chain and define the average conductivity of chains with 
length N by K(N) = (J(N)/(.IlT/N). Fourier's law will 
hold if K(N) - K as N - 00 with K a finite, strictly 
positive, constant. Fourier's law certainly fails for 
periodic systems. In these J(N) tends to a nonzero con­
stant as N increases, 1. e., K(N) grows linearly with N. 
This was proven for the homogeneous chain ini and for 
the general periodic chain in. 2 The behavior of J(N) 
does not depend on the dimensionality of the system: 
Hellemann3 investigated two-dimensional homogeneous 
cylindrical systems with general couplings and found the 
same behavior for J(N) (see also Nakazawa4

). For truly 
disordered chains the situation is entirely different. 
Here Casher and Lebowitz2 proved that J(N) - 0 as 
N - 00 for almost every random chain (almost all is 
defined here with respect to the probability measure on 
the chains constructed from the individual distribution 
of each mass). Ideally we would like to decide if 
lim N-~ K(N) is finite, zero, or infinite. Regretably we 
still cannot do this in a definite way. Some heuristic 
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arguments suggest5 that for the linear chain K(N) de­
creases as N- i

/
2

• This, if true, implies that the random 
chain is an even poorer heat conductor than a real 
system and would presumably be a peculiarity related 
to the chain being one-dimensional. We would then have 
to look at two- and three-dimensional random harmonic 
systems to obtain models in which Fourier's law holds. 

Intuitively, we picture the heat baths exciting the ends 
of the chain and setting up vibrations which travel along 
the chain. These vibrations are linear combinations of 
the chain's normal modes. The energy flow therefore 
depends on the fraction of normal modes which have 
significant amplitudes at both ends of the chain. We 
could say that a normal mode which has Significant 
amplitude at both ends is an efficient heat carrier. In 
periodic systems (i. e., mj is periodic in i) nearly 
every mode is efficient and so that heat flow J(N) 
through a periodiC chain of length N approaches a non­
zero limit with increaSing chain length. In a disordered 
system on the other hand nearly every mode is "lo­
calized" and so relatively few are efficient heat con­
ductors. This leads to J(N) - 0 as N - 00 for these 
systems. 

The difference between the normal modes in periodic 
and disordered systems is reflected in the spectrum of 
the corresponding infinite chains and the character of 
plane wave solutions to the lattice equations of motion 
[a plane wave solution is one of the type u(t) = u(O)e iwt ]. 

In a periodic chain the frequency spectrum consists of 
allowed bands separated by gaps. The bands are actually 
the spectrum of an infinite-dimensional self-adjoint 
matrix operator. The spectrum of this operator is ab­
solutely continuous. At allowed frequencies the plane 
wave solutions are bounded periodic functions on the 
chain. For frequencies in the band gaps the plane wave 
solutions grow or decrease exponentially. In a dis­
ordered chain the corresponding spectrum is more 
complicated. For almost all chains the corresponding 
infinite matrix operator does not have any absolutely 
continuous spectrum. 2 Indeed for every frequency w > 0 
the plane wave solutions of the equations of motion of 
the semiinfinite chain (1-2) grow exponentially for al­
most all chains. Borland6 was the first to appreCiate 
this exponential growth (he used it to explain the fre­
quent occurence of localized modes in random systems). 
A rigorous proof of the existence of exponentially 
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growing solutions for infinite chains was, however, only 
obtained when Matsuda and Ishiis proved that the power­
ful results of Furstenberg7 apply to this system. 

The harmonic chain 

We will now specify more precisely the dynamical 
system with which we are primarily concerned here. 
The harmonic chain is a one-dimensional system of 
particles coupled together by harmonic springs. The 
force between two adjacent particles is proportional to 
the change in the length of the connecting spring: When 
both particles are in their equilibrium position this 
force is zero. At the nth site there is a particle with 
mass mn whose displacement from its equilibrium posi­
tion at time t is un (t). The center of mass movement of 
a finite chain of length N can be removed by constraining 
the first and last particles by additional harmonic forces. 
The Hamiltonian for the system with the spring constant 
set equal to one, is then 

(1. 1) 

This is often described as a chain with fixed boundary 
conditions because it is also obtained by considering a 
chain beginning with a particle labelled 0 and ending with 
one labelled N + 1 and demanding that U o = U N.l ;: O. The 
equation of motion for the chain is 

(1. 2) 

u(t) is the column vector [Ul(t), ... , uJt)], MN is the 
diagonal matrix with entries m l ••• m N' it> N is the NXN 
tridiagonal matrix with entries (it>N)/j=2, (it>N)lj 
= - 1 for I i - j I := 1 and (it> N) Ii = 0 otherwise. 

This harmonic chain has N normal modes, 1. e. , 
solutions of the form u(t)=u(O) e lwt • Any solution of 
(1. 2) with speCified initial conditions is a linear com­
bination of these solutions. For a normal mode (1. 2) 
becomes 

or 

(1. 3) 

The normal mode frequencies are thus (determined by) 
the eigenvalues of the symmetric matrix H N 

=M"i /2 it> NMii /2. 

These ideas extend to a semiinfinite (or infinite) 
harmonic chain. Again mn and un are the mass of the 
nth particle and its displacement from its equilibrium 
position; n runs from 1 (or - 00) to 00. We will assume 
that all m i are bounded above and below. The equations 
of motion for the semiinfinite chain are 

mniln + 2un - u n- l - u n+l = 0 (n> 1), 

ml ul +2ul -u2 =0. 

The energy 
00 00 

E(t)= r; tmn u~+ L: t(u n -u n+l )2+ tu~ 
"=1 nzl 

(1. 4) 

is a conserved quantity and so the set of solutions to 
(1. 4) with finite initial energy span a Hilbert space h 
whose norm is just the energy functional. For these 
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solutions (1. 4) can be written 

M U(t) +it>u(t) = o. (1. 5) 

it> is the bounded self-adjoint tridiagonal matrix operator 
on h with entries it> H = 2, it> Ii = - 1 if Ii - j I = 1 and it> iJ 

= 0 otherwise. M is the infinite diagonal matrix with 
entries m,. It is a bounded operator on h. The "allowed" 
frequencies w2 are pOints in the spectrum of the sym­
metric operatorH=M-1

/ 2 it>M- l
/

2 with IIBI! ~4/m, m 

=min,{mJ 

Models of stationary heat flow 

In this paper we are interested primarily in the be­
havior of the thermal conductivity of a random harmonic 
crystal. Since we are interested in a stationary flow we 
need to have our system coupled at its ends (left and 
right) to some kind of inexhaustible heat reservoirs 
which are maintained at temperatures T Land T R so 
that energy will flow steadily across the system from 
left to right due to the temperature difference T L - T R 

=AT>O. 

In this note we use two models for the heat bath and 
its coupling to the chain. These were developed by 
Lebowitz et al. 1.2 and by Rubin and Greer. 8 In 
Lebowitz's model the heat bath is a Maxwellian gas of 
very light molecules. These gas molecules collide with 
the end particles of the chain. At each collision the 
momentum of the end particle is altered in a discon­
tinuous way. Using the Maxwell-Boltzmann distribu­
tion for the velocities of the gas particles prior to a col­
lision we can compute the probability per unit of time 
that the momentum of an end (chain) particle will jump 
from p to p'. This will depend on the gas temperature 
and the frequency of these collisions. The frequency is 
incorporated into a constant A measuring the coupling 
between the particle and the heat bath. Finally we get 
a modified Liouville equation for the Gibbs ensemble 
density iJ. (ul ••• uN' Pl ••• P N' t) of the system, 1,2 

(p,=m,u,), 

(1. 6) 

x = (Xl' ••• X 2N) = (Ul ••• UN' Pl' .. p N) and ali and d ij are 
entries in the 2Nx 2N matrix 

_ (0 -Mi) _(0 a- , d-
it>N L 

Land T are diagonal NXN matrices with entries 

L,,=A(OI1 +OiN)' 

Ti/=TLOI1+TROjN' 

A represents the coupling of the baths to the system 
(A ~ 0). When A = 0 the system is isolated and follows the 
equations of motion given in (1. 2). The solution of 
Liouville's equation (1. 6) with A = 0 has the form 

iJ.[xl "· X 2N;t] = J..L[xl (- t) .. • X2N(- t);O] 

where x,(t) is the solution of (1. 2) with initial values 
Xl'" X 2N• In this case iJ. will not approach any stationary 
state. For A> 0, however, any initial distribution ap-
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proaches a unique stationary distribution which is a 
generalized Gaussian. The expected value of the heat 
flow across the system in the stationary state, for a 
specified set of masses {m I}, iSi 

J(N) = 'Tr- l (T L - T RP,2 m1 m N 1: w2 I Z(W);~12 dw 

='Tr-l(TL-TR)x2mlmN.L w2 jJw)dw. (1.7) 

Here Z(w) is the NXN matrix 4> N- w2 MN- iwMNL and 

jN(W) 
= {2m 1m JiA2W2 +IG. N+ X2W2 (m ~IG.N-l + m~~.N) 

,4 4 2 2 TT.! 1-1 +" w m1m N I'>.i.N_1( . (1. 8) 

K;i(W2
) is the determinant of the submatrix of 4> - w2 M 

beginning with the ith row and column and ending at the 
jth row and column. 

Rubin and Greer's models is rather different. In it 
the chain of N particles (which constitutes the system) 
is connected at either end to semiinfinite chains of 
identical particles. Initially the left-and right-hand 
chains are in thermal equilibrium at temperatures T L 

and T R' respectively. We can follow the time develope­
ment of the infinite system from a specified initial state 
and at any later time we can compute such quantities as 
the local temperature or energy flow. More interesting­
ly we can find their average values over the ensemble 
of initial states and then calculate the steady state value 
approached as t - 00, of these averaged quantities. In 
the next section we give a simpler rederivation of 
Rubin's result relating the stationary heat flow J(N) in 
his model to the integral of the square of the transmis­
sion coefficient t ~ w). This uses a method introduced by 
Ford, Kac, and Mazur. 9 Our approach is quite similar 
to that of Casher and Lebowitz. 2 

In Sec. 3 we use Furstenberg's theorem to prove 
rigorously an earlier result of Rubin, based on an ex­
plicit but not entirely rigorous computation that, in a 
chain with random masses, WI lim 1 t N(W) 1- - y(w) as 
N - 00, with y(w) > 0 for w '* O. It follows from this that 
i(N) like J(N) - 0 as N - 00 for almost all random chains. 
We also show that y(w) is a continuous function of w for 
small wand y(w)/ w2 

- const for w - O. The latter result 
was proven earlier by Matsuda and Ishii5 using a 
perturbation expansion. 

In Sec. 4 we use the Casher-Lebowitz expression for 
the heat flux, J(N) to derive an explicit expression for 
the nonvanishing heat flow in an infinite periodic diatom­
ic chain and in a uniform chain containing a single 
impurity. We then, in Sec. 5, derive rigorously an ex­
pression for the weak coupling limit of the heat flux 
J(N, x) where A is the coupling to the heat reservoirs, 
i. e., we compute limA~o A -1 J(N, A) and find it in agree­
ment with the perturbation result of Matsuda and Ishii. 5 

We note however that the interchange of the limits 
A - 0 and N - 00 should not be expected to be valid when 
the heat flow vanishes as N - 00. This is shown ex­
pliCitly in Sec. 6 where we construct a nondynamical 
model which obeys Fourier's law of heat conduction. 

Section 7 discusses the generalization of the Rubin 
formalism to a two-dimensional harmonic square lat­
tice in which the masses in each column are the same 
and the heat flow is along the x-axis. We find, as ex-
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pected,2 that when the system is periodic the heat flux 
per unit cross-sectional area does not vanish when the 
length of the system becomes infinite. When the masses 
in the different columns are random, then the analog of 
the Casher-Lebowitz argument for chains, based on the 
Furstenberg theorem, shows that the flux vanishes. 
The difference between the two flows is, as in the case 
of chains, a reflection of the difference between the 
spectral measure of periodic and random harmonic 
systems and, in Sec. 8, we give an explicit proof that 
the spectrum of a simple harmonic chain is absolutely 
continuous. 2 

Finally in Sec. 9 we discuss briefly the relation be­
tween the heat flow in Rubin's and Lebowitz's model. 
We also discuss there what strengthening of the 
Furstenberg theorem is needed for obtaining the 
asymptotic N -dependence of J(N) or J(N). Appendices 
A-C contain some technical details. 

2. THE HEAT FLOW IN RUBIN'S MODEL 

The first step is to look at a finite analog of the in­
finite chain. Particles of unit mass are placed at sites 
- S to 0, from sites 1 to N particles of random mass 
and from sites N + 1 to N + S + 2 particles of unit mass 
are placed. The random masses are assumed for 
simplicity to be all greater than one and are identically 
distributed, independent random variables. At t = 0 we 
know the position and momenta of every particle in the 
chain. The left-hand segment of unit masses is just a 
chain driven by an external force ul • Explicitly 

where 

11( t) = (uo, u_ l , ••• , u_s )' n2 = 4> S+1' 

g(t) = (u l (t) , 0, ... ,0). 

n2 has the spectral representation 

where 

w2 = 4 sin2
( a'Tr ) 

a S + 2 
. (2) 1/2 . (ja'Tr) 

and ~a(j) = S + 2 sm S + 2 ' 

l.:fj.:fS+1. 

If 
S+1 

11 (0) = L: ba ~a' a-I 
S+1 

11 (0) = 6 Va ~a' 
a=1 

then as is known 

uo(t) =gl(t) + J: As(t - s) u1(s) ds, 

where 

gl(t) =6 [(cos wat) ba + W;1 (sin wat) v.J ~a(l), 
a 

A (t)=6 w~l(sinw.tH!(l). 
a a 

The initial energy of the particles - S, ... , 0 is 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

~ L (v~ + w! b~). The ba and va have a Boltzmann 
(Gaussian) distribution at temperature T L and so we 
can compute the statistical properties of g. When S - 00 
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Uo(t) =gl(t) + .fa' A(t - s) ul(s) ds, 

A(t) = (2/7T) I: w-l(k) (sin2 k) sin[t w(k)] dk, 

w(k) = 2 sin(k/2), 

(gl(t» = 0, 

(2.6) 

(2.7) 

(gl(t) gl(t + s» = (T LI1T) 10 w-2(k) (sin2k) cos[w(k)s Jdk, 

(2.8) 

where we have set Boltzmann's constant equal to one. 
Similarly, 

(2.9) 

g N has identical properties to gl when T R replaces T L. 

Here gl(t) and gJ..,t) are to be interpreted as "inde­
pendent Gaussian random variables" with mean zero 
and covariances given by (2.8) for gl and a correspon­
ding expression with T R replacing T L for gw We set 
g=(gl,O,···,gN)· 

Using (2.6) and (2.9) we have a closed set of equations 
for the particles 1 to N: 

mlul +2ul -U2=UO=gl +A*ul , 

m 2u2 + 2u2 - u3 - u l = ° 

mN_
l 
UN_l + 2UN_l - UN_2 - UN = 0, 

mNuN+ 2uN-UN_l =UN+l =gN+A*uN· (2.10) 

The same set of equations was obtained by Magalinskii. 10 

In the Fourier representation (2.10) takes the form 

[<I>N- MNW2 -A(w) UNJ u(w) = g(w) (2.11) 

where UN is the N by N diagonal matrix with entries 
(UN);; = (0;1 + 0IN). In Appendix A we show that the NXN 
matrix YN(w) = <I>N-M~2 -A(w) UN is nonsingular for 
all real values of w except w2 = ° and 4. These singu­
larities are integrable. We specify that u(t) and g(t) 
vanish when t < 0. It is important that we include this 
carefully in the calculation. u(t) is the sum of a particu­
lar solution of the inhomogeneous equation (2. 10) and a 
general solution of the homogeneous equation which 
matches the initial values of u and u. In Appendix B we 
show that the general solution decays at least as fast as 
rl/2. This represents the diffusion of energy into the 
chain and so initial data on the N particles does not 
contribute to the steady state heat flow. A solution of 
the inhomogeneous equation is 

u(t) = (21T)-1 1: exp(iwt) Y J..,W)-l g(w) dw. (2.12) 

The value of A(w) and the statistical properties of 
g(w) are easily computed as continuations of the as­
sociated Laplace transforms. We obtain 

A(w) =t[2 - w2 - iw(4- W2)1/2J 

(g(w»=O, 

(g;(w) gj(O'» = (T LOll + T R 0IN) 0li [i(w) + gf,O')J 9(0'+ w), 

g (w) = t [( 4 - W2)1/2 - iw], 

8(w) = lim (H iW)-l. 
e"o. 

(2. 13) 
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We choose the branch of Zl/2 which is cut from ° to 00 

along the positive real axis. For later use we note that 
when w is real 

A(w) -A(- w)= - iw (4 - W2)~/2, 

A(w) -A(- w)=O, 

g( w) + g( - w) = (4 _ w2)! /2, 

g(W)+g{-W)=O, 

Iwl < 2, 

Iw I ;, 2, 

Iwl < 2, 

Iw I;, 2, 

where (X)!'2 is the positive square root of x;, 0. 

We can now compute the average 
particle 1 at time t: 

J(N, t) = (Ul(Ul - uo» 

= (u l (u1 -gl- A*uJ) 

heat flow past 

(2. 14) 

(2. 15) 

Substituting from (2. 12) and using (2. 13) and (2. 14) 
gives the following expression for the stationary heat 
flux in Rubin's model, 

J(N)-= limJ(N,t)=1T (TL-TR).t w2 (4-w2)IAN(w)I-2dw, 
t .... GO 0 

(2.16) 

AN(W) = det[YN(w)]. 

In deriving this we use the result 

lim lim r exp[i(w+a)t] [Hi(w+a)]-l [(O')da 
t ... <Xl e--o+ .0 

= 1T f (- w) (2. 17) 

when f is a continuous, integrable function. 

It is interesting to note that only the frequencies in 
the allowed band of the infinite chain which, because we 
considered only heavy impurities, contains all the 
characteristic frequencies of the finite chain, contribute 
to J(N). Any solution u(t) which vanishes when t < ° 
must contain contributions from almost all real fre­
quencies [because u(w) is a nonzero analytic function in 
the lower half plane and so its boundary values u(w) can 
only vanish on a set of measure zero]. As time in­
creases however the contribution from frequencies out­
side the allowed band falls to zero. 

We can relate J(N) to the transmission coefficients of 
the segment 1, ... ,N for plane waves with frequencies 
from ° to 2. To calculate the transmission coefficient 
of an incoming plane wave with frequency w we only need 
to find a solution of the equations of motion which to the 
right of the segment 1, ... ,N is a combination of an in­
coming and a reflected wave and to the left is a pure 
outgOing wave, 1. e. , 

uj(t)=D exp[- i(wt+ kj)]+R exp[- i(wt- kj)], j ;,N, 

U j(t) = exp[ - i( wt + kj)], 

w = w(k) = 2 sin(k/2). 

j <sO, (2.18) 

Clearly ID 1-1 is the transmission coefficient t J..,w) and 
the argument of D-l is the phase shift of the plane wave. 
Also RID is the reflection coefficient with IRID 12 
= 1 - (~. USing the transfer matrix approach, we find 

rUN
+

l
] = [exP[ - ik(N + 1)J exp[ + ik(N + I)Jl [DJ L UN exp( - ikN) exp( + ikN) 'J R 
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=TNT1 ••• To (~~), 

~:} [eXP(:'kJ 
where T j is the "transfer matrix, " 

_[2-m j
W

2 -1J T
j

_ • 

1 0 

We find that 

ID(k)I-1= 12sinkl IK1.N-exp(-ik)(K2.N+K1,N_1) 

+ exp(- 2ik)K2•N_11-1 

= tN(w), 

where K j ,j(w2
) is defined in (1. 8). 

(2. 19) 

(2.20) 

(2.21) 

The expression for tN(w) is related Simply to ~N(W) 
in (2.16), 

~JW) =K1,N- exp(- ik) (K2 • N+ K 1.N-1) + exp(- 2ik)K2 .N-1' 

(2.22) 

The final result is then 
~ (2 

J(N} = (41Tt1 (TL-TR}Jo dwfN(w). (2.23) 

This agrees with the result of Rubin and Greer. B 

For periodic chains tN(w} approaches, as N - 00, a 
finite value different from zero for w in the spectrum 
of this chain. This spectrum consists of bands in the 
interval WE [0,2]. For w not in the spectrum tN(w} 
vanishes as exp[-N5{w}], where 5(w} = (w - WO)2 and Wo 

is band edge nearest w. Indeed, for m/= 1, for all i, 
tN(w) = 1. Thus J(N} will approach a finite positive value 
as N - 00 in periodic chains. The situation is quite dif­
ferent in random chainS where, as will be shown in the 
next section, tN(w} goes to zero, exponentially in N for 
almost all chains. 

3. GROWTH OF SOLUTIONS TO THE LATTICE 
eOUATIONS 

We consider a semiinfinite chain with masses m i , 

i ~ 1. A plane wave solution with frequency w satisfies 
the equation [cf (1. 3)-(1. 5)] 

(2 - mNw2)uN=uN+1 + UN_1• (3.1) 

This is more conveniently written in the transfer matrix 
notation 

(3.2) 

TN is in the matrix group SL(2, R). In disordered chains 
the sequence {uN(w)} grows exponentially with N for 
almost every sequence of masses and almost all initial 
values of Uo and u1 • This was first proven by Matsuda 
and Ishii5 using a theorem of Furstenberg. 7 Here a 
brief summary of the theorem and its application is given. 
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We see from (3. 2) that the asymptotic behavior of 
uN(w) is determined by the behavior of products of the 
transfer matrices T J associated with the chain. 

Furstenberg's theorem deals with products of 
matrices in the groups SL(m, R) when the matrices 
themselves are random variables. 

Theorem (Furstenberg,7 Theorem 8.5): Suppose that 
G is a subgroup of SL(m,R) such that 

(i) G is not compact; 

(ii) no subgroup of G with finite index in G is 
reducible; 

(iii) there is a probability measure Il on G. 

Then for almost all sequences {gN: N ~ I} chosen from 
G we have 

(3.3) 

for any nonzero vector U in RN. 

Remark: A real analytic group G is reducible if it has 
a faithful finite-dimensional continuous representation 
and if every finite-dimensional continuous representa­
tion of G is semisimple, 1. e., if G has a representation 
as linear transformations on a finite-dimensional vector 
space V the only subspaces of V which are invariant 
under the action of G are {O} and V itself. In our case 
G is a subgroup of SL(2, R) and so there is always a 
faithful representation as matrices acting on R2. The 
remaining condition must be checked explicitly. y can 
be explicitly calculated in terms of certain measures on 
the projective space p"'-l. These measures are deter­
mined by Il and the induced action of G on pm-I. In the 
statement of this theorem almost all is meant in the 
sense of the standard measure on the product of a 
countable number of copies of G which can be obtained 
from the basic measure Il on G. 

Matsuda and Ishii have proven the following result. 
Their argument has been greatly simplified by 
Yoshioka. 11 

Theorem (Matsuda and Ishii, Theorem 1): If there are 
at least two different masses present, the subgroup of 
SL(2, R) generated by the transfer matrices (2-"'1 ",2 -~) 
obeys conditions (i) and (il) (for w2 > OJ. 

The mass m is a random variable with probability 
distribution dp ( .) and the measure IJ. on the subgroup is 
determined by dP(' ). The corresponding y is written as 
y(w) and by (3.3) y(w) > 0 for w* O. y(w) can be calcu­
lated from the following equations, when w2 is small, 
i. e., 1) defined in (3. 4b) is real, 5 

Y(W)=1'/2 log I cos(9+1) I dG(9) 
-r/2 I cos e I ' 

where 

2 cos1) = 2 - (m) w2
, 

(m) = r mdP(m). o 

dG(.) is a probability measure on (- ~1T, ~1Tl. which 
satisfies 

(3.4a) 

(3.4b) 



                                                                                                                                    

697 A.J. O'Connor and J.L. Lebowitz: Heat conduction and sound transmission 697 

G(A) = r G[IJi(A, m)]dp(m) 
o 

(3.5) 

for every measurable setA in (- t7T, t7T). Here IJi(A,m) 
= {1Ji(8, m) : 8 E A} and 

[
m - (m)] 1/ tan[IJi(0,m)+1/]=tanO-2 (m) tan "2 • (3.6) 

The integral in (3.4) is absolutely convergent and can 
be shown to be independent of the particular measure 
dG used, provided that dG(·) obeys (3.5). These are 
Eqs. (3. 14) and (3. 15) in Ref. 5. 

We now give a nonperturbative proof of Theorem 2 
in Ref. 5. This deals with the low frequency behavior 
of y(w). 

Theorem: For small values of w, y(w) is continuous 
in wand 

Proof: We always choose w so small that T) is real. 
Then the stationary measures dG( 0, T)) (explicitly 
showing the dependence on 1)) can be chosen to depend 
continuously on T) (see Lemmas 1. 2, 2.2, and 2.3 in 
Ref. 7). Then because the integral defining y(w) con­
verges absolutely we can write y(w) as the sum of terms 
similar to 

11/2.-, [ [ 
A(w)= 0 log cosO dG(O,T))+a(E,1)), 

. J,l/2.-6 [ [ a(e, 1))= 11m log cosO dG(O,T)) 
6 -0+ 1 /2~-' 

(3.7) 

and absolute convergence also means that lime_o+ a(E, T)) 
= 0. So by choosing 1) and T)' (corresponding to wand w') 
sufficiently close together and also choosing E small 
enough, we can make A(w) -A(w') arbitrarily small. 
Consequently, y(w) is a continuous function of w. 

2y(w) = 1::2 

109(CO:~~~T))) dG(O,T)) 

= 1'/2 logcos2[1Ji(0, m)+T)]dG[IJi(O, m),1)] 
-./2 

= 1.//2 log cos2 ° dG( 0, T)). (3. 8) 
-, 2 

1Ji(0, m) can be calculated from (3.6) to second order 
in 1). USing this gives 

log cos2
[ 1Ji( 0, m) +1/] = log cos2 0 - a sin20 

+ a2 f( 0) + 0(a3
), 

f(O)= - sin ° cos3 0. 

a==2 (m<:t» tan(tT)). 

(3.9) 

Since y(w) is independent of m, (3.8) is not changed if 
we integrate it over dP(m). We obtain 

2y(w) == J" dp(m) r'2 - asin2 <I>(O, m)dG(O,1/) 
o -./2 

+ 1" dp(m) 1"2 a2 f[<I>(e, m)]dG(e, 1)) 
o -r /2 

+ 0(1)3). (3. 10) 

<I>(O, m) is the inverse of IJi and expanding in powers of 
a gives 

sin 2<I>( e, m) = sin 2( e + T)) + 2a cos2( e + T)) cos2( e + 1)) 
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(3. 11) 

Then to second order in a 

2y(w)==J dP(m).aJ {sin28+2cos28[T)+acos2 ol} 

dG( 0,1)) 

- f dp(m)a2 f cos2 0cos20dG(0,1/). (3.12) 

Finally, we find 

(
m (m» 2 

lim [y(w)/w2]=t· (m) J dp(m) (-:n) 
w~o+ 

xl· /2 
cos20cos2 0dG(0,0). (3.13) 

-. /2 

We can choose dG(O, 0) to be 7T- l dO and so finally get 
the result of the theorem. 

We can use this result tO,connect Sec. 2 with earlier 
work by Rubin12 on the transmission of plane waves 
through random chains. We can rewrite (2.21) as 

2[sink[tN
l(w)= I (1, _e-i~). T1 .. · TN [)k] I. (3.14) 

Furstenberg7 has not only shown that the norm of 
Tl ,,· TN u grows exponentially with N but also that the 
vector converges to a fixed direction (depending on u). 
Consequently, we can use (3.13) to calculate 

lim [- (liN) log t,~(w)] = 2y(w). (3.15) 
N-oo 

This relationship was previously proven by Minami and 
Horil3 using a different method. If each mass can take 
the values m and m (1 + Q) with probabilities q and p, 
we see from (2. 13) that 

lim 2Y~ w) == (m) pq Q2 • 
w-o+ W 4 1 + PQ 

(3.15') 

Rubin's normalization of frequency is equivalent to 
taking m = 4. The mean spacing between the heavy 
particles is L;;:o (r+ l)qrp=p-l. In Rubin's notation this 
is Col and so for small w, 2y(w) behaves as C(1 
- C) Q2 (1 + QC)-l w2• This agrees with Rubin's result 
(Eq. 4.4, Ref. 12]. (Note, however, that Rubin's N 
differ from ours by a factor of C.) Because (~,(w) de­
cays exponentially with N for almost all random chains, 
we can use the argument of Ref. 2 to conclude that 
(J(N) - ° as N - 00. 

Sulem and Frisch14 have recently examined the trans­
mission of light through a one-dimensional system in 
which the refractive index takes different constant 
values on successive intervals. These values are in­
dependent, identically distributed random variables. 
They used an argument based on the random ergodic 
theorem to show that almost all such systems are total­
ly reflecting. The method of Ref. 12 shows that 
Furstenberg's theorem applies to their model. l5 

4. CALCULATION OF HEAT FLOW IN SPECIAL CASES 

The heat flow through an arbitrary chain of masses 
given by (1. 7) can only rarely be explicitly calculated. 
In Ref. 2, Casher and Lebowitz checked that it agrees 
with Ref. 1 for the infinite isotropic chain. Two more 
examples are given here; the infinite diatomic chain and 
the infinite isotropic chain in which a single impurity is 
imbedded. The spectrum of both systems contains an 
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absolutely continuous part and so the limiting value of 
the heat flux, J, is nonzero (Ref. 2 and Sec. 8). 

A. The infinite diatomic chain 

This is an infinite periodic chain in which m is m 1 

when j is odd and m2 when j is even. From Ref. 2 the 
heat flow through an infinite periodic chain whose unit 
cell contains the masses mI'" me is just 

J=rr- 1 m lm eAt::.T J dwlwsinql Ic(w)l, 
(4.1) 

C(W)-l = (1 + A2 w2 mIme) (m eKl ,C-l + m lK2,e)' 

Only frequencies in the allowed bands will contribute to 
J. These are just the values of w2 for which 

IK1)w) -K2•e_l(W) I ~2. 
For a wave vector q they are the solutions of 

Kl.e(w) -K2.e_l(W)= 2 cosq 

(4.2) 

as q ranges from 0 to rr. For the diatomic chain these 
are 

w2 = (mil + m2l) (1 ± ¢(q». 

¢(q)2 = 1- 1J.(1- cosq), 

IJ. = 2m1m 2(ml + m 2)-2. 

(4.3) 

The acoustical branch of the spectrum is given by the 
negative sign and the optical branch by the positive sign. 
Then (4. 1) reduces to 

J = 2(1 + MA2r 1 rr-1 A t::.T 1: dq sin2q I ¢(q) 1-2 

X [(1 + MA2)2 _ (MA2¢(q)2)]-l, 

M=m l +m2• (4.4) 

A partial fraction expansion of the integrand gives 

.!.. + (21J. -1 \ (¢2)"l 
x2 (1 + X)2 J 

_ (21J.x2 + 2x + 1)(2x + 1») [(1 + )2 _ x2rl-.2]-1 
\ x2(1+x)2 X 't'. 

Using ¢2=COS2(~q)+ (1- 2IJ.) sin2(~q), each term be­
comes a simple trigonometric integral and we get 

J= M2(1 ~;)~:_ ( 2) {(I +X)2 -x20 - (1 + 2X)I/2 [1 

+ 2x + x2(1-1i2)]} (4.5) 

where X=MA2 and we have set 1m2 -m I l =Mo. This 
agrees with (3.13) in Ref. 1c when m i =m2 =m. Near 
I) = 0, J is a decreasing function of I) so that starting 
from a monatomic chain and keeping M fixed J will 
initially decrease as I m l - m21 is increased. 

B. A single impurity in an infinite isotropic chain 

When a finite number of impurities are added to an 
infinite isotropic chain the spectrum of the new chain 
still contains an absolutely continuous piece. At most a 
finite number of isolated eigenvalues will be added to 
the original spectrum. These eigenvalues correspond 
when the impurities are light to highly localized normal 
modes. Using the techniques of Ref. 2 it is clear that 
they will not contribute to the heat flux through the in-
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finite chain. In principle we can use (1. 7) to calculate 
the limiting value, J, for any set of impurities. There 
seems to be a simple expression for J only for a single 
impurity and even this cannot be evaluated in terms of 
elementary functions. It was found more convenient to 
use techniques similar to those of Sec. 2 on the 
Langevin equation approach used by Ishii. 16 [The results 
will be exactly equivalent to those obtained from (1. 7). ] 
The final result, for a single impurity of mass m in the 
middle of a chain of unit masses, is (for details see 
Appendix D) 

J=(2rr)-lA AT to d8sin2 8(1 +u2) [(1 + U2)2 + U2V2]-I, 
(4.6) 

U
2 =A2W2, v=(m-l)w2, w2 =2(1-cos8). 

When m = 1, this agrees with (3.13) in Ref. 1c. 

5. HEAT FLOW IN A WEAKLY COUPLED CHAIN 

We give here an exact derivation of the asymptotic 
behavior of the heat flow in Lebowitz's model when the 
coupling constant A of the chain to the heat baths is 
small. This is of interest because in the limit A - 0 the 
dependence of the heat flux J(N, A) [where we have in­
dicated the explicit dependence of J(N) on A] on the am­
plitude of the normal modes at the ends of the chain 
becomes transparent. For small A the integrand in 
(1. 7) is large when K l • N (W

2)=0, i.e., at the normal 
mode frequencies of the chain. We will only treat those 
chains whose normal modes are distinct. This is not an 
important restriction (see Ref. 17 for a discussion of 
this point). Our theorem is also Theorem 7 in Ref. 5. 

Theorem: Consider a chain of masses {m j : i = 1, "', N} 
which has distinct normal mode frequencies {w~ : i 
= 1 ... N} and corresponding normal modes {u j : i :::= 1··· N}. 
u j is normalized by 'if!l m j uj(j )2 = 1. Then 

Proof: If w~ is a simple zero of K1 ,N(W2), then when 
w2 is near w~ 

K l •N(W2
) = (w2 - W~)K~.N(W~) + O(w2 - W~)2 (5.2) 

where the prime indicates derivative. Hence the con­
tribution of ~ to (1. 7) is 

J( il (N, A) = mlmN t::.T IK~ .N(W~) I T(W~)"1/2, (5.3) 

where 

T(W2
) = 2m1mN+ m~IG.,v(w2) + m; ~.N_l(W2). 

Using the identity 

K1 • N(W2) K2. N-I (w2) - KI.N_l(W2)K2. ,v(W2) = - 1, 

(5.3) reduces to 

JW (N, A) = mlmN t::.T IK~.N(W~) 1-1 IK1.N-l(W j ) I 

[mNIG. N-l + m 1 ]-1. 

The normal mode associated with w~ is just u j and 

u/(j) =K 1.j_l(W~)N(Wi)-l, 

(5.4) 

(5.5) 

(5.6) 
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Considering the equations 

(2 - mJ+l w
2
)K1J =K1J+1 + K;i_1' (5.7) 

- mj+1 K1J + (2 - mJ+1 w2) KiJ ::::KiJ +1 + KiJ-l 

and multiplying the first by K~J and the second by KlJ 
and substracting, we get 

mJ+1KiJ:::: (K1J -1KiJ -KiJ_I K 1J) - (K1J Ki j +l -Ki j K 1J+1) 

:::: tPj - tPI+1' 

Thus 
N-l 

L: m j+1 Iqj = tPo - tPN+1' JdJ 

tPo =K1._1 - K~o - Ki1KIO =0, 

and if W2=W~, where K1.N(W~)::::0, then 

N-1 

(5.8) 

L: mn+1Iq/w~)=N(w~)=KiN(w~)KlN+1 (w~). (5.9) 
J=O 

So (5.5) reduces to the term in (5.1) associated with 
w~ and the proof is complete. 

Matsuda and Ishii have argued in Ref. 5 that this sup­
ports the conjecture that (J(N, x}) decreases as N-3/2. 
We want to point out, however, that even if one could 
establish that, for random chains, the right side of 
(5.1) behaves as N-3/2 when N- 00 this would not neces­
sarily tell us anything about the behavior of J(N, X) as 
N - 00 for any fixed X> O. What (5. 1) gives is the large 
N behavior of limA_o X -1 J(N, X) and this need not be the 
same as the large N behavior of X-I J(N, X) for X> O. 
They will agree for periodic chains where X -1 J(N, X) ap­
proaches a finite nonzero limit as N - 00 for any X> O. 
We surmise that for a system obeying Fourier's law 
the asymptotic form of the heat flux may be of the form 

(5. 10) 

where y is related to the resistance to heat flow in the 
interior of the system, e. g., the degree of anhar­
monicity in a anharmonic crystal, or the "degree of 
disorder" <em - <m»2) in a random crystal if indeed such 
a system obeys Fourier's law. If this surmise is right 
then the two asymptotic behaviors will not be the same. 
This surmise is based (or strengthened) by the be­
havior of the heat flow in a simple stochastic model 
system discussed in the next section. 

6. RANDOM REFLECTION MODEL 

This is a simple system which transports energy and 
has a Fourier law behavior. It is a variation of one 
originally considered by Lebowitz and Frisch. 18 It is a 
dilute gas of noninteracting particles which move linear­
ly along a cylinder. At either end of the cylinder is a 
heat bath and barriers are placed at random positions 
along the cylinder. When a gas particle meets a barrier 
it will either pass through without changing its velocity 
or it will be reflected with its velocity exactly reversed. 
The probability of reflection is r and of transmission 
1- r. At each end it can be directly reflected with 
probability 1 - X or with probability X it is reflected back 
with a random velocity. This random velocity is inde­
pendent of the incident velocity and has a Maxwellian 
distribution characterized by the temperature of the 
heat baths. These are To on the left and T 1 on the right 
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(To> T l ). Thus X plays the role of coupling to the heat 
baths as before, 0 ~X ~ 1. Since the total number of 
particles is constant, the total number flowing to the 
right at any point will, in a steady state exactly balance 
the total number flowing to the left. The first group will 
presumably be more energetic and so energy will be 
carried along the cylinder. 

We look at the steady state situation. There are N 
barriers and between barriers i and i + 1, the number of 
particles in a unit volume with velocities between v and 
v + dv is f;(v) dv. 

Let 

f;(v)=f;(v), v>O, (6.1) 
f;-(v)=!;(-v), v>O, 

be the densities for those particles flowing to the right 
and those flowing to the left. it and ft are the corres­
ponding densities for the particles between the heat 
baths and the first and last barriers. At each barrier 
the net flux of particles with velOCities near v must be 
zero. So 

f;(v) =rf;-(v) + (l-r)f/_ 1 (v), N~i>O. 
(6.2) 

f;-(v) = rft(v) + (1- r)f;-+l(V), N> i ~ O. 

At the left the flux of particles inCident on the heat bath 
with velocities near v is v t;(v) dv. This is redistri­
buted by direct and diffuse reflection so 

vfo+(v) = (1- X) vto-(v) + X v go(v) r ufo-(u) du. (6.3) 
o 

go(v) is proportional to the Maxwellian distribution of 
particles in the heat bath at temperature To' It is nor­
malized so as to conserve the total flux striking the 
edge of the cylinder. So go(v) = 130m exp(- {3o mv2

), 

{3o = (kTo)-l. g1 is defined similarly. So 

fo+( v) = (1 - X)fo-( v) + X go( v) {u t;(u) du (6.4) 

and 

f;,,(v)=(I-X)t;(v)+CA)g1(v)foOO (u)du. (6.5) 

The solution of these equations, for 0 ""i ""N, is 

ft = lI[go + C i (g1 - go)], 

fj = 1I[g1 + CN_; (go - gl)]' 

where C i = a + j{3 with, 

a =(1- X)(I- r)/[(2 + X)(I- r) + rAN], 

{3=Xr/[(2-X) (l-r)+rAN] 

and II is the total flux of particles flowing in either 
direction, 1. e., fa' v f; (v) dv = fooo v f;-( v) dv == II for 

(6.6) 

(6.7) 

N ~ i;;?> O. The next flux of energy from left to right is 

rOO 1 3( +) _)] IIX(I- r) 
Jo 2:mv f;(v -t;(v dV=(2_X)(I_r)+xrN 

(6.8) 
x keTo - T 1 )=J(N, X)o 

The heat flux J(N, x) has the form conjectured in 
(5. 10). It depends only on the number of barriers 
present and does not depend at all on their spacing (be­
cause there is no attenuation between adjacent barriers). 
In particular, it does not depend on the length of the 
cylinder. However, if we suppose that in a cylinder of 
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length L the number of barriers present is randomly 
distributed with a Poisson distribution whose mean is 
pL the average heat flow will be 

.. (L)" 
(J(L, ~»= L -t;- exp(-pL)J(n, ~). 

n=O n. 
(6.9) 

In the limit 

lim [L(J(L, A»] = vk(1- r)/rp, 
L-'" To- Tl 

(6.10) 

is independent of A, Eq. (6.10) depends on the asymp­
totic expansion 

.. tn e- t 1 (1 ) 
~n! n+b =t+ O f 

as t- 00, for fixed positive b. 

(6.11) 

Exactly the same result holds if the barriers are 
placed with a constant density p along the cylinder. So 
we can say that the thermal conductivity of this model 
is 

(6.12) 

Decreasing the barrier spacing means that p increases 
and then K will tend to zero. 

7. A SIMPLE TWO·DIMENSIONAL MODEL 

This is a cylindrical system in which the masses in 
each column are identical although from column to 
column the mass may vary randomly. The cylindrical 
analog of Lebowitz's model has been examined by 
Nakazawa. 4 We will combine the method of Sec. 2 with 
his method to examine the cylindrical analog of Rubin's 
model. Each column of the cylinder contains p masses 
and the displacement of the particle in the ith column 
and the ath row is x/a' Its mass is mj' When - S ~ i ~ 0 
andN+l ~i~N+S+2, m;==l; when 1 ~i ~Nthe mj 
are independent, identically distributed random vari­
ables. The particle at site (i, a) is coupled by harmonic 
forces of unit strength to those at (i -1, a) and (i + 1, a) 
and by forces of strength jJ. to those at (i, a-I) and 
(i, a + 1). The equation of motion of this system, with 
Xj,P+l==Xj,l' is 

=0. (7.1) 

We exploit cylindrical symmetry by forming the sums 
P 

x/(8/)==p-1/2 L: Xj a exp(i8/a) (7.2) 
a=l " 

where 1 ~l ~p, 8,=2'IT1IP. Then (7.1) becomes 

Ml(8,)+02 (8 1)x(81)==0, (7.3) 

where M is the diagonal matrix with entries m i , 0 2(8) 
the tridiagonal matrix with diagonal entries 2 + 4J.J.sin2~8 
and off diagonal entries -1 and x(8 1) is the column 
vector whose ith entry is x j (8 1), - s ~i ~N + S + 2. These 
are identical to the equations of motion (1. 2) of a linear 
chain with different coupling strengths between adjacent 
particles. 

We have the inversion formula 

(7.4) 
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In terms of these coordinates the energy in the left-hand 
piece of the cylinder is 

~ ~ {x'(8,)' x'(8/) +x'(8,)' 02(8 z)x'(81H. (7.5) 

Here x'(8/)={x/(8 ,): -s ~i ~O}. 
We can repeat the analysis of Sec. 2 to obtain a closed 

set of equations of motion for the columns 1 through N. 
If the left-and right-hand pieces are initially in thermal 
equilibrium at temperatures T Land T R we find, after 
letting S - 00 and then p - 00, that the analog of (2. 6) and 
(2. 7) are 

xo(8,t)=gl(8,t)+ .(A(t-S)X1(8,S)dS, 

2 f" A(t) = - W(k)"l sin[tw(k)] sin2k dk, 
'IT 0 

(gl(t» == 0, 

(gl(t)gl(t+ s» ='IT-1k TL J: W(k)2 sin2kcos[sw(k»)dk, 
o 

W(k)2 = 4(sin2 ~ k + jJ. sin2 ~8) (7.6) 

(in the limit p- 00, e, becomes a continuous parameter 
8 ranging from 0 to 2'IT). In deriving these we note that 
the S x S matrix 02( e) has eigenvalues 4( sin2 ~1> j 
+ jJ. sin2 t e) with 1> j == jrr IS + 1 (1 ~ j ~ S) and eigenvectors 
~j = [2/(S + 1)]1/2 (sin1>!' ''', sinS1> i)' 

The average energy flowing past the particle at site 
(1, a) (from left to right) is 
.... P • 
J(N, t) = (Xl a (Xl' - Xo a» = pol I; (xi( 8,) - xo( e,l J). (7.7) , ,w f 1-1 

When p - 00, i(N, t) becomes 

J(N, t)=(2rr)-1 t' X1(e)[X1(e) -xo(8)] de. (7.8) 
o 

This is just a superposition of currents from harmonic 
chains with coupling matrices OZ( e) so that repeating 
the analysis of Sec. 2 we obtain, when t - 00 (setting 
Boltzmann's constant equal to unity), 

i(N)::::: (4'IT )"1 aT 10 ~ de 10" dw I det Y( w, e) 1-2 

xiw[A(w) .... A(-w)] [~w)+i(-w)]. (7.9) 

A and g are the Fourier transforms of A and g and 
are obtained by analytic continuation of their Laplace 
transforms. Y{ w, 8) is the N XN matrix 02( 8) - w2 M 
-A.{w)L. We find that when 4jJ. sin2 ~e ~w2..;;4 
+ 4jJ. sin2 te, then 

A(w} -A(- w) = - i(w2 - 4jJ. sin:! te)1/2 (4 + 4jJ. 8in2 te 

(7.10) 

i(w) + it.. - w)::::: W- I(W2 - 4jJ. sin2 t9)1/2 (4 + 4jJ. sin2 t 8 

_ W2)1/2 

and that they are zero otherwise. Thus, calling R the 
range of the w integration, we obtain 

J(N) = aT J; d8 ~ dw I det Y(w, e) 12 (w2 
- 4jJ. sin2 tel 

(7.11) 

We simplify this by introducing the parametrization 
w2 = 4 sin2 tkl + 4jJ. sin2 ~k2 which is valid for all' w2 in 
the range of integration of (7. 11); then 
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I f(k 1 , k212, 

I(k!, k2 ) = 2 sink, . (det ZN(kl' k2»-l, 
ZN= 512 (k2 ) - Mw2 

- exp(ik1) L. (7.12) 

L is the diagonal matrix with entries L i i = (5 11 + 5 i N) 
and in this representation of w2

, A(w)=exp(ik,). 

We can relate j (N) to the transmission properties of 
the columns 1 to N. The incident and transmitted plane 
waves are 

,j .;; 1, 
Xj,a =D exp[ - i(wt + kJ + k2a)] (7.13) 

+ R exp[ - i(wt - kJ + k2a)] '::.N 
,} ~ . 

(7.14) 

Applying (7. 13) yields 

leXP(- ik,(N + ') 

exp(- ik1N) 

exp[ik,(N + ')1 
exp(ik1N) tl 

= TN ... TI (k l , k2) r~~ik')l (7. 15) 

where 

[' +4. ,1n' ;k, - m; w' 
-o'J . T j(k" k2 ) = 

1 

This yields for the transmission coefficient, tN' in 
analogy with (2.21), 

I 

IDN(kl' k2 ) 1-1 == I f(k1 , k2 ) 1== 1 tN(kI , k2 ) I. (7.16) 

Substituting in (7. 12) gives 

j(N) = MT [ [ dki dk2 cosikl o a 

[ 
sin2.!.k JI/2 

X 21k 2 721k ItN (k1 ,k2 )12. 
sin 2" ,+ JJ. sm 2" 2 

(7.17) 

We can compare this with Nakazawa's result4 for the 
heat flow in the cylindrical analog of Lebowitz's model 

J(N) = rr-2 km, mN x2 fj.T [dB Fw2 IdetY(w,B)I-2 dw, 
a -~ 

Y(w,B)=512(B)-w2M-iwXML. (7.18) 

When the mass sequence mj is periodic, the results 
of the next section extend to show that the semiinfinite 
matrix K( B) =M-1

/
2 512(B)M- 1/2 has only an absolutely 
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continuous spectrum and so from Ref. 2 we see that 
both J(N) and J(N) have strictly positive limits as N - 00. 

An examination of Theorem 1 in Ref. 5 shows that 
Furstenberg's theorem holds for any subgroup of 
SL(2, R) which is generated by two noncommuting 
matrices [ali i] (i = 1, 2). (See also Ref. 11.) Conse­
quently, for a disordered cylindrical system J(N) and 
J(N) will tend to zero as N - 00 for almost every choice 
of masses in the columns. We can use Sec. 3 to find 
the asymptotic behavior of tJk I , k2 ) for large N. Equa­
tion (7.15) gives 

ItN(k1,k2)I-I== 12Sinkll-II[1, -exp(ikI )] TN .. ·T, 

An extension of Theorem 8. 1 in Ref. 7 shows that the 
angle between the rows and the angle between the 
columns of TN ... Tl converges to zero as N increases. 
So for any kl' the angle between the vector TN ... T 1 

(elkI) and the vector m tends to zero. If kl ,*0, this 
shows that I tN (k l k2 ) 1-1 grows exponentially with N. The 
analog of (3.15) is now as follows: when kI,*O, limN_", 

- (liN) log I tN(k" k2 ) I = y(kl' k2 ). When k, = 0, tN is 
identically zero. The analog of y(w) (3. 4a) is now y(k). 

Theorem: For small I k I, y(k) is continuous in k and 

(7. 19) 

where 

g(k)=(k~+.uk;)2 ki+JJ.(l- (~) k;Y' 

(we assume m i ;, 1, all i). 

Proof: Adapting the calculation of Sec. 3 to the family 
of transfer matrices Tik" k2) yields 

y(k)=/'/2 1 I COS(B+1) dG(B,1)} 
og 1 cos e 

-0/2 

(7.20) 

where 

G(A)= r G[lJI(A, m)]dp(m), 
a 

tan ¢ = tan[ lJI( ¢, m) + 1) J + [(m - (m»/sin 1)] w2, 

2 cos1) = 2 + 4JJ. sin2 tk2 - 4(m) (sin2 tkl + .u sin2 ik2 ). 

(7.21) 

If a= [(m - (m»/sin1)] w2 then (3.12) gives 

y(k)==F dp(m)· a2 ('/2 cos 2B cos2edG(e, 1)+ 0(1)3). 
o L'/2 

(7.22) 

This gives the result. 

8. SPECTRUM OF PERIODIC CHAINS 

We consider a infinite periodic chain whose basic cell 
contains the masses m, ... m A' It is easy to see that the 
allowed bands for the chain are specified by the 
algebraic condition 

ITr T(w) I .;;2, (8.1) 



                                                                                                                                    

702 A.J. O'Connor and J.L. Lebowitz: Heat conduction and sound transmission 702 

where T( w) = T A ... T 1 (w) is the transfer matrix for one 
cell of the chain. These bands form the spectrum of the 
self-adjoint infinite matrix operator H =M- l / 2 if> M-1 / 2 

introduced in Sec. 1. H acts on the Hilbert space l2 and 
has a cyclic vector, viz. 1{1= (1,0, 0 .. ·). So H has a 
simple spectrum whose spectral type (Ref. 19, Chap. 
VII) is precisely the type of the measure P-", on [0,00) 
determined by 

(lJ!, HklJ!) = 10" Xk dll", (k? 0). (8.2) 

Theorem: The spectrum of a semiinfinite periodic 
lattice is absolutely continuous. 

Proof: We will evaluate the left side of (8.2) for finite 
periodic systems and then let the length tend to infinity. 
We will see that there is a unique measure satisfying 
(4.2) and that it is absolutely continuous. We also 
normalize the lightest mass to 1 so that all mj ? 1. The 
spectrum of H will therefore be in [0,4]. 

Let PN be the projection on l2 which projects any vec­
tor onto its first NA entries. Then HN=PNH PN is the 
operator introduced in Sec. 1 corresponding to a 
periodic lattice with N cells. For each k? 1, the opera- . 
tors Ht converge strongly to Hk. Suppose that a chain 
containing N cells has normal modes with frequenCies 
W;, a= 1· .. NA. The corresponding displacements are 

u(a,jA + p) =dP(wa) sin[(jA + P)Ka ], 
(8.3) 

K. =rra(NA + 1)-1, 1 ~P ~A, ° ~j ~N-1. 
dp(a) are certain constants depending on a. Using the 
transfer matrix method (8.2) can be a solution to the 
lattice equations only if 

Tr T(w~)=2cosAKa' (8.4) 

The normalization condition for (4.3) is 

1 A 
1=lu(a)/2=-26Idp(a)12[N-coS2K.(P-1)]. (8.5) 

p.l 

So 
NA 

(lJ!, H!lJ!) = 2W l L: F(w~) W~k + O(W2) 
a·l 

with 
A 

F(w2)== 6 dp(W)2. (8.6) 
P=l 

Each dp( w) is a cofactor in a certain determinant and so 
F(w2

) is a bounded continuous function. The spacing of 
the wave vectors K. in a long finite chain is very nearly 
rr(NA)*l. Rewriting this in terms of the frequencies w~ 
and letting N - 00 gives 

'(lJ!,HRlJ!) 2Arr-1 f I~ I W 2k F(w2 )d(w2) (8.7) 

provided that dK/dw2 makes sense. The integral is over 
the values of w2 for which ItrT(w)1 ~2, Le., the 
allowed frequency bands. Using (4.4) in the limit N - 00 
gives 

So 

1: I = (2A)-lg'(W2
) (4_gZr 1

/
2 

= (2A)-1 h( wZ). 
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(8.8) 

(8.9) 

Any singularities occuring in this ratio are integrable 
and so 

(lJ!, HRlJ!) =rr-1 J h(w2)F(w2)w2kdw2== J xkp(x)dx. 

(8.10) 

P(x) is an integrable function over the spectrum of the 
chain. Since H is bounded we also have 

(lJ!, f(H)'lt) == f f(x) P(x) dx (8.11) 

for any polynomial f and consequently for all mea­
surable functions f. Spectral theory now tells us that 
P(x)dx is unique and consequently the spectrum of His 
absolutely continuous. 

9. DISCUSSION 

The expreSSion for the heat flux J(N) in (1. 7) and for 
J(N) in (2.16) [or (2.23») differ essentially in that (1. 7) 
contains an integral over all w while the integration in 
(2.16) is restricted to the spectrum of the homogeneous 
chain with unit masses. (The difference in integrands is 
presumably due to the nature of the coupling between 
the system and heat baths in the two models. ) It seems 
intuitively clear that the reason why frequencies out­
side the spectrum do not contribute to J(N) is that all 
such modes would be damped out in the homogeneous 
stretches of the side chains when S - 00. Indeed the 
integral in (1. 7) will reduce to an integral only over the 
spectrum of the chain when we take a chain of length 
N + 2S in which mj = 1 if 1 ~j ~S and N +S + 1 ~ j ~2S 
+N. Using expansions similar to those in Appendix C, 
it is easy to see that lims_.,J(N + 2S) becomes an inte­
gral over [0,4] involving only the determinants K l ,., etc. 
There does not, however, seem to be a compact ex­
pression for this flux. 

In any case, as we have seen, both J(N) and J(N) ap­
proach nonvanishing limits when N - 00 in periodic 
systems and go to zero in random systems. The latter 
result follows from the behavior of the integrands 
iN(w) and t~(w) which, by Furstenberg's theorem, vanish 
for almost all chainS as exp[ - Ny( w) J as N - 00 for fixed 
w, with y(w) > ° for w *0. The difficulty with using 
Furstenberg's theorem for the evaluation of the asymp­
totic form of J(N} or J(N) (the latter ought to be easier 
since the integration is over a finite range) is that the 
approach to the limit in Furstenberg's theorem, i. e. , 
in (3.15), is not known to be uniform in w for w;< 0. We 
need some such kind of uniformity to decide for certain 
whether Fourier's law is obeyed by random harmonic 
systems. 
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APPENDIX A 

We show that the matrix Y(w) = if> - Mw2 -A(w)U in 
Sec. 1 is nonsingular for real w except at w2 = 0 and 4. 
If w2 ~4, we write w==2 sin(8/2) and if D(w)=det Y(w) 
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vanishes we have 

(AI) 
sinB(K1 • r - K 2,r-l) = O. 

If B is different from ° and 1T, then K 2,r-l =Kl,r and (3.4) 
implies K2,rKl,r_l = 1 + K~,r so that I cosBI :;" 1. Equality 
is only possible if 8=0 or 1T, i. e., w2 =0 or 4. When 
w2 = 0, A(w) = 1 and D = O. When w2 = 4, D need not 
vanish and will only have a simple zero. If w2 > 4, we 
consider a square matrix C with 2N + r rows and 
columns: 

C =q. -Mw2 (A2) 

with q. the usual tridiagonal matrix and M and diagonal 
matrix with entries M Ii = 1 if 1 ~ i ~ Nand N + r 
+ 1 ~ i ~ 2N + rand Mil = m J if i = N + j, j = 1, .. r. Then 

det C = d(N - 2)2 Kl,r - d(N) d(N - 2) (Kl,r_l + K 2,r) 

(A3) 

d(N)=(-IY' sinh.(N+ 1)8 when w2=4cosh2 8. 
smh8 

Also, using Rayleigh's theorem, 20 we can find lower 
bounds on the eigenvalues of the matrix M-l / 2 q. M"1/2 

and so prove that when N is large 

IdetC I:;" (W2y d(2N)m l ", m r• (A4) 

So limN_., exp(-2N8) ICI = ID(w)1 >0. The only zeros 
in D(w) then are cancelled by the zeros in the 
numerator of (1. 24). 

APPENDIX B 

We show that for an infinite harmonic chain with m J 
= 1 except possibly when N:;" j :;" 1 that if uJ = 0 = uJ at 
t = ° except when N :;" j :;" 1 then I uN) I falls off as t- l

/
2 

when N:;" j :;" 1. We check the case when u(O) = 0 but u (0) 
*0. Then 

u(t)=(21T)-11 exp(iwt) (q.-Mw2 -a(w)L)-lu(0)dw. (Bl) 
c 

C is a contour obtained as the limit of semicircles in the 
upper half plane with radius R and centre - if. (t very 
small and positive). The integrand may have some poles 
in the upper half plane and has a cut along the real axis 
from - 2 to + 2. The poles contribute exponentially de­
creasing terms and the cut a term of type 

J w2 (4_w2) [P(w) + iQ(w) (4_uJ)1/2]-1 exp(iwt)dw. (B2) c l 

P and Q are polynomials in wand the integrand has only 
the singularity due to the branch in the square root. Cl 

is a contour enclosing the interval (- 2, 2). We can 
easily check that if f and f' are integrable f~2 f(w) 
exp(iwt)dw falls off at least as t-1 and that f~2f(w) (4 
- W2)1/2 exp(iwt) dw falls off at least as rl/2. This 
proves the claim. 

APPENDIXC 

We give here the detailed computation for the heat 
flow along an infinite isotropic chain containing a single 
impurity. Using the Langevin equation approach of 
Ishii5

,l6 and the method of Sec. 2 we find that the heat 
flow across a segment of r masses, m l , .. m r , embeded 
in isotropic chains of length N is just 
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J=A2kTmlmr122 w2 ib(w)i' IdetZ(w)!"2 dw. 

Z(w)= q. _Mw2 - a(w)L is the standard rXr matrix. 
a(w) and b(w) are given by 

(dN+l - i w A dN) a(w) = dN- i w A dw-l' 

(dw+l - i WA dN) b(w) = 1, 

where dj>(w) = sin (P + 1)8/sinB if w2 = 2(1- cosB). 

We can use the methods of Ref. 2 to show that as 

(Cl) 

(C2) 

N - 00 this reduces to an integral over the spectrum of 
the infinite homogeneous chain (if any m j < 1 then there 
are some localized modes with frequencies greater 
than 2 but an explicit examination shows that these do 
not contribute to J as N - 00). This integral is only 
tractable when r= 1. In that case putting </> = (2N + I)B 
and letting N- co, we get 

r2~ 
J=(21T)-lmA2kT Jo dww2(8)sin2 8 

x.fo~ d</>IF(8,</>1-2, (C3) 

F(8, </» = a cos 2</> + b sin 2</> + e - if, 

a = cos 28 + u2 
- v sin 2B, 

b= sin 28 + v (cos 2e +u2
), 

e - if = - v( 1 + u2
) - 2 i u sinB. 

Standard manipulations will reduce (C3) to (4.6). 

(C4) 
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We have proved that Green's function G (l.m,n) at an arbitrary lattice site (l,m,n) in face 
centered cubic lattice with nearest neighbor interactions is, in general, expressed in terms of linear 
combinations of products of complete elliptic integrals of the first and second kinds. 

1. INTRODUCTION 

The method of Green's function has proved to be very 
powerful for quantitative studies of a variety of prob­
lems in solid state physics 0 Extensive investigations 
have been made to evaluate analytically as well as nu­
merically lattice Green's functions for different crys­
tal structures. For face centered cubic (fcc) lattice 
with nearest neighbor interactions, a lattice Green's 
function at a point (I, m ,n) is represented by the follow­
ing integral: 

11~['1' G(l,m,m=='3 dxdydz 
7T 0 0 0 

x coslx cosmy cosnz 
E - it> - cosx cosy - cosy cosz - cosz cosx ' (1. 1) 

where 1 + m + n is zero or an even integer, <'l is an in­
finitesimal number and E is a real number between 
_ 00 and +00. 

Iwatal has shown that the above function at the origin, 
G(O,O,O), can be expressed in a compact form as a 
product of complete elliptic integrals of the first kind. 

In the present paper we show that G (l, m, n) at an 
arbitrary site (l,m,n) is given, in general, by a linear 
combination of products of complete elliptic integrals 
of the first and second kinds. In the region where E> 3 
and E < - 1, G (l, m, n) is real and given by a function 
of K(k) and E(k) with real moduli. For 3> E > -1, 
G (l, m, n) has a nonvanishing imaginary part and is ex­
pressed as a function of K(k) and E(k) with complex 
moduli. The method of analytic continuation for K(k) 
and E(k), as described by Morita and Horiguchi,2 is 
applicable to the present case to evaluate G (l, m, n) for 
the whole range of values of E. 

In Sec. 2 we derive the recurrence relations for 
G(l,m,n), which shows that the knowledge of a finite 
group of Green's functions, G(2p,0,0) (p==O or a posi­
tive integer) and G(2,2,0) is enough to determine the 
entire family of G(l,m,n). In Sec. 3 we present explicit 
evaluations of G(2p,0,0) and G(2,2,0) for E>3, and 
the results are easily transformed into expressions 
valid for E<-l. 

2. RECURRENCE RELATIONS FOR G(I, m, n) 

With the representation (1.1), the following relation 
holds for G(l,m,n): 

G(l+1,m+1,n)+G(I-1,m -l,n) +G(l +l,m -l,n) 

+ G(l-l,m + 1,n) + G(l, m + 1,n + 1) 

+ G (l ,m - 1, n - 1) + G (l, m + 1 , n - 1) 

+ G(l, m - 1, n + 1) + G(l + 1, m, n + 1) 
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+ G(l-l,m,n -1} + G(l + 1,m,n -1) 

+ G(l-l,m,n +1}==4EG(I,m,n) -450150m50n' (2.1) 

where °10 is Kronecker's delta. Furthermore, since the 
number of nonequivalent lattice point in a cubic lattice 
lie inside and on the surfaces of a space bounded by 
three planes (0,0,1), (1,-1,0) and (0,1,-1), a portion 
corresponding to 1/48 of the whole space, it is suffici­
ent to determine Green's functions G(l, m, n) at these 
lattice points. Then, it is readily found that a function 
G(l, m, n + 1) for a positive integer n can be obtained 
successively from (2.1) if G(l, m, 0) and G(l + 1, m + 1,1) 
are determined. In other words, it is necessary to ob­
tain Green's function at lattice points on the two adjacent 
layers for z == ° and 1 parallel to the (0, 0, 1) planes, il­
lustrated by a shaded region including the axes y == ° and 
x==y in Fig. 1. 

Now we derive a recurrence relation for G(l,m,O) by 
adopting the procedure due to Morita3 for two-dimen­
sional lattice. For Simplicity we assume E> 3, and 
hence can neglect a factor i5 in the denominator of 
(1.1). When we integrate (1.1) with respect to z for 
n==O, we get 

1 r' (' 
G(l, m, 0) == r Jo Jo dx dy 

x coslxcosmy 
[(E - cosx cosy)2 - (cosx + cosy)2]1/2 • 

(202) 

y 

FIG. 1. Lattice points for fcc lattice on the two adjacent layers 
parallel to the (0,0, 1) plane .• denotes a point on the first 
layer and 0 a point on the second layer. A square by dotted line 
encloses 13 lattice point whose GU, m, n) are related by Eq. 
(2.9). 

Copyright © 1974 American Institute of Physics 704 
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Introducing a definition 

(E ) - r v d cosm t 
Fm ,x - Jo y[(E-cosxcosy)2_COSX+cosy)2]1/2' 

(2.3) 

we rewrite (2. 2) as 

G(l,m,a)= ~ [7 dxcoslxFm(E,x). (2.4) 

Let's consider an integral for m,p a 
I",(E, x) = for dy cosmy[(E - cosx cosy)2 - (cosx + cosy2]1/2. 

(2.5a) 

which is expressed in terms of F",(E,x) as 

I",(E, x) = !ov dy 

= (E2 - cos2x) F m(E,x) - (E + 1) 

X coSX[F"'+l (E, x) + F ",-1 (E, x)] 

sin
2
x [) ( )] - -4- Fm+2(E,x +Fm_2(E,x)+2Fm E,x . 

Integrating (2. 5a) by parts, we get 

sinmy[(l + E) cosx siny + sin2x cosy siny J 
x [ (E _ cosx cosy)2 _ (cosx + cosy )2)1 / 2 

= (1 + E) cosx [F (E ) _ F (E )J 
2m m+1 ,x ",-1 ,x 

(2.5b) 

(2.6) 

Equating the two expressions for I", (E, x), we obtain 
the following relation for F m (E, x)s: 

(m + 1) sin2x F "'+2(E, x) + 2(1 + 2m)(1 + E) COSx F",+! (E, x) 

- 2m (2E2 - 2 + sin2x) F m(E, x) 

- 2(1- 2m)(1 +E)cosx F",.!(E,x) 

- (1-m)sin2xF",_2(E,x)=a. 

Then, by use of (2.4), 

G(l + 1 + 2(p + 1), l + 1, a) + G(l + 1 + 2(p - 1), I + 1,0) 

= 2fo· dx cos(l + 2p + l)x[l- 2 sin2x] F ,+! (E, x). 

(2,7) 

(2.8) 

Substitution of (2,7) into (2,8) with some rearrange­
ment of terms deduce the recurrence relation for 
G(l,m,O), 

G(l + 2p + 3, l + 1, a) + G(l + 2p -1, l + 1,0) 

- 2G(l + 2p + 1, l + 1,0) 

- 4{1 + Ei{2l-1) [G{l + 2p + 2,l,0) + G(l + 2p, l,O)J 
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+ 4(4E2-
Z
3){l-1) G(l+2p+l,1-1,0) 

- 2(ZZ-1) [G(l + 2p + 3, l-l,O) + G(l +2p -1, 1-1,a)J 

_ 4(1 +E~{21-3) [G{l+2p+2,l-2,a)+G(l+2P,l-2,0)J 

_2(l~2) G(l+2p+1,l-3,a) 

+ (Z ~ 2) [G(l + 2p + 3, Z- 3,0) 

+G(l + 2p -1, l- 3,0)J=0, (2,9) 

where l is a positive integer and p is zero or an integer. 
Eq. (2,9) gives rise to a relation among Green's func­
tion for 13 lattice points lying on the edges and inside a 
square formed by four lines connecting the lth with the 
(l+5)th sites along the x and y axes (see Fig. 1), ex­
cept the square whose center is at the origin, i.e., 
l = ° in (2.9). 

We show below that proper application of (2.1) and 
(2,9) makes it possible to obtain any function G (Z, m, 0) 
or G (l + 1 , m, 1) for arbitrary integers Z, m, provided 
that we know the functions G(2,2,0) and G(2p,0,a) 
where p is zero or a positive integer. Suppose that 
G(2,2,0) and G(2p,a,a) have been obtained. Then 
G(l,l,O) is easily obtained from (2.1) as 

G(l, 1,0) = HEG(a, a, 0) -lJ. 

Moreover, with (2.2) we can always find 
G(l+m,m-l+1,1) where Z changes from 1 to m for 
a positive integer m by 

2G(1 +m,m -1 + 1,1) =4EG(l+m -I,m -l + 1,0) 

- G(l+m,m -l +2,a) - G(l+m -2,m -l,a) 

- G(l+m,m -1,0) - G(l+m - 2,m -l +2,0) 

- 2G(l + m -1, m -l + 2,1) - 2G(l + m -1, m -l, 1) 

-2G(l+m-2,m-l+1,1). (2.1a) 

Now, let's place the center of a square determined 
by (2.9) at the point (2q,a,0) (q,pa) and move it to the 
adjacent pOint along the y axis up to (2q,2q,a), so that 
we can determined successively G(2q+2,2n+2,a) for 
n=a,1,2 .. ·q in terms of the known functions G(l,m,O) 
for 1, m < 2q + 2. Similarly, by moving the position of 
the center of the square from (2q -1,1, a) to 
(2q-1,2q-1,a), we can obtain successively 
G(2q+1,2n'+1,0) for n'=1,2·.·q, in terms of the 
functions C(2q+l,1,0) and C(I,m,O) for l,m<2q+1. 
A function G(2q+1,1,0) is in turn given from (2.1) by 
C(2q + 1,1, a) =EG(2q,a,a) - G(2q-1, 1,a) - G(2q, 1, 1) 
where C(2q, 1,1) can be independently obtained from 
(2,10), As the above procedure is valid for q=1 it 
holds for any positive integer q. 

3. CALCULATIONS OF G(2,o,O,O) AND G(2,2,O) 

In this section we shall derive the explicit expressions 
of G(2p,a,a) and C(2,2,a). Let's start with G(2p,a,a): 

G(2p,a,0)= '2 dxdy 1 [rl' 
1T o· 0 
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x cos2px 
[(E _ cosx cosy)2 _ (cosx + cosy)2]l/2' (3.1) 

We perform the integration over y in a straightfor­
ward manner and 

2 [~ 
G(2p,0,0) = 172(1 +E) J

o 
dxcos2pxK(ko), (3.2) 

where K(ko) is the complete elliptic integral of the first 
kind with modulus given by ko = 2(E + COS2X)1/2/(1 + E). 
If we replace K(ko) by a hypergeometric series and ex­
change the order of integral and summation, we get 

_ 1 00 (t)n(t)n ( 2 ) 2n 
G(2p,0,0)- 17(1 +E),Po (1)n(l)n 1 +E 

xl r dx cos2px(E + cos2x)n, (3.3) 

where the standard symbol (m)n=r(n+m)/r(m) is used. 
We note that the integral in (3.3) gives rise to associ­
ated Legendre function PtW as4 

(r 1T[E(1 +E)]n/2 J
o 

dxcos2px(E+cos2x)n= (n+l) P:W, , (3.4) 

with 

~=(E+t)/[E(1 +E)]1/2. 

The associated Legendre function is in turn related 
to Jacobi polynomials P n (m, m) (~), 4 

P:W = (~2 ;1>1)'/2 (n + 1)1> P~~j,j» (~). (3.5) 

A successive application of recurrence formula for 
P~~pl» leads to 

P~j,I>lW=t (-I)1(~)P~I>-i'})(~). (3.6) 
}=o J 

Thus by use of (3.3), (3.4), and (3.5), we have 

1 I> i(P)" <t>n<t>n 
G(2p,0,0)= 221>(1 +E)1+1>12Y/2 Po (-1) j Eo (1)"(I)n 

X(1 !E) 2n [E(1 +E)]n/2 p/I>-J,J)(~). (3.7) 

Furthermore, using the identity for an arbitrary 
inger q, 

(t)n _ 1 ~ (q) (1.) (1.) ( + 1.) 
-(1) - t ( + 1) ~ fJ. 2 q-I' 2 I' fJ. 2 n' 

n q. q n 1'_0 

we can replace the summation over n in (3.7) by a 
hypergeometric function of Appell's type, 
F4 (a, (3, y, y' ,X, y). 4 Thus 

(3.8) 

1 I> l>-i j 

G(2p,0,O)= 221>(1 +E)1+/>/2y/2p! Po E3?0 ct-,!I F 4 (fJ. 

+t fJ.' +t,p - j+l,j+l,X+,XJ, 

(3.9) 

where 

ct-,!J = (-IY(:) 2 (p ~ j) (i)1' (i)p-i-I' (J, ) (i)I" (i)i-I'" 

(3.9a) 
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and 

X = __ 2_ [E+1.'fEl/2(1 +E)1/2] 
" (1 + E)2 2 • 

(3.9b) 

We note that it is possible to expand F 4 (Ci , (3, y, y' ,x, y) 
in a finite series of products of simple hypergeometric 
function, if y + y' - a - {3 -1 is zero or positive integer, 
as it is in the present case. Thus 

F 4(a, (3, y, y', x(1 - y),y(1 - x» 

= E (Z) (- y)k (~l aFl(Ci, {3 + k;y;X)2F l(Y+ y' 

- {3 - 1, (3 + k; y' + k;y), 

(3.10) 

with v= y + y' - a - (3 -1. The relation (3.10) is easily 
shown if one expands the integral representation for 
F 4 (a, (3, y, y' ,x(1 - y),y(l- x» in terms of products of 
integrals for simple hypergeometric functions. Finally 
it should be mentioned that a hypergeometric function of 
the form 2Fl(a - ~,b - ~;c;x) for positive integers a, b,c, 
is reduced to linear combinations of 2Fl(~,~,I;x) and 
2Fl(t,-~;I;x) after a successive application of Gauss' 
relations. 

Hence we conclude that G(2p,0,0) can always be ex­
pressed as a finite sum of products of the complete 
elliptic integrals of the first and the second kinds, 

K(k,,) = (17/2) 2Fl (t, t;1 ;k,,2), 

E(k)== (17/2) 2Fl(t -t;l;k,,2), 

where the moduli k" are calculated to be 

L !:. ( 4El/2(1 + E)1/2 _ (E -1)(E + 1)1/2(E _ 3)1/2) 
k" - 2 h (1 + E)2 (1 + E)2 • 

(3.11) 

Next, we derive an expression for G(2,2,0). We re­
write G(2, 2,0) in the following form 

G(2,2,O)==G(O,2,O)- ~ [. dxsin2xF2(E,x). (3.12) 
17 )0 

A straightforward calculation of F 2 (E,x) from (2.3) is 
carried out to give the following result: 

) 2 ( 4 sin2x , 
F2(E,x == sin2x (I+E)(I+k~) K(k)-(I+E)(I+ko)E(k) 

2 (1 + E) k6 (2)\ ( ) + 1 +k6 IT fJ. ,k'J -Fo E,x , 

where 

ko=2(E+coS2x)1/2/(1 +E), 

k~ = (1 - k~)1/2, 

l-k' 
k=~, 

o 

JJ.2= [E-l - (E+ 1) k~]/[E -1 + (E + 1) k~]. 

(3.13) 

and IT(fJ.2, k) is the complete elliptic integral of the third 
kind. Substituting (3.13) into (3.12), we get 
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4 (r ( 4 sin2x 
G(2,2,O)=G(O,O,O) - 'TT2)0 dx (1 +E)(1 +k~) K{k) 

(1 )( I) () 4(I+E)kiJ. (2 ») 
- +E l+ko Ek+ l+k~ IItl,k , 

A similar calculation is made to obtain G (1 ,1, 0) 

2 (v (E -1 + (E + 1) kg 
G(I,I,O)= ~)o dx (1 +E)(1 +k~) K(k) 

~ (2 k») -1+k&IIJ.!, . 

(3.14) 

(3.15) 

Eliminating the integral involving II(tl2,k) from (3.14) 
and (3.15), and applying transformations for K(k) and 
E(k), we get 

G(2,2,O)= (-~~ + tE+ 1) G(O,O,O) +2G(2,O,O) 

_ t(1 + E) + 8(11T~ E) 11112 dx E(koL (3.16) 

The last integral in (3.16) is calculated in an analog­
ous way as we have derived (3.9) from (3.3). Thus, 

foT/2 dx E(ko) =K(k.)K(kJ + 2E(k.) E(kJ -K(k) E(kJ 

-K(kJE{k). 

(3.17) 

Expressions of G(O,O,O) and G{2,O,O) are given from 
(3.9) and (3.10): 

4 
G(O, 0, 0) == 1T2(1 + E) K(k)K(kJ, 

G(2,O,O)= ~(I+~)3~k~ (K(k+)K(kJ 

1 
+ (1 _ ~)(1 _ k~) E(k.) E(kJ 

(3. 18a) 

1 1 ~ 
- (1 _ k~) K(k+) E(kJ - (1 _ ~) K{kJ E(k+ 

(3.1Sb) 

where the moduli k± are given by (3.11). 

So far we have tacitly assumed E> 3, for which the 
moduli k± defined by (3.11) are real numbers. When 
E < -1, k± are pure imaginary. In this case we shall 
use a transformation 

F (1. ±1.·1·z)-(1 Z)'F1/2 F(.1 ±.Ll' Z ) 
2 1 Z, Z, , - - 2 1 2 , 2, 'z-1 ' (3.19 ) 
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so that the general expressions for G(l, m, n) is valid 
for E < -1 if we replace K(k) and E(k) respectively by 
K(q)1 a± and a±E(q), where 

1 ( (1 - E)(-1 - E)I/2(3 _ E)I/2 
a± = 2I7"2 1 + (-1 _ E)2 

4(- E)1/2(_1 _ E)I/2 ) 1/2 

'f (-1 _ E)2 , (3.20a) 

q± = 2[(- E)1/2'f (-1- E)I/2]I[l - E + (3 - E)I/2(_l_ E)1/2]. 

(3.20b) 
4. CONCLUDING REMARKS 

We have proved that Green's function G(l,m,n) at an 
arbitrary lattice point (l,m,n) in fcc lattice can be ex­
pressed in an exact form as a real function of products 
of the complete elliptic integrals of the first and the 
second kinds for E> 3 and E < - 1. As is easily seen 
from (1. 1), the function G (1, m, n) is analytic in the 
complex E plane with a branch cut along the real axis 
between - land 3, so that the theory of analytic contin­
uation makes it possible to obtain the expression of 
G(l,m,n) for the entire E plane. In our case, the analy­
tical continuation of G(l, m, n) is equivalent to those of 
K(k) and E(k) in the complex k plane which has branch 
cuts on the real axis from 1 to 00 and from - 1 to _ 00. 

Since K(k) and E(k) on any branch on the Rieman surface 
is expressible in terms of K(k) , K'(k), E(k), and E(k') 
on the principal branch, it is sufficient to calculate K(k) 
and E(k) with complex k on the latter branch, which is 
numerically evaluated on computer. Actual procedure 
of calculations for K(k) with complex k is described in 
detail by Morita and Horiguchi in Ref. 2 for the case 
of G(O, 0,0). The method is easily extended to the pres­
ent case to compute G(2,O,O), G(2,2,O) to a good 
accuracy. 5 

For other cubic lattices, we can also derive a general 
formula to calculate G(l,m,n) in terms of complete 
elliptic integrals of the first and second kinds. 5 
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The closing relation between two super-Hamiltonians is cast into a condition on the super-Lagrangian 
by a functional Legendre transformation. It is shown that the ADM super-Lagrangian provides the 
unique representation of the "group" of deformations of a spacelike hypersurface embedded in a 
Riemannian space-time when the intrinsic geometry gij of the hypersurface is allowed as the sole 
configuration variable. No such uniqueness exists for the super-Lagrangians of source fields. As an 
illustration, the most general super-Lagrangian for a scalar field with nonderivative gravitational 
coupling is recovered from the closing relation. 

1. INTRODUCTION 

Geometrodynamics, pure or driven by sources, may 
be viewed as representing the "group" of deformations 
of a spacelike hypersurface embedded in a Riemannian 
space-time. In this paper, we show that pure geometro­
dynamics has a privileged position-it is the unique 
representation of the "group" of deformations using the 
intrinsic geometry glJ of the hypersurface as the sole 
configuration variable. This generalizes the proof given 
in Ref. 1 that pure geometrodynamics is the only time­
reversible representation. Therefore, no irreversible 
geometrodynamics exists! 

While the representation requirement determines pure 
geometrodynamics uniquely, it still leaves a considera­
ble freedom to the sources of geometry. We illustrate 
this in the simplest case of a scalar field with nonderi­
vative gravitational coupling. There are infinitely many 
ways in which such a field may evolve and we shall show 
how to recover all of them directly from the representa­
tion requirement. 

What do we mean by saying that a field dynamics 
represents the "group" of deformations? In the Hamil­
tonian formalism, the field on a spacelike hypersurface 
r =r (x) is described by a set of canonical coordinates 
cpA(x) and conjugate momenta 1TA (x).2 In pure geometro­
dynamics, the field cpA(x) is the intrinsic geometry gli(x) 
of the hypersurface itself. In driven geometrodynamics, 
other fields (scalar, electromagnetic, etc.) enter as 
sources of the geometry gjf and are included among the 
variables cpA. We ask how the field changes when we de­
form the hypersurface r =r(x) into a neighboring 
hypersurface r =XL (x) + lir(x). The displacement lir 
is decomposed into normal and tangential components, 
liN and liNi, 

(1.1) 

Here, nL is the unit normal to the hypersurface and 
X; == XL, I are the tangent vectors in the direction of 
intrinsic coordinate lines Xl. The field dynamics is 
governed by a super-HamiltonianH(x)[cpA,1TA J and a 
supermomentum HI (x) [cpA ,1TA J constructed from the 
canonical variables cpA, 1T A of the theory. An arbitrary 
functional F of these variables changes under the de­
formation liN, liNI by the amount 

(1. 2) 

The super-Hamiltonian H and supermomentum HI push 
the field by means of the Poisson brackets (1.2) when 
the hypersurface is pushed according to Eq. (1.1). In 
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order that the dynamiCS of the field develops consis­
tently with the kinematics of slice deformations, the 
expressions H and HI must close in the way which is 
characteristic for the generators of the "group" of 
deformations 3,l: 

W l(x),HJ(x')J =HI (x')o ,J(x ,x') - (x - x'), (1. 3) 

WI (x) ,H (x')J =H (x)li,I(X,X'), (1.4) 

W(x),H(x')J=HI (x) 0,1 (x,x') - (x- x'). (1.5) 

This poses the representation requirement. 

The supermomentum may be found directly, not using 
Eqs. (1.3)-(1.5) at all, when realizing that the tangen­
tial deformation oNI is equivalent to the relabeling 
Xl - Xl = Xl + oNl of the hyper surface . The change of the 
functional F under the tangential deformation should 
thus equal to its Lie derivative with respect to liNI, 

[F,HIx'JoNix' =J!,6NIF. (1.6) 

Consider the Simplest case of a scalar field cf;. Taking 
for F the scalar field cf; itself and then its conjugate 
momentum 1T (which ought to be a scalar density), we get 
from (1.6) two equations: 

[cf;(x),H lr,]liNb' =J!,~NI cf;(x) = cf;,l(x)oNI(x) , 

[1T(x),H Ix']liNix' =ESNI1T(x) = (1T (x) liNI (x» I' 

Because oNI is arbitrary, these are actually two func­
tional differential equations: 

~;f;;) = cf;,1 (x)li (x,x'), 

0/-11 (x') ) 
~ = -1T,I(X li(x,x') -1T(X)O,I(x'X'). 

The system (1.7) has the unique solution 

Hl(x) = m.X)cf;,1 (x). 

(1.7) 

(1.8) 

In the same way, one may find1 the supermomentum of 
the metric field, 

(1.9) 

Because the Lie derivative of a tensor density is always 
linear in this density, the supermomentum is always 
linear in the field momentum. Each of the two super­
momenta (1.8), (1.9), as well as their sum, satisfies 
the closing relation (1. 3). The supermomentum (1. 9) 
belongs to pure geometrodynamics, the total super-

708 



                                                                                                                                    

709 Karel Kuchar: Geometrodynamics regained 

momentum (1. 8) + (1. 9) to geometrodynamics driven by 
a scalar field. 

The closing relation (1.3) is thus satisfied automati­
cally. The next closing relation is also easy to take 
care of. Long time ago, Dirac showed4 that Eq. (1. 4) 
tells us merely that the super-Hamiltonian H (x) is a 
scalar density. The task of representing the "group" of 
deformations thus reduces to the task of constructing a 
functional H(x) from the canonical variables, which is a 
scalar density and satisfies the closing relation (1. 5). 

We say that the field cpA, TTA has a nonderivative gra­
vitational coupling I if the total super-Hamiltonian H(T) 
of this field interacting with geometry falls into two 
parts I H and H(M), the first of which depends only on the 
geometrodynamical variables glJ' 7TH , and the second of 
which depends on the field variables cpA, TTA and the 
metric gfJ' but not on the geometrodynamic momentum 
7TIJ : 

(1.10) 

Under such circumstances one may show l that the 
geometrodynamical super-Hamiltonians H close into the 
geometrodynamical supermomentum (1.9), and the 
matter-field super-Hamiltonians H(M) close to the 
matter-field super-momentum H(M) I according to the 
same relation (1.5). Moreover, the Poisson brackets 
may be restricted in the first case only to the geometro­
dynamical variables, and in the second case only to the 
matter-field variables. The problem of finding the 
geometrodynamical super-Hamiltonian thus nicely de­
couples from the problem of finding the super-Hamil­
tonianH(M) of the sources. 

Finally, it is easy to show that the geometrodynamical 
super-Hamiltonian must be purely local in the momen­
tum 7TIJ , i. e., a function of the momentum 7TlJ (X) taken 
at the same point x at which the super-Hamiltonian is 
evaluated. This follows from the fact that the intrinsic 
metric glj(x) of a hypersurface XL(X) embedded in an 
arbitrary Riemannian space-time changes under the 
normal deformation oN(x) according to the formula l 

(1.11) 

with KIJ(x) characterizing the extrinsic curvature of the 
hype rsurface, 5 

~L 
KIJ =2 ox' XJ' {I. 12) 

In Hamiltonian geometrodynamics, oJ.gfJ is given by the 
dynamical rule (1. 2) with oHi = 0, and the comparison 
with Eq. (1.11) yields the condition 

~I~;) = [gjJ(x),H(x/») =KiJ(x)o(x,x/). (1.13) 

Because of the 0- function on the right-hand side of Eq. 
(1.13), H(x) must be local in the momentum 7TiJ(X). 

A similar reasoning shows that the scalar field super­
HamiltonianH(O)(x) must be local in the scalar field 
momentum 1T(X). The change of an arbitrary space-time 
scalar cp(Xt) under the normal deformation oN(x) is 

o cp(x) = K(x)oN(x) , (1.14) 

with the normal scalar field velOCity K(x) introduced as 
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(1.15) 

Because the same change may be determined from the 
dynamical rule (1.2), 

oJ. cp(x) == [cp(x) ,H(T) x' JoN" 

OH(O) 
==[<p(x) H(O) • JoNx' = __ x' oNx' 

'" 01T(X) , 

we get by comparison 

OH(O) (x') 
07T(X) =K(x)o(x,x' ). (1.16) 

Therefore, H(~)(x) must be a function of 1T(X) rather than 
a functional. 

The scalar field cp and the 'metric field 4gtK are in this 
respect exceptional. The super-Hamiltonian of any other 
tensor field is necessarily nonlocal. Fortunately, this 
nonlocality is of a simple kind. The super-Hamiltonian 
additively splits into a local and a nonlocal parts. The 
nonlocal part is fixed once for all by purely kinematical 
considerations and turns out to be a spatial divergence 
of a vector density linear in the field momenta. It deter­
mines how the normal and tangential projections of the 
field behave under a "rotation" of the hypersurface. The 
true dynamical meaning is carried only by the local 
part of the super-Hamiltonian, which determines how 
the field changes under a "translation" of the hypersur­
face. We shall investigate the dynamiCS of general ten­
sor fieldS in another paper. Here, we pay attention to 
the only two fields with local super-Hamiltonians: the 
scalar field cp and the metric field gl}' 

2. LEGENDRE TRANSFORMATION 

Rather than trying to determine the super-Hamiltonian 
H (x) [ cpA, 1TA }from the closing relation (1.5) directly, it 
is easier to pass first to the super-Lagrangian 
L (x)[cpA,KAJ by the Legendre dual transformation and 
determine L (x) [cpA ,KA J from the transformed closing re­
lation. The Legendre transformation takes on a Simple 
form once we know thatH(x) is local in the momenta 
1TA(X), 

cpA (x) , 1TA (x) - cpA(X),KA(x), 

aL (x) A OH(x) 
7TA(X) = aKA(x),K Cd= a1T

A 
(x)' 

H (x) == 1T A (X)KA (x) - L (x), 

L (x) = 1TA (X)KA(X) -H(x). 

The Legendre formula 

0/-1 (x) I oL (x) I 
o cpA (x' ) 'B fixed == - 0 cpA (X') KB fixed 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

helps us to transform the closing relation (1.5). Starting 
from the definition of the Poisson bracket 

rll( ) H( 1»)- o/-{(x) O/-{(X/) I) 
V7 x, X = ",!,A,," -,,-- - (x-x 

v,+, v1TAx" 

and recalling the locality of H, 

oH(x' ) O/-/(x' ) (' ") 
01TA(X") = a1TA(X/ ) ° x ,x , 

we get 
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OO~~,)KA(X') +Hi(X>[cpA, :;.4] o,l(x,x') - (x-x')=O. 

(2.6) 

The supermomentum Hi is always linear in the field 
momentum 1TA == aL/aKA. This has two important conse­
quences. First, Eq. (2.6) is linear in the super­
Lagrangian. Second, it does not change its form under 
the velocity inversion 

(2.7) 

Therefore, if L[ cpA, KA J satisfies Eq. (2.6), L [cpA, - KA J 
also satisfies it. Furthermore, because Eq. (2.6) is a 
linear equation for L, the even and odd velocity parts 
of L, 

(2.8) 

satisfy Eq. (2.6) separately. This is the main simplifi­
cation achieved by the Legendre transformation: the 
original closing relation (1. 5) was quadratic in the 
super-Hamiltonian and it therefore mixed the even and 
odd momentum parts of H • 

3. PURE GEOMETROOYNAMICS 

In Ref. 1, the complications associated with the 
mixing of H+ with H- were circumvented by assuming 
that geometrodynamics is time-reversible, so that the 
super-Hamiltonian may be chosen since the beginning 
as an even function H+ of the momentum. Within the 
Lagrangian approach, we are able to remove this addi­
tional assumption and prove that geometrodynamics is 
time-reversible from the closing relation (2.6) itself. 6 

This we do by proving that L -(x) must have the form 
_ M[:qJ 

L (x) = Ogu{x)Ku(X), (3.1) 

where A[3g J is an arbitrary functional of the three­
geometry 3g ;; g;/Diff(Jh3) • The super-Langrangian 
(3.1) is dynamically irrelevant, because it satisfies the 
Lagrange equations 

(3.2) 

identically. The evolution of geometry is then governed 
by the even part L + of L. The Lagrange equations (3. 2) 
with L = L + remain invariant under the time-reversal 

(3.3) 

which means that pure geometrodynamics is reversible. 
The actual structure of L +[giJ,Ku ] is then determined 
from the clOSing relation (2.6). 

Let us first cast the closing relation (2.6) specialized 
to pure geometrodynamics into an advantageous form 

oL (x) K (x') 2 aL (x) ( ,) ( ,) 
[gjj(x') ii + aKlj(x)Olfi x,x - x-x =0. 

(3.4) 

We have arrived at Eq. (3.4) by using the identity 

HI (x)o ,i (x, x') - (x - x,) = 2rrH {x)olfJ{X, xl) - (x - x') (3.5) 

which is satisfied by the geometrodynamical super­
momentum (1.9). 
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L = t (n)Gflil,"inJn[gkl]K K (3.6) 
n:O 1111'" fnin 

and comparing the coefficients belonging to different 
powers of KIJ' The comparison is easy once all spatial 
derivatives are shifted to the o-functions, as we have 
done in Eq. (3.4) by means of the identity (3.5). One 
can also see directly that Eq. (3.4) does not mix the 
even (n=0, 2,4,''') and odd (n= 1,3,5,- _.) coefficients 
(n)GI1i1" 'fnin, corresponding to the fact that L + and L­
satisfy Eq. (3.4) separately. 

The coefficients (It)G/li l " .fni. are some functionals 
(n)Gllit·· 'Inin[gklJ of the metric gkl' BecauseH is a 
scalar density, Kij is a tensor, and 71''' is a tensor den­
sity, L must be a scalar denSity and all coefficients 
(n)Gill l " .fnin must be tensor densities. Because KIJ is a 
symmetrical tensor, the coefficients (")Ghi!' • • Inin are 
assumed to be symmetrical in each pair iaja of indices 
and also symmetrical with respect to an interchange 
iaja - ibj/j of pairs •. Finally, we shall often omit the 
superscript err), because the order of the coefficient 
(")Gfll l " 'in'n is indicated by the number of its indices. 

A. £- regained 

Put KiJ = 0 in Eq. (3.4), collecting thus all terms 
which do not contain K IJ , 

GiJ(X)Olij(x, x') - GIJ(x')OII'J' (x' ,x)=O. (3.7) 

The consequences of the distribution equation (3.7) are 
best extracted when we multiply it by two scalar test 
functions, a(x) and b{x'), and integrate over x and x' • 
When integrating by parts, remember that 0 (x, x') is a 
scalar in the first and a scalar density in the second 
argument, and that Gil (x) is a tensor density. After 
discarding some divergences, we obtain the equation 

J trxa(2b,iGii lj + bGli,IJ)=O. (3.8) 

Because a(x) is arbitrary, 

2b,lGiJ lJ +bGIJIfJ=O. (3.9) 

But b(x) and b,i(x) at a given point x are also arbitrary, 
so that 

GIJ,,=O. (3.10) 

Going backwards, Eq. (3.10) ensures that Eq. (3.8) 
and therefore the distribution equation (3.7) are satis­
fied. Equation (3.10) is thus the only conclUSion we may 
draw from Eq. (3.7). 

Next we collect those terms in Eq. (3.4) which are 
quadratic in K IJ , getting 

- (x-x')=O. 

Equation (3,11) must hold for an arbitrary K1J(x). To 
follow its consequences step by step, write K1i(X) 
!9rmaUy as a product of a scalar k(x) and a tensor 
K/J (x) , 

(3.12) 

We solve Eq. (3.4) by expanding L into a power series Keep first the tensor KjJ(x) fixed and consider the 
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scalar k(x) to be arbitrary. Later on, allow the tensor 
Kjj(x) to vary again. 

We introduce the abbreviations 

A(x,x') 6H"'"(x)Olmn(x, x'), 

Hmn(x) Gli '" mn(x) Kij(x)Kkl (x), 

(
OGli (x) oG'" (x')\ - -

B(x,x') = og",(x') - ogu(x) J KIJ(x)K",(x'), 

Equation (3.11) then assumes the form 

(3.13) 

(3.14) 

(3.15) 

A(x,x')k(x)k(x) -A(x' ,x)k(x')k(x') +B(x,x')k(x)k(x') =0. 

(3.16) 

Notice that H"'n is symmetrical, and 

B(x',x)=-B(x,x'). (3.17) 

Equation (3.16) holds for an arbitrary scalar k(x) 
and some distribution coefficients A(x,x'), B(x,x') with 
the symmetry (3.17). According to the Lemma 1 proved 
in the Appendix, the coefficients A(x,x'), B(x,x') must 
satisfy the relations 

A<+)(x,x')=A(x)o(x,x'), (3.18) 

- 2A <-)(x,x') =B(x,x'), 

with 

A<+) (x,x') = HA(x ,x') ±A(x' ,x», 

A (x) = f if3x' A(+)(x,x'). 

(3.19) 

For A{x,x') given by Eq. (3.13), the relation (3.18) 
gives 

H"'n(X)OI mn(x, x') + Hmn(x' ,x)olm'n' (x' ,x) =H"'"lmn(x)O(x,x/). 

(3.20) 

Multiply Eq. (3.20) by two scalar test functions, a(x) 
and b(x/), and integrate it over x and x'. Recalling that 
Hmn is a tensor density, we again discard some diver­
gences and obtain 

f if3x 2a(bl~""'+blmHmnln)=0. 

Because a(x) is arbitrary, and also b1m(x) and b1mn(x) 
= Hb,mn(x) +b1nm(x» at a given point x are arbitrary, we 
conclude that 

(3.21) 

Returning to the definition (3.14) of H"'n and using now 
the arbitrariness of KIJ , we see that Eq. (3.21) really 
means that 

GIJIllmn(x)=O. (3.22) 

Equation (3.21) implies that the coefficient A(x, x'} 
given by Eq. (3.13) vanishes. According to Eq. (3.19), 
the coefficient B{x,x') must then also vanish. Because 
B(X,X') has the form (3.15) and KiJ{x) may again be 
considered as an arbitrary tensor, we apply the Lemma 
2 proved in the Appendix and conclude that 

oGfJ(x) oGkl(x') -FHkI( ) o( ') (3.23) 
og"/(x') - og/J(X) - x x,x, 

where FiJ kl is symmetrical in ij and kl and antisym­
metrical in the interchange ij-kl of pairs. One can 
check that Eqs. (3.22) and (3.23) are the only two 
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consequences one may draw from Eq. (3.11). 

The closing relation (3.4) has such a structure that 
once an odd (even) coefficient (n)G vanishes, 

(3.24) 

all subsequent odd (even) coefficients <,...21G, (n+4)G,'" 
are forced to vanish as well. Indeed, when Eq. (3.24) 
holds, the only term of the order n + 1 remaining in Eq. 
(3.4) is 

HiJ(x)olij{x,x') -HIi(x')OII'J'(X' ,x)=O, 

where 

HH:; (n+2)Gt 1J1" ·In+1',...l IiK K • 
I l i 1'" 1,...1Jn+l 

(3.25) 

(3.26) 

Equation (3.25) has the same form as Eq. (3.7) and it 
thus leads to the same consequence, 

(3.27) 

The term Hli in Eq. (3.27) depends, however, on an 
arbitrary tensor Kii' whereas the term Gli in Eq. (3.10) 
was K/j-independent. This allows us to conclude from 
Eq. (3.27) that the coefficient (,...21G must vanish, 

(,...21 GII'I' • 'In+ain+2 = O. 

We can see that by substituting the expression (3.26) 
into Eq. (3.27), 

and realizing that KtJ and K fJI " are both arbitrary at a 
given point x. 

Because the coefficient (SlG vanishes according to 
Eq. (3.22), all subsequent odd coefficients must vanish 
and L - thereby reduces to the term linear in KtJ. The 
coefficient Gil of this term is subject to the conditions 
(3.10) and (3.23). Equation (3.10) tells us that Gii is 
divergence-free. Equation (3.23) prescribes a definite 
form to the "functional curl" oGIJ (X)/ogll (x') - oG"'(X')j 
og/J(x) of Gli[gll,]o 

In relativity, one often generates a divergence-free 
functional G/J (x)[g",] by taking a labeling-independent 
functional A[sq J and varying it with respect to the 
metric giJ; this is how the Einstein tensor density 
arises from the Hilbert action. Also, if 

(3.28') 

is divergence-free (the divergence being taken as if 
Gil were a tensor denSity), the functional A[gll,J must be 
a labeling-independent scalar density, and therefore a 
'functional of the 3-geometry 3q rather than a functional 
of the metric gill' 7 It is not true, however, that aU 
divergence-free tensor densities Gli (X)[g"l J constructed 
invariantly from the metric tensor gill are variational 
derivatives of labeling-independent functionals A[sqJ. A 
counterexample is provided by the (symmetrical) tensor 
denSity 

(3.29) 

introduced by York.8 If Gil is a functional gradient, Eq. 
(3.28), its functional curl must vanish, 
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(3.30) 

It is easy to check that the functional curl of (3ii does not 
vanish. 

To prove that geometrodynamics is time-reversible, 
we must show, according to Eq. (3.1), that the coeffi­
cient Gji is a functional gradient. This is not clear at 
this stage, because Eq. (3.23) taken by itself does not 
say that the functional curl of Gii vanishes, but only that 
it has a certain structure. Fortunately, as shown by 
Teitelboim,9 Eqs. (3.10) and (3.23) taken together imply 
that an undetermined functional pii kl(x)[gmn] on the 
right-hand side of Eq. (3.23) must vanish, which leads 
to the desired result. 

One arrives to Teitelboim's conclusion by proving 
first the following: 

Lemma: When (1) Gji(x)[gkl] is a symmetrical tensor 
density constructed invariantly from the metric tensor 
and (2) GlJli=O, then 

J (
0 GiJ (x) oGkl(X'~\ 

1= d
3
x' oglll(X')- ogu(x») £ONmgkl(X')=O. (3.31) 

The assumption (1) leads to the transformation formula 

J d3x' ~Gli«x}) £ ONmgkl(X') = Gji(x)[gkl +£oNmgkl] - G!i(X)[gkl] 
gkl X 

=£oNm Gii(x), (3.32) 

which takes care of the first term of I. The second term 
may be rearranged into 

_ J ~x' OG"I (x') £ (x') = _ ° f ~x' Gkl (x')o£ONm gkl (x') 
og/J(x) ONm g", ogjj(x) 

+ J d3x'GkI (x') Oo£6Nm gkl(X'). 
ogIJ(x) 

Varying the Lie derivative of gkP we get 

0£6Nm g",(x') 0U0N"'(x') o,m'(x'x) 
ogji(x) 

(3.33) 

(3.34) 

The last integral in Eq. (3.33) is then evaluated, 
yielding -o£6Nm Gji(x). The first integral on the right­
hand side of Eq. (3.34) vanishes, 

J ~x Gkl (X)£oNm gkl (x) = J ~x Gill (oNkll + oNtlk ) 

= 2J ~x G"'oNkli = 2J d3x (G"'oNk)11 - 2J d3x Gklll0N"= 0, 

because (G/loN,,)11 is an ordinary divergence and Gklll 
vanishes by assumption (2). Collecting all terms of I 
together, we see that I vanishes. 

When we substitute into Eq. (3.31) the form which 
Eq. (3.23) prescribes for the functional curl of Gji, we 
get 

(3.35) 

Because oNkl1 at a given point x is arbitrary, Fli kl must 
vanish. Equation (3.23) then ensures (dis regarding the' 
global problems which might arise if the space of func-

J. Math. Phys., Vol. 15, No.6, June 1974 

712 

tions was multiply connected) that Gli is a functional 
gradient (3.28). Because of Eq. (3.10), A depends only 
on 3e;. This finally shows that L - has the desired form 
(3.11. 

B. £ + regained 

Turning to the even part of the super-Lagrangian, 
we collect in Eq. (3.4) all terms linear in K li , getting 

Aii (x, x')Klj(x') -A ii (X' ,x)Kji (x) = 0, (3.36) 

with 

Ali(x x')= oG(x) -4Glikl(X')0 (X' x) 
'ogli(x') 1It'1' , • 

Varying Eq. (3.36) with respect to Kli(X"), 

Ali (x, x')o (x' ,x") -Ali (x' ,x)5(x, x") = 0, 

(3.37) 

and integrating the resulting equation over x', we learn 
that Aii(x,x") must be proportional to the 5-function, 

Aii (x, x") = pii(x) o(x, x"), 

pii(X) = Jd3x' Aii(x',x). 

For the coefficient (3.37), Eq. (3.38) gives 

"OG«x),) =Fii(X) o(x,x') +4GIJ kl(X') 011l"'(X' ,x). 
vgiJ x 

(3.38) 

(3.39) 

Equation (3.39) was analyzed in detail in Ref. 1. We 
shall repeat here only the main results. 

First, we see that G(x) must be a function of the 
metric tensor gli(x) and its first and second partial 
derivatives, because otherwise the variation of G(x) 
with respect to gli(X') would yield higher derivatives 
of the o-function than the second ones. Because G(x) is 
a form-invariant scalar density, we know10 that it may 
depend on gjJ(x) and its derivatives only through the 
metric tensor gu(x) and the Riemann tensor RliU(x)' 
In a three-dimensional space, the Riemann tensor is 
expressible by means of the Ricci tensor RlJ(x) and the 
metric tensor glJ (x), so that finally 

G(x) = G(gjj(x) ,RjJ(x». 

Varying Eq. (3.40) with respect to glJ' we get 

oG = (qP +~RjkIJcfI'l + tR!</>kJ + tR~</>kl)ogIJ 

with 

+ H</>ikgll + </>11 gik + </>J"gil + cf:>11 gI" 

-2</>iJgkl_2</>klglJ)oglJlkl' 

</>IJ _ OG(gkl,RI<I) </>lJ _ OG(gkl,Rkl ) 
- oglJ ' - oRIJ • 

(3.40) 

(3.41) 

(3.42) 

The variation of G may be also determined from Eq. 
(3.39), with the result 

oG = (FiJ + 4GIJ kllkl )oglJ 

+ 8GIJ III I 10g!Jlk + 4GiJ kl5giJIl<l' (3.43) 

Because 5gu ' 5glilk , and ogiJl!U= i(OglJlkl + oglJllk) may 
be chosen at a given point as arbitrary and mutually 
independent quantities, the comparison of expressions 
(3.41) and (3!43) yields three sets of equations. The 
first set, 
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Glilrl == is (CPikt' + cpil gJk + cpJkgil + ¢i' gik 

_2cpIJgkl_2cpklg'J), 
(3.44) 

obtained by comparing the coefficients of 6glll~" deter­
mines the "supermetric" Gli kl in terms of the "poten­
tial" G. The second set, 

Gli kIll == 0, (3.45) 

obtained by comparing the coefficients of 6g/llk , im­
poses then a condition on the potential G through the 
supermetric Gil'''. This condition fixes the potential 
and through it the supermetric up to two arbitrary con­
stants. The third set of equations, obtained by com­
paring the coefficients of 6gil , then turns into an 
identity. 

The condition for G is obtained when substituting the 
supermetric (3.44) into Eq. (3.45), 

qPlk _ cplkll +gilcpkl ll _g'kcpl'l' =0. 

Contracting Eq. (3.46) in the indices ij, we get 

¢klll == 0, ¢kl", cpkl + cpgkl • 

(3.46) 

(3.47) 

According to its definition (3.42), cpIJ is a tensor den­
sity constructed invariantly from the m~tric tensor and 
its first and second derivatives. So is cp kl, which is in 
addition divf>rgf>nce-free. Thanks to a theorem due to 
Lovelockll , ¢ kl must be a linf>ar combination of the 
Einstein tensor density gl 12(Rkl - iRgkl) and the metric 
tensor density gl/2gkl. Using the full Eq. (3.46) again, 
we learn that cpiJ must be actually proportional to the 
metric denSity, 

CPij == (2K)-lgl 12g iJ, K = const. (3.48) 

Substituting Eq. (3.48) into Eq. (3.44), we get the 
supermetric 

Gi j kl = (16K)-1g1/2(glkgll + gilgik _ 2gligkl). (3.49) 

Returning to the definition (3.42) of CPll, we may inte­
grate Eq. (3.48) for G, picking up a second constant ;\, 

G == (2K)-lgl /2(R - 2;\). (3.50) 

Linear terms in Eq. (3.4) thus determine the super­
Lagrangian up to the terms quadratic in KiJ' Collect now 
the terms containing the product of three KIJ in Eq. 
(3.4). Because the supermetric (3,49) is purely local 
in the metric gw oL (x)/ ogij(x') is proportional in the 
third order to the 6- function, and the first expression in 
Eq. (3.4) gives no contribution after the commutation 
(x-x'). We thus get 

Hi}(x) ° liJ(X, x') _HiJ(X') 0!i'j'(x',x)=O, 

with 

The argument given in Sec. 3A then shows that the 
coefficient (4)G and all further even coefficients (S)G, 

(a)G, ••• must vanish. The even part of the gravitational 
super-Lagrangian is therefore quadratic in the velocity 
K il , being equal to 

L + == Gil kl Ki JKkl + (2K)-lgl /2(R - 2;\), (3.51) 

with the supermetric (3,49), Remembering that KIJ is 
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the - 2 multiple of the extrinsic curvature, one recog­
nizes in the expression (3.51) the ADM super-Lagran­
gian. 12 This completes the proof of the statement that 
the Einsteinian geometrodynamics is the only represen­
tation of the "group" of deformations of spacelike hyper­
surface embedded in a Riemannian space-time using the 
metric gil as the sole configuration variable. 

4. SCALAR FIELD DYNAMICS 

The closing relation (3.4) determines the gravitational 
super-Lagrangian completely-up to the constants K and 
;\ which are interpreted as the gravitational constant and 
the cosmological constant, and up to the trivial part L­
which has no influence on dynamics and may be thus 
safely discarded. This shows the uniqueness of Einstein­
ian geometrodynamics. The uniqueness breaks down 
when we pass from the metric field to its sources. The 
clOSing relation still ensures that the source-field 
dynamics may be consistently interpreted as taking place 
in a single Riemannian space-time, but there are many 
alternative dynamics compatiable with this requirement. 
We illustrate the situation on the scalar field (which is, 
as we have seen, the only field besides the metric field 
possessing a super-Hamiltonian local in the field mo­
mentum). We recover from the closing relation (2.6) 
itself all different ways in which the dynamics of the 
scalar field with nonderivative gravitational coupling 
may procede. 

The field-partH (<1» of the total super-Hamiltonian 
satisfies the clOSing relation (1. 5) separately, with the 
Poisson brackets being confined to the scalar field 
variables cp and 1T. Pass to the super-Lagrangian L (<1>>, 

performing the Legendre dual transformation (2, 1)­
(2.4) in the variables cp, 1T: 

CP(x) , 1T(X)- CP(x),K(x), 

K(x) == aH (., )(x) L (<I> )(x) = 1T(x)K(x) -H (<I> )(x). 
a1T(X) , 

(4,1) 

The scalar field super-Lagrangian L (<1» may depend, 
besides the scalar field amplitude cp and the associated 
normal velocity K, only on the undifferentiated metric 
tensor gil' We know that L (.,) must be a scalar density 
with respect to the spatial transformations. This 
severely limits the manner in which the derivatives of cp 
may enter into L (<1». Indeed, L (<1» must have the form 

(4.2) 

where L is an arbitrary function of the three scalars 
cp, K, and 

(4.3) 

Higher derivatives of cp than the first ones cannot enter 
the super -Lagrangian L (<1», because the formation of a 
scalar density would require the use of covariant deri­
vatives. This would introduce the differentiated metric 
tensor into L (<1», contrary to the assumption of the non­
derivative coupling. The scalar if! is the only scalar 
which can be formed from the first derivatives of cpo 

The scalar field supermomentum is given by Eq. (1. 8) 
and the transformed closing relation (2.6) takes the 
form 
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IiL(x) (, aL(x) .I() (x , , 
1i</>(x,)Kx)+aK(x)</> xli.1 ,x)-(x-x)=O. (4.4) 

The variational derivative of L is 

liL(x) aL(x) Ii</> (x) aL(x) liq;(x) 
Ii</> (x') = a</> (x) Ii<l>(x') + liq;(x) Ii<l>(x') 

aL(x} , aL(x} i = a</> (x) Ii(x, x ) + 2 aq;(x) <1>' (x}Ii, i(X, x'). 

Substituting it into Eq. (4.4), we get 

Ai(X}Ii)x, x'} -Ai(X')Ii)x',x) ==0, 

with 

Ai;: </>'i(aL +2
aL

) 
aK aq;' 

Multiplying the distribution equation (4.6) by a test 
function a(x') and integrating it over x', 

aAi,l +2a,iAi =0, 

(4.5) 

(4.6) 

(4.7) 

we learn that Ai must vanish, because a and a i at a 
given point x are arbitrary. From Eq. (4. 7) ~e get the 
equation 

which tells us that L must have the form 

L ==L (</> , q;-K2). 

(4.8) 

(4.9) 

An arbitrary function L of two variables, </> and q;, 
thus generates a permissable dynamics through the 
super-Lagrangian (4.2), (4.9), with q; given by Eq. 
(4.3). We see that the scalar field super-Lagrangian is 
highly ambiguous. 

From the super-Lagrangian (4.9), we can pass to the 
standard space-time Lagrangian 4L. The action con­
taine? in the tcoordinrte cell with the edges d(o;C, 
d(1)X , d(2.,x , d(3)X may be expressed through the 
space-time Lagrangian 4L a8 

(4.10) 

where 4€t.AU is the space-time Levi-Civita pseudoten­
sort Adapt the cell to a given hypersurface, generating 
d(j)Xl by the edges d(Ox j of a coordinate cell on the 
hypersurface, 

d t Xl . (j)X == jd(j)xJ, (4.11) 

and taking d(o.,xt to be perpendicular to the hypersurface, 

(4.12) 

The action contained in such a cell may be expressed 
through the super-Lagrangian L (4)) as 

L (4))(x)IiN(x) d3x:::::L(x)IiN(x)€klmd(1)xkd(2)xld(3)Xm, 

(4.13) 

where €klm is the Levi-Civita pseudotensor on the 
hypersurface. We have 

4et'AUnlX;X~~=€klm' (4.14) 

Comparing the two expressions for the action, (4.10) 
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and (4.13), and taking into account the formulas (4.11)­
(4.12), we see that 

(4.15) 

Knowing that K(x) is the normal scalar field velocity 
(1. 15) and </>,1 is tthe derivative of </> along the hypersur­
face, <1>, i = <1>. t X if we express q; - K2 in terms of space­
time tensors, 

q; _ K2 == (glk XtX' _ n l n")</> </> == 4gt.</> </> . 
i k ,t ,K ,t ,1( 

(4.16) 

In this way, we recover the space -time Lagrangian 

(4.17) 

The clOSing relation (4.4) ensured that L depends on 
K and q; only through the combination If! - K2, which is a 
space-time scalar. This illustrates the connection be­
tween the geometrodynamical and space-time ap­
proaches. The ambiguity of the scalar field dynamics, 
given by an arbitrary function L of two arguments, is 
easily understood from the space-time viewpoint. The 
space-time Lagrangian (4.17) is the most general 
space-time scalar which may be formed from the scalar 
field <I> and its derivatives without involving the deriva­
tives of the metric tensor. 

ACKNOWLEDGMENT 

A lively correspondence with Claudio Teitelboim on 
the subject of this paper is gratefully acknowledged. 

APPENDIX 

We prove here two lemmas which were needed in Sec. 
3A. 

Lemma 1: Let the equation 

A(x, x')k(x)k(x) -A(x', x)k(x')k(x') + B(x, x')k(x)k(x') = 0 

(Al) 

hold for an arbitrary field k(x) and some distribution 
coefficients A(x, x') and 

B(x, x') == - B(x', x). 

Then 

A (+)(x, x') =A(x)1i(x, x'), 

- 2A (·)(x, x') =B(x, x'), 

with 

A (±)(x, x');: t(A(x,x'hA(x' ,x», 

A(x);: J asx' A (+)(x, x'). 

(A2) 

(AS) 

(A4) 

(A5) 

Proof: Put k(x)=l in Eq. (A1) and get Eq. (A4). Sub­
stitute B(x,x') given by Eq. (A4) back into Eq. (A1), 
take the variational derivative of Eq. (A 1) with respect 
to k(x"), and put k(x) = 1. Obtain the relation 

A (+)(x', x)li(x, x") -A (+)(x, x')Ii(x', x') = O. 

Integrate it over x and arrive thus to Eq. (A3). 

Lemma 2: Let the equation 

BAB (x, x')kA (x)kB (x') =: 0 (A6)-
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hold for an arbitrary field kA (x) and some distribution 
coefficients 

BAB(X, x') = - BBA(X', x). (A7) 

Then 

BAB (x, x') = FAB (x) o(x, x'), (AS) 

with 

(A 9) 

Proof: Take the second variational derivative of Eq. 
(A6) with respect to kc(x') and kD (x"). Get 

BCD(X,X')o(x,x")o(x', XIII) _ BDC(x', x)6(x', x")6(x, XIII). 

(A10) 
Integrate Eq. (A10) over x'" and x. Arrive thus to Eq, 
(A9). 
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Within the Schrooinger-Infeld-Hull factorization scheme, it is shown that, by suitable 
transformations, the "accelerated" or "v -step" ladder operator can always be brought to a simple 
canonical form, i.e., the v th derivative operation. Thus, one obtains a closed form expression of the 
eigenfunctions involving a Rodrigues' formula. The necessary and sufficient condition that this 
Rodrigues' formula generates classical orthogonal polynomials is found to be equivalent to the 
factorizability condition. Consequently, a closed form expression of any matrix element (diagonal or 
off-diagonal) on the basis of the eigenfunctions of any factorizable equation is easily derived from the 
calculation of one unique particular integral. In most cases, this last integral is known analytically. 
The Kepler problem is reinvestigated as an example. As a concluding remark, further applications of 
the method are considered. 

I. INTRODUCTION 

Recently, using an "accelerated" ladder operator 
procedure, we have been able to obtain closed form 
expressions of the vibration1 and rotation-vibration2 

intensities of diatomic molecules for a Morse-Pekeris 
potential and, further, as a particular case, explicit 
expressions of the off-diagonal hydro genic rk inte­
grals. 3,4,5 Nevertheless, the application of our proce­
dure to the calculation of the intensities for other nu­
clear diatomic potentials (Manning-Rosen, 6 Rosen­
Morse7

) results in intricate expressions of the "ac­
celerated" ladder operators. When trying to overcome 
these difficulties, we have found that, by suitable 
transformations, it is possible to reduce the "one-
step" ladder operator, when it is a linear function of the 
quantum number, to a simple canonical form, i. e., the 
derivative operation acting on a new function. Such 
transformations had been previously investigated by 
Duffs when he considered the Truesdell's F equation. 9 

Furthermore, as outlined by Duff, 8 the treatment of 
equations leading to ladder operators which are not 
linear in the quantum number, can be amenable to the 
resolution of equations which correspond to linear "one 
step" ladder operators. Thus, a unified treatment of all 
Infeld-HulllO factorizable cases (types A to F) can be 
undertaken. 

In the present paper, we focus our attention on the 
calculation of closed form expressions of the matrix 
elements of a Hermitian operator in terms of a simple 
matrix element. After briefly recalling the theory and 
introducing the notations (Sec. II), the transformation 
leading to the canonical form of the ladder operator is 
explained. Then, once the "one step" ladder operator is 
transformed into the derivative operation, the cor­
responding "v step" or "accelerated" ladder operator, 
is of course, merely the vth derivative and, consequent­
ly, leads to an expression of the eigenfunction involving 
a Rodrigues' formula. (Sec. III). While investigating the 
conditions under which this Rodrigues' formula gen­
erates orthogonal polynomials, we found that there is 
an equivalence between these conditions and the fac­
torizability condition of the original second-order dif­
ferential equation. From this last analysis, closed form 
expressions of the eigenfunctions of general Infeld-
Hull type A to F factorizable equations in terms of the 
orthogonal polynomials are derived (Sec. IV), and the 
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corresponding closed form of matrix elements of a 
Hermitian operator Q are obtained in terms of one 
unique matrix element (Sec. V). In other words, the 
full matrix, i. e., the set of all diagonal and off-diagonal 
matrix elements of an operator Q on the basis of the 
eigenfunctions of a factorizable equation can be built up 
by calculating one unique particular integral in which is 
concentrated the specificity of the Q operator: The 
change of the operator only changes the expression of 
the integral. The Kepler problem is reinvestigated as 
a type F illustrative example (Sec. VI). 

II. GENERAL CONSIDERATIONS 

Many problems of fundamental interest in quantum 
mechanics lead to the resolution of differential equa­
tions of the sturm-Liouville type. Without restricting 
the generality of the problem, by an adequate trans­
formation of variable and functions, these equations can 
be reduced to the standard form10 (see Appendix A) 

(::2 +r(x,m)+x) U(x)=O 

with associated boundary conditions (Xl <sx <sx2) 

U(x1) = U(x2 ) = 0 

1"2IU(x)1 2 dx=1, 
"1 

(1 ) 

(2) 

where m =mo, mo + 1, mo + 2, ... is assumed to take 
successive discrete values labeling the eigenfunctions. 

When such an equation (1) subjected to the boundary 
conditions (2) is factorizable, it can be replaced by each 
of the following two differential equations8

•
10

: 

H;;'H;;'US'=[X-L(m)] US', 

H;;'.l.H;;'.l US'=[X-L(m+ 1)] US', 

wherell 

d 
H± =k(x m)=F-' 

m , dx 

(3) 

(4) 

S is the quantum number associated with the eigenvalue 
X and L(m) is a function which does not depend on x. 

From the comparison of Eqs. (1) and (3) one gets the 
necessary and also sufficient condition1o to be satisfied 
by k(x, m) and L(m) allowing the factorization of Eq. (1), 
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i. e. , 
dk dk 

k2(X, m + 1) - k2(X, m) + dx (x, m + 1) + dx (x, m) 

=L(m) - L(m + 1). (5) 

Particularly, when the ladder operator H~ [Eq. (4)] is 
a linear function in m, i. e. , 

k(x, m) = kl (x) m + ko(x), 

the necessary and sufficient condition [Eq. (5)] of 
factorizability of the original equation (1) becomes 

(6) 

=L(m)-L(m+l). (7) 

As it will appear later, this particular linear case (6) 
is of fundamental importance. 

As stated by Schrodinger, 12 Infeld and Hull, 10 when the 
condition (5) is fulfilled, the eigenfunctions u~ are 
solutions of the following pair of difference-differential 
equations: 

H-;" U~=Nm U~-\ 

H';,,+1 U~::= N m+l U~+I, 

N m = (A _L(m)]1/2. 

(8) 

The operators H~ in the equation (8) may be considered 
as "one step" ladder operators which generate the 
eigenfunctions, step by step, downward or upward, and 
allow the determination of any solution U; from the 
knowledge of the top or bottom eigenfunction U~, i. e. , 
the "key" function which is the solution of a first order 
differential equation. One has to distinguish two cases 
depending on the problem under consideration. 

A. Class I problems 

L(m) is an increasing function of m. The eigenvalues 
As are 

As =L(5 + 1). (9) 

The ''key'' eigenfunction U~ is solution of the first order 
differential equation 

(10) 

B. Class II problems 

L(m) is a decreasing function of m. The eigenvalues 
As are 

As =L(5). (11) 

The ''key'' eigenfunction Uss is solution of the first order 
differential equation 

(12) 

In both cases, the necessary condition for the exis­
tence of quadratically integrable solutions is 

1m -51 =v=integer. (13) 

The mutually adjoint ladder operators [Eq. (4)] are de­
fined so that they preserve not only the quadratic inte­
grability but also the normalization of the eigenfunctions 
Us

m (m =5 ±v). Each function of the whole discrete set 
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is completely characterized by the integer value of v 
which fixes its rank starting from the key function 
Uss (v=O). 

Infeld and HulllO have considered six factorization 
types, namely A, B, C, D, E, F. In surveying these 
six cases, one finds that cases A, B, C, and D cor­
respond to ladder operators H;" which are linear func­
tions of m while for the two last cases, E and F, H~ 
are nonlinear in m. Nevertheless, following Duff's sug­
gestion, 8 it is shown (see Appendix B) that a connection 
can be established respectively between types E and A 
and between types F and B, and that, by a suitable 
transformation of variable and function, we can always 
deal with ladder operators H;" linel;lr in m. 

This is why, in order to obtain the explicit expres­
sions of the eigenfunctions, it is sufficient to consider 
only the fundamental case where H;" is linear in m. In 

the next section, it is shown how, for this fundamental 
case, one can obtain a Rodrigues' formula in the ex­
pression of the eigenfunctions. Thus, the closed form 
expressions of the eigenfunctions, and then of the cor­
responding closed form expressions of matrix elements, 
will be derived, in a straightforward manner, from 
this Rodrigues' formula. 

III. EIGENFUNCTIONS AND RODRIGUES' FORMULA 

As previously shown1
- s, starting from the one step 

ladder operators equation (4), one can define the cor­
responding "accelerated" or "v step" operators H~ 
which directly generates any U~"v function from the key 
function U~ 

U~'V(x)= ;v H: U~(x). (14) 

For a class I problem 

H~ = .rr H~+i =.rr ik(x, m + i) + ~). 
,"I •• 1 \ dx 

(15) 

For a class II problem 

H>.rr H~+I_i = .II ik(x, m + 1- i) - dd). t=1 .=1'\ x 
(16) 

Nv is a constant which depends on the class considered. 

Now, one can question if, by a suitable transforma­
tion, it is possible to introduce, instead of the "ac­
celerated" ladder H~ [Eqs. (15) and (16)], the "canonical 
accelerated" operator which is the vth derivative 
operation acting on a new function so that the relation 
(14) becomes the Rodrigues' formula of this function. 

First, in order to force the "one step" ladder opera­
tor [Eq. (4)] to be a derivative operator on a new func­
tion, one has to determine a function which satisfies 
the following proportionnality relationship: 

(17) 

where gm(x) may depend on the class under considera­
tion and the signs (+) and (-) stand respectively for 
class I and class II problems. 
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Let us consider a class I problem. The corresponding 
one step equation is [see Eq. (8)] 

US'{x)::::: N 
1 

H;"+l U~+l(X). 
m+l 

When introducing a function g(x) defined on the same 
subspace (Xl ~x ~X2) as U(x), from Eq. (17) and the 
expression (4) of the ladder operator, one can write 

g(x) US' (x) = N 
1 

g(x) ik(x, m + 1) + ::x) US'+I(X), 
m+l \' 

(18) 

(19) 

and in order to obtain the relationship (17), the function 
g(x) has to satisfy 

(k(X, m + 1) - ::x) g(x) =H~+l g(x) = o. (20) 

That is, g(x) must be a solution of the first order dif­
ferential equation generating the key function U~ [Eq. 
(10») and corresponds to the value S=m, 1. e., one can 
write 

gm+l{X) ==: (Uns =m' 

Then, Eq. (19) becomes 

1 d 
gm+l(x) U~(x)::::: ~ ax [gm+l(x) US'·l(X)]. 

m+l 

(21) 

(22) 

It will be of the required form (17) if one introduces in 
the left member the function gm(x) instead of gm+l(x). 

Let us assume that the ladder operators are linear in 
m, 1. e., 

d 
H* ==: mk (x) + k (x) l' - • 

m 1 0 dx 

The corresponding key function is 

U~ (x) = exp[(S + 1)K1(x) + Ko(X)], 

where 

KI(x) == f k1(x) dX, Ko(x) == f ko(x} dx, 

and from (21) and (24) 

gm+1(x} = exp[(m + 1)K1(x) + Ko(x)]. 

Consequently, 

[gm+l(X)jgm(x)] ==: exp[KI(x)] 

(23) 

(24) 

(25) 

(26) 

Then, when introducing the new variable13 y which is 
defined by 

dy = exp[K1(x)] dX, (27) 

one obtains the required "canonical one step" relation­
ship 

where x has to be considered as a function of y [Eq. 
(27)]. 

(28) 

Finally, as wanted, by introducing instead of U(x) the 
product function g(x) U(x) of the new variable y which is 
defined by (27), the one step ladder operator H;, re­
duces to the simple derivation operator djdy. Con-
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sequently, the "accelerated" or "v step" ladder opera­
tor H; [Eq. (15)J which directly generates any product 
gm U; from the new pseudokey function g. U~ reduces to 
d"jdy" and, since m=S-v, one gets 

1 1 d" Us-v- ____ [g US] 
S - Nv gs-v dyV S S' 

where 
v 

Nv==: IT Nm+i 
1=1 

and Nm+i is defined by (8). 

(29) 

(30) 

The expression (29) can be considered as a Rodrigues' 
form of the eigenfunction U. Actually, it can be trans­
formed to the usual Rodrigues' formula involving a 
weight function w(x) and the vth derivative of a product 
w(x) [h(x)]v. Indeed, using (24) and (26), one can write 

x (w(:) d~"v {w(x) [h(X)]tl}), 

where dy is defined by (27) and 

hex) ==: exp[2K1(x)]. 

(31) 

(32) 

For class IT problems, with only slight modifications, 
the same procedure still applies. 

Finally, class I and class IT eigenfunctions are 
represented by the same expression (31) involving 
formally the same Rodrigues' formula with identical 
function hex) [Eq. (32)] but with respectively inverse 
weight functions w(x), 1. e. , 

class I 
{

v=s_m, 

. 

w(x) =exp[(2m + 1)K1(x) + 2Ko(x)], 

~ (x) = exp[(S + 1)K1(x) + Ko(x)), 

Nv= IT [L(S+I)-L(S+1-i)]1/2, 
;=1 

v=m-S, 

I II 

{ 

w(x) ==: exp[ - (2m + I)K1 (x) - 2Ko(x)] , 
c ass 

U~(x) ==: exp[ - SKI (x) -Ko(x)], 

Nv==: n [L(S)_L(S+i)]1/2, 
;=1 

(33) 

(34) 

where the function L(m) is defined by the factorizability 
condition (5). It should be noted that, when calculating 
the K1(x) and Ko(x) functions, one can neglect to take into 
account the integration constants: Indeed, it is easily 
seen that their introduction only changes the value of the 
normalization constant14 of the eigenfunction U;'. 

Briefly stated, when the ladder operators H;, are 
linear in m (and even nonlinear in m, since one can use 
the transformation of the Appendix B) the formula (31) 
constitutes a straightforward finite algorithm to obtain 
any eigenfunction from the only knowledge of the ladder 
operator (23) and one elementary quadrature [Eq. (25)]. 
Nevertheless, for calculating matrix elements in closed 
form, one has rather to work out the Rodrigues' formula 
in terms of orthogonal polynomials as it is shown in the 
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following section. 

IV. CLOSED FORM EXPRESSION OF THE 
EIGENFUNCTIONS 

As has been shown in Sec. III, the expression (31) of 
the eigenfunctions of Eq. (1), when it is factorizable, 
involves a Rodrigues' formula. Now, one could question 
what kind of function is generated by this Rodrigues' 
formula and if it does not correspond to an orthogonal 
polynomial. 

When writing x as a function of y [see Eq. (27)], i. e. , 
w(x) - W(y), h(x) - H(y), the Rodrigues' formula in (31) 
becomes 

(35) 

and, as is shown in the Appendix C, the necessary and 
sufficient condition for Fv(y) to be the Rodrigues' 
representation of an orthogonal polynomial is 

!!(H dW) = c1 = const, 
dy W dy 

tPH 
dy2 = a2 = con st. (36) 

Then, it is interesting to deduce and examine the cor­
responding condition to be satisfied by the functions 
ko(x) and k1(x) of the linear ladder operator (23) and, 
hence, by the original equation (1). 

Let us first consider a class I problem. Replacing in 
(35) H(y), W(y), and y by their expressions [see Eqs. 
(27), (32), and (33)], one readily gets 

[d
2K (dK \ 2J (2m + 1) F + ::;;;-; 

(tPK ~~)_ +2\#+ dx dx -c1 , 
(37) 

Hence, using (25), one can write the required conditions 
to be satisfied by ko(x) and k1(x), i. e. , 

(38) 

These conditions (38) are actually the necessary and 
sufficient conditions (7) allowing the factorization of the 
original equation (1). 

It is easy to show that this result holds for a class II 
problem. Indeed, when passing from class I to class II, 
the only change occuring in the Rodrigues' formula (35) 
concerns the weight function W(y) which is now replaced 
by 1/W(y) [see Eqs. (33) and (34)]. Consequently, the 
only corresponding change occuring in the condition (36) 
and then in the final result (38) is the change c1 - - c1. 

Finally, its results that the eigenfunctions of any 
factorizable equation (1) can be expressed in terms of 
the key function and well-knownl5 orthogonal 
polynomials. 

Now, let us explicit this general result for all Infeld­
Hull factorizable types. 16 

A. General type A 

The required eigenfunctions satisfy the following 
factorizable differential equation 

(L _ a2(m + c)(m + c + 1) + d2+ 2ad(m + c + t)cosa(x+ p) + x) U(x)=O 
d~ sin2a(x + p) 

(39) 

The corresponding "one step" ladder operators are 

d d 
H~=(m+c)acota(x+p)+ sina(x+p)'F dx 

and 

Then, 

k1(x) =a cota(x + p), 

d 
ko(x) =ac cota(x + p) + sina(x + p); 

one obtains 

K 1(x) = f a cot a(x + p) dx = In[sin a(x + p)], 

Ko(x) = c In[sin a(x + p)] + d/a In {tan[a(x + p)/2J}. 

Consequently, 

dy = sina(x+ p)dx 
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and 

y =- (1/a) cosa(x+ p), 

h(x)= sin2 a(x+ p)= 1_a2y2. 

For a class I problem the weight function is 

w(x) = [sina(x + p)]2m+2c+1 {tan[a(x + p)/2]?d/a 

= (1 _ ay)m+C+l/2-d/a (1 + ay)m+C+1/2+d/a 

Keeping in mind that, for a class II problem, the weight 
function is l/w(x) and using the general expression (31) 
together with the results of Sec. 1(a) of the Appendix C, 
one gets the eigenfunction14 U~ expressed in terms of a 
Jacobi polynomial, i. e. , 

U~(x) = (2a)vv! U~(x)[sina(x + p)]-v 
Nv 

xp~",-v.a-v) [cosa(x+ p)], 

where 

(40) 

U~(x) = {sin[a(x + P)/2 J}"'+ 1/2 {cos[a(x + P)/2W+1
/

2
, 
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( a = 5 + c + t + d/a, 

class I ) {3 =5 + c +1. _ d/a 
v=s-m? 2' v 1/2 

Nv=av(v! uIJ (2S+2C+2-U)) , 

1 
a =- (S + C + t + d/a), 

class II {3 = _ (S + C + t - d/a), 
v=m-S ( ~1/2 

Nv=av v! A (-2S-2c-u)j . 

B. General type B 

The required eigenfunctions satify the following 
factorizable differential equation: 

C~2 -d2 exp(2ax) + 2 ad(m + c + t)exp(ax) + X) u(x) = O. 
(41) 

The corresponding "one step" ladder operators are 

and 

d 
H!, = d exp(ax) - a(m + c) 'f dx 

L(m) = - a2 (m + C)2, 

Then 

k1(x) = - a, ko(x) = d exp(ax) - ac; 

one obtains 

K 1(x) = - ax, Ko(x) = (d/a) exp(ax) - ac x 

Consequently, 

dy = exp( - ax)dx and y = - (1/a) exp( - ax), 

h(x) = exp( - 2ax). 

For a class I problem the weight function is 

w(x) = exp[ - (2m + 1 + 2ac) ax + (2d/a) exp(ax)] 

=(_ay)2m+1+2aC exp(-2d/a2y). 

Keeping in mind that for a class II problem, the weight 
function is 1/w(x), and using the general expression 
(31) together with the results of Sec. 1(b) of the Appen­
dix C, one gets the eigenfunction14 U; expressed in 
terms of a generalized Laguerre polynomial, i. e. , 

U~(x)=(aVv!/N) U~(x) L~ (pexp(ax)), 

where 

U~ (x) = exp[ta ax - t{3 exp(ax)], 

class I 
v=S-m l a = - 25 - 2c - 2, {3 = - 2d/a, 

(

V ,\1/2 

Nv=av vI uI}l (-25-2c-2+U)j , 

l
a = 2S + 2c, {3 = 2d/a, 

class II 
v=m-5 (v \\1/2 

Nv=aV\vI U~l (25+2c+uj 

C. General type C 

(42) 

The required eigenfunctions satisfy the following dif­
ferential factorizable equation: 
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(_d
2 

_ ..:....(m_+_c-,-)(,-m.,--+_c_+_1--'...) b2x2 )) 
- - -4- +b(m- c +X U(x)=O. dx2 x2 

The corresponding "one step" ladder operators are 

H' = m+c + bx 'f..!L 
m X 2 dx 

and 

L(m) = - 2bm + b/2. 

Then 

k1(x) = 1/x, ko(x) = c/x + bx /2; 

one obtains 

K 1(x)=lnx, 

Ko(x)=c lnx+(b/4)x2. 

Consequently, 

dy = x dx and y = t x2 , 

h(x)=x2=2y 

For a class I problem the weight function is 

w(x) = x2m+l+2c exp(bx2 /2) 

= (2y)m+c+l/2 exp(by). 

(43) 

Keeping in mind that for a class II problem, the weight 
function is 1/w(x), and using the general expression (31) 
together with the results of the Sec. 2(a) of Appendix C, 
one gets the eigenfunctions14 U~ expressed in terms of 
a Laguerre polynomial: 

where 

U~(X)=X"'+1/2 exp(-{3x2/2), 

l
a==5+c+ t , f:3=-b/2, 

class I 
v==5-m Nv= [(- 2b)vv! ]1/2, 

class II 
v=m-S 

~ a = - (S + c + 1/2), 

( N v= [(2b)Vv 1]1/2. 

f:3=b/2, 

(44) 

It should be noted that the particular case b = 0 leads 
to L(m)=O, i. e., although the ladder operators still 
exist, the class as well as the key functions are no 
longer defined. Nevertheless, the set of the eigenfunc­
tions can be generated from any available solution used 
as a pseudokey function. 17 Then, when formally applying 
our procedure, it is seen from the results of the Sec. 
2(b) of Appendix C that the orthogonal polynomial gen­
erated by the Rodrigues' formula in (31) reduces to a 
constant. In fact, in that case, since the original equa­
tion (1) reduces to the well-known differential equation 
of Bessel functions, explicit expressions of the eigen­
functions are obtainable elsewhere15 : The use of the 
ladder operators may enable to find again known prop­
erties of Bessel functions. 



                                                                                                                                    

721 Hadinger, Bassis, and Bassis: Expressions of matrix elements and·eigenfunctions 721 

D. General type 0 

The required eigenfunctions satisfy the following dif­
ferential factorizable equation: 

(J; - (bx+ d)2+ b(2m + 1) +x) U(x)=O. (45) 

The corresponding "one step" ladder operators are 

and 

d 
H' =bx+d'F-

m dx 

L(m) =- 2bm. 

Then 

k1(x)=O, ko(x)=bx+d; 

one obtains 

K 1(x)=O, Ko(x)=tbxZ+dx 

Consequently, 

dy =dx and y =x, h(x) = 1. 

For a class I problem, the weight function is 

w(x) = exp [(bx2 + 2dx)]. 

Keeping in mind that, for a class II problem, the weight 
function is l/w(x) and using the general expression (31) 
together with the results of the Sec. 3{a) of Appendix C, 
one gets the eigenfunction14 U~ expressed in terms of an 
Hermite polynomial, i. e. , 

where 

U~{x) = exp[E(bx2/2 + dx)], 

Nv= r( - E 2b)Vv! ]112, 

and the sign E= + 1 stands for class I problems 
(v = S - m) while E = - 1 stands for class II problems 
(v=m-S). 

It should be noted that, for the particular case b = 0, 
as it can be shown from the results of the Sec. 3(b) of 
Appendix C, the Rodrigues' formula in (31) generates a 
constant and U; becomes the exponential function. In­
deed, in that case, the original equation (1) merely 
reduces to the differential equation of this function. 

E. General type E 

The required eigenfunctions satisfy the following 
factorizable differential equation: 

(-
d2 S(S + 1) 
dx2 - [(I/a)sina{x+p)j2 

-2aq cota(x+ p)+x(m»)u;=o. (47) 

The corresponding "one step" ladder operators are 

H~ =S a cota(x+ p) + ~ 'F d~ 

and 
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The ladder operators H~ are not linear in the quantum 
number S. Nevertheless, since there is a connection 
between factorizable type E and type A equations, as it 
has been suggested by Infeld and Hull, 10 we first intro­
duce the transformation of function and variable which 
is given in Appendix B, i. e. , 

dX = a dx/sin a(x + p), 

U(x) = [(l/a) sin a(x + p)]1/2 U(X). 

We take 

X = In{tan[a(x + p)/2]}. 

One obtains 

( 
d2 1 

dx2 - a2 cosh2X 

x [ta2 - X{m) - 2aq sinhX]- (S + t )2) U;{X)=O 

For a class I (type E) problem, 

x(m) =L(m + 1) = a2(m + 1)2 _ q2/(m + 1)2, 

For a class II (type E) problem, 

X(m) =L(m)=a2m2 _ q2/m 2. 

Then, when introducing artificial factorization, 10 i. e. , 
an artificial shift of the eigenvalue, U(X) becomes a 
solution of the factorizable type A equation and one can 
make use of the results of Sec. IVA. It should be noted 
that when U(x) is solution of a (type E) class I problem 
(or a class II problem) the corresponding eigenfunction 
U(X) is a solution of a (type A) class II problem (or a 
class I problem). 

Finally, one gets the required closed form expression 
of the eigenfunctions14 of the general type E factorizable 
equation (47): 

2v v' 
U;(x)= Nv' U~(x)[sina(x+P)]v 

XP~-V'B-V) [cothia(x+p)], (48) 

where 

Uff (x) = [sin a(x + p) ]-<a+8) /2 

xexp{ - i[(a - j3)/2]a(x+ p)}, 

and, following the class of the original type E problem, 

class I 
v=m-S l

Cl = - S -1 + iq/a(m + 1), 

{3 = - S - 1 - iq/a(m + 1), 

(
V ,\1/2 

Nv= v! U~l (2S + 1 +U)j , 

let =s - iq/am, {3 = S + iq/am, 
class II ( ,\ /2 
v=S-m Nv= v! ~~l (2S+1-U~/ . 

U~ is a pseudokey function which depends on the value 
of the "artificial parameter" which is iq/a(m + 1) for 
a class I problem and - iq/am for a class II problem. 

F. General type F 

The required eigenfunctions satisfy the following 
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TABLE 1. Explicit expressions of the eigenfunctions14 V'g(x)= (1/N.,>:E}=oAJcfJJ(x). 

Type Reference for 
parameters 

A (
V) (_)Jr(a + 1)r(a + (3- v+ 1+ j) 
j II I r (a + 1 - V + j) r (a + (3 - II + 1) 

(a) "v! {sin[a(x + p)/2J} "+1/2-v+2J {cos[a (x+ p) /2]}.8+1/2-" Sec. IV A 

B 
(
v) (_)Jr (a + 1 + v) ({3)J 
j IIr(a+1+j) 

(a)"v! exp[ (a/2 + j)ax - ({3/2)eOX] Sec. IV B 

c (
v) (-)Jr(a + 1) J 
j v! r(a + 1- v + j) ({3) Sec. IV C 

D 
lEb)J 12 (2)Jv ! 
j![(v-j)/2]! 

(- Eb)" /2 (x+ d/2)i exp[E:(bx2/2 +dx)] Sec. IVD 

if v - j is even; otherwise Is zero 

E 
(
v\ (-i)Jr(a+1)r(0I+@-v+1+j) 
:i) v! (2)ir(0I + 1- v+j)r(OI +(3 - v+ 1) 

(2)"v! [sin a (x+ p) ]-[("+£l)/21+ ... J exp{- ia(x + pH (01 - (3)/2 + jn Sec. IVE 

F 
(
v) r(2S+2+v) (.l:.!L)J 
j v! r (2S + 2 + j) m + 1 

v! (x)S+I+Jeo x/(m+n 

differential factorizable equation: 

(£:. _ 5(5 + 1) _ 2q + '(m)) 
dx2 x2 x" U~(x)=O. 

The corresponding "one step" ladder operators are 

H'=~+!l. 'f.E.. 
S x 5 dx 

and 

L(5) == -l/52• 

(49) 

Since the ladder operators are nonlinear in 5, we first 
introduce the transformation given in Appendix B, i. e. , 

We take 

X=lnx; 

one obtains 

(:;. + X(m) exp(2X) - 2q exp(X) - (5 + t)2) U(X) = 0, 

where, for a class I (type F) problem (q is supposed to 
be real) 

X(m) =L(m + 1) = - q2/(m + 1)2. 

Then, when introducing artificial factorization, 10 U(X) 
becomes a solution of a factorizable type B equation, 
and one can make use of the general results of Sec. 
IVB. 

Finally, one gets14 

~(x)=(V!/N") U~(X)L~2S+l) [-2qx/(m+1)], (50) 

where 

U~(X)=XS.l exp[qx/(m+1)], v=m-5, 

Nv= (V! U~l (25 + 1 + U)r/ 2

• 
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Sec. IV F 

V. CLOSED FORM EXPRESSIONS OF MATRIX 
ELEMENTS 

Finally, we have now at our disposal (Sec. IV) closed 
form expressions of the eigenfunctions U$'(x) of any 
factorizable equation (1) in terms of orthogonal poly­
nomials. When introducing the classical expressions of 
these polynomials [see Sec. (II) of Appendix e], one 
can write 

( 51) 

The expressions of the functions c:f>J(x) as well as of the 
coefficients A J are gathered up in Table I for type A to 
type F factorizable cases. 

Now, let us consider the general matrix element of a 
Hermitian operator Q(x), i. e. ,18 

(Q)=C C' !hv,v (5,5'), (52) 

where 

!h" v (5,5') == [2 (U~ (x))* Q(x) U$': (x) dx. 
• Xl 

C is the normalization constant of the eigenfunction US'. 
Using the expression (51), one obtains the closed form 
expression 

1 v v' 

!h •. v' (5,5' ) == NvN~ ~ ~ AJA~ 9Jk' (53) 

9-Jk=f2 
c:f>l(x) Q(x)c:f>~(x)dx. (54) 

Xl 

Owing to the particularly simple dependance upon j of all 
the c:f>j(x) functions (see Table I), i. e., j appears always 
as a power index, the 9- Jk integral (54) will have a 
Simple dependance upon the j and k index. Further­
more, in most cases of interest in quantum theory, we 
experienced that the analytical expression of 91k can be 
found in Tables. 19 Subsequently, formula (53) defines an 
analytical closed form expression of any matrix ele­
ment, hence, an easy and quick algorithm of 
computation. 

Finally, to calculate any matrix element of an opera­
tor Q(x) between eigenfunctions of an factorizable equa-
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tion, one can use the following recipe: 

(1) Find in Sec. IV to which type the reduced equation 
(1) belongs. 

(2) Look, in Table I, at the adequate type entry and 
pick up the corresponding expressions of <Pi and A j' 

(3) Find in Table19 or calculate, the fundamental 
integral 9 jk [Eq. (54)]. 

(4) Use the contraction formula (53) and the expres­
sion (52), this is, introduce the adequate normalization 
constants of the eigenfunctions. 

VI. ILLUSTRATIVE APPLICATION 

Let us consider, for instance, the determination of a 
closed form expression of hydrogenic radial rK matrix 
elements. 

After setting 1/!nl (r):= r-1 Rnl (r), the radial Schrodinger 
equation is 

(~ 2Z _ l(l+ 1) ,) R'( ):=0 
dr2 + r y2 + "n n r . 

It is easily seen (Sec. IV) that Eq. (55) is a type F 
(class I) factorizable case which corresponds to the 
following values, 

q:=-Z, S=l, ~"=~(m)=-Z2/(m+l)2, 

(55) 

and, when introducing the usual radial quantum number 
n=m + 1, one obtains the quantification condition 

v=m-S=n-l-l. 

Now, let us consider the determination of the rK matrix 
elements. 

Taking out from Table I (F entry) the <P/r) function, 
the fundamental integral 9 jk [Eq. (54)] is immediately 
written as 

9jk=(n-l-l)!(n' -l' -I)! 

xl~ exp[- Zr(l/n+ ljn')] r<Z+"+2+K+i+k) dr. 
o 

One recognizes namely a r function and gets 

( 
nn' )1.,'+K+3+i+k 

pjk=(n-l-l)!(n'-l'-l)! Z(n+n') 

X(l+l' +K+2+j+k)!. 

Using formula (53) together with the expressions of the 
A J coefficients (Table I), one obtains 

<nll rK I n' l' > = A 
x n-£1 (n _ ~ _ 1) [!)i 

j=O J \- n 

X "Fo-Yn' -~ -1) (- ~ y 
~ 2nn')j+k (l+l'+K+2+j+k)! x -- , 
n+n' (2l+1+j)!(2l'+1+k)! 

where 

-.cc... ( nn' \ 1+"+K+3 
A- N.JV~ Z(n+n')) (l+n)!(l'+n')!. 
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When explaining the normalization constant C and N v 

(see Sec, IVF), one finds again our previous results. 4 

Furthermore, if needed, from Eq. (50), the hydro­
genic function is seen to be, as expected, 

1/!n,(r)=r-1R~(r) 

= (C / N v)(n -l- I)! r' exp( - Zr/n)L;_'(_ll (2Zr/n). 

VII. CONCLUSION 

Summarizing our approach to the resolution of fac­
torizable sturm-Liouville equations, we have intro­
duced a suitable change of variable and function which 
reduces the one step ladder operator to a canonical 
form that is the derivation operation. Consequently, this 
results in a very simple expression of the "accelerated" 
or "v step" ladder operator which becomes the vth 
derivative and, when applied to the key or any avalaible 
pseudokey function, generates any eigenfunction U~ 
(v = IS - m I) in a standard canonical closed form invol­
ving a Rodrigues' formula. Furthermore, we have 
pointed out the equivalence between the factorizability 
condition of the original equation and the condition under 
which this Rodrigues' formula generates orthogonal poly­
nomials. Consequently, the calculation of eigenfunctions 
or land matrix elements becomes straightforward. From 
a practical point of view, the use of our results gathered 
in Table I, together with the preceeding manufacturing 
recipe (Sec. V) gives a closed form expression of any 
matrix element of an operator Q between eigenfunctions 
of any factorizable equation in terms of one unique inte­
gral which, in most cases, is obtainable from Tables. 19 

Such a procedure works nicely, for instance, for 
calculating rotation-vibration intensities of diatomic 
molecules, since, for several nuclear potential func­
tions (Morse-Pekeris, Rosen-Morse, Manning-Rosen, 
Tietz potentials··· ) the diatomic nuclear equation is 
still factorizable if an adequate expansion technique is 
used to include the rotation-vibration coupling. 20 Re­
sults of this study will be given in a forthcoming paper. 
The same treatment is indicated when considering 
screened Coulombic potentials (Hulthen, long-range 
Yukawa potential) and does not involve more complica­
tion than the hydro genic case. Moreover, directly from 
the results of Table I, it appears that the integral of the 
product of three eigenfunctions of a factorizable equation 
is easily obtainable in a closed form. As a particular 
example, one finds an easy to compute explicit ex­
pression, involving factorials, of the well-known inte­
gral of the product of three spherical harmonics, i. e. , 
of the Slater-Condon coefficients which play an im­
portant role in atomic calculations. The same treatment 
is adequate for other functions: The determination of the 
associated integrals and of their selection rules is hope­
fully undertaken. 

As a last point, in order to overstep the bounds of 
applicability of this powerful and elegant method which 
is the Schrodinger-Infeld-Hull factorization method, 
it is worthwhile to question how our method works with­
in the perturbation scheme. This aspect, as well as the 
connection of our method with other theories, is to be 
conSidered. 
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APPENDIX A 

Consider a one-dimensional differential equation of 
the sturm-Liouville type: 

[d~ (f(U) d~) + q(u, m) + AP(U)] P(u) = 0, (AI) 

It can be transformed into the standard formlo 

(::2 +r(X,m)+A) U(x)=O, (A2) 

The transformation connecting Eqs. (AI) and (A2) is 

U=(fp)l/4p, dX=(p/f)1/2du. (A3) 

Indeed, the possibility of such a transformation implies 
that the functions f(u) and q(u, m) are never negative and 
p(u)/f(u) exists everywhere. 

APPENDIX B 

The general form of type E and type F factorizable 
equations is 

( 
~ S(S + 1) ) 
dx2 +b If(X)J2 -g(x)+A(m) U~(x)=O. (Bl) 

The corresponding ladder operators H~ are not linear 
in S. 

One has to search for a suitable change of variable 
and function in order to transform (BI) into the re­
quired standard form: 

(:2 + G(X) + X(m) F(X) + bS(S + 1») V;(X) = 0; 

when setting 

X= cp(X) , U(x):::: IJt(X) V(X), 

Eq. (BI) becomes 

IJI {cp~2 [VII + V' (2 ~ - ::')] 

(
>V' cp" >V S(S + 1) 1\ } 

+ V T - cp' IJI +b f2 -g+x(m'l ::::0. 

(B2) 

(B3) 

(B4) 

In Eq. (B4) one has introduced the shortened notation 

dV 
V'= dX , .... 

In order to obtain a differential equation in V(X) not 
containing the first derivative V', one has first to 
choose the function W(X) and cp(X) so that 

2 IJt' /IJI= cp" /cp'. 

Subsequently 

[1JI(X)]2= cp' = dcp • 
dX 

(B5) 

Hence, when taking into account the relationship (B5), 
Eq. (B4) becomes 

~ + V(X) [IJI :x (IJt'W·2) 
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(
bS(S+l) ) J + r +X-g IJt4 =0. (B6) 

Therefore, if one chooses 

(B7) 

One obtains 

+1Jt4[A-g(X)]+bS(S+l»)::::O, (B8) 

where g(x) is to be considered as a function of X and 
IJI(X) is given by (B7). 

Finally, the suitable change of variable and function 
is defined by 

dx 
dX= f(x) , U(x) = (f(X)]1/2 V(X). 

APPENDIXC 

(I) Let us consider the Rodrigues' formula 

Our purpose is to show that the following condition 

d (H(Y) dW(Y») 
dy W(y) --a;y- = cI = const, 

d 2H( ) ~ =lZ:!=const dy 

(B9) 

(C2) 

is the necessary and sufficient condition for F u(Y) to be 
the Rodrigues' representation of a polynomial. 

Indeed, it is easily shown that the condition (C2) is 
satisfied when (Cl) is the Rodrigues' formula of the 
"classical" polynomials. 

ReCiprocally, let us assume that the condition (C2) is 
fulfilled. One can write 

H dW 
W dY'=cly+CO' 

(C3) 
H =a2Y2 + a1y + ao' 

and from (C3) one gets 

.!.. dW _ CIY + Co 
W dy - ~y2 + aly + ao 

(C4) 

Different cases have to be considered depending upon 
the effective degree in y of the H polynomial, i. e. , 
upon the values of the constants. 

1. First case a2 * 0 

(a) When a~ - 4ao~ >#0, one can introduce the linear 
change of variable 

u- 2aa ( + ~). 
- [a~ - 4ao~]i/2 y 2aa 

The first order differential equation (C4) becop1es 

.!.. dW __ s.. (_u_\ 
W du - aa l-wJ 

(C5) 
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and one gets 

W=(I-u)C>:(I+u)B, 

H = - [(a~ - 4aOa2)/4a2] (1- u2), 

where 

...E.L 1 I 2cOa2 - CIa; ) 
a = 2a2 + 2a2 \[a~ _ 4ao~11 2 ' 

_...E.L __ 1_ ~ 2cOa2 - cial ). 

(3 - 2a 2a [a2 _ 4a a Jl /2 
2 2 1 0 2 

(C6) 

(C7) 

Hence, from the expression (C6) of Wand H, one finds 
that the Rodrigues' formula (Cl) generates a Jacobi 
polynomial p~",.B) (u), i. e., 

Fv=v! (~- 4aOa2)v/2 p~c>:.B)(U), (C8) 

where u is defined as a function of y by (C5) and the 
parameters a and {3 are given by (C7). 

(b) When a~ - 4ao~ = 0, if one introduces the following 
change of variable: 

u = y + al /2a2. 

The first order differential equation (C4) becomes 

J...- dW = s. .!. + (S. _ SEJ..) J...-
W du a2 u ~ 2 a~ u2 

and one gets 

W = UCI 1 '2 exp [_ (SL - C 1 ~l) .!.], H = a2u
2

• 
a2 2a2 u 

Since (cf. for instance, the Appendix of Ref. 8) 

~[rkeIltl=(_)nn' rn-kelltLk-lC.!.) 
dt n . n \- t ' 

where L~(x) is a Laguerre polynomial. 14 

Finally, one gets 

F =(_)V 1 v VLc>:t_(SL_~).!.] v v. a2 u v 2 2 , a2 a2 u 

where 
a=-cl/a2-2v-l 

and u is defined as a function of y by (C9) 

2. Second case, a2 = 0 and a1 '* 0 

(a) When c l *0, one can introduce the change of 
variable 

(C9) 

(CI0) 

(Cll) 

(CI2) 

U=-(cl/a~) (aly+aO)' (CI3) 

The equation (C4) becomes 

J...- dW = _ 1 + (ao~ 1 +~) .!., 
W du a l al u 

and one gets 

W =u'" e-", H = - (a~/ c1) u, (CI4) 

where 

polynomial L~(u) and 

Fv=v! arL~(u) 

(b) When c l = 0, if one introduces the change of 
variable 

(CI6) 

u=aly+aO' (CI7) 

Eq. (C4) becomes 

~ dW = Sl(.!.) 
Wdu alu' 

and one gets 

(CI8) 

and, in fact, the function F v reduces to a constant value, 
i. e. , 

F -aV r(v+ cO/al + 1) =v! alvLC>:v(O), 
v- I r(CO/al + 1) 

where a = cO/al' 

3. Third case, a2 = a1 = 0 

(CI9) 

(a) When c l * ° and introducing the change of variable 

u = (- 2aocltl/2 (cly + co), 

one gets 

W=exp(-u2), H=ao 

(C20) 

(C21) 

and the Rodrigues' formula (Cl) generates Hermite 
polynomials H v(u), i. e. , 

Fv=(-)V (- clao/2)v/2 Hv(u) (C22) 

(b) When c l =0, one gets 

W = exp[(co/ ao)y], H = ao' (C23) 

and the function F v reduces to a constant value, i. e. , 

(C24) 

Finally, when the condition (C2) is fulfilled, it has been 
shown that the Rodrigues' formula (Cl) generates 
classical orthogonal polynomials and, a straightforward 
way, explicit expressions of F v can be obtained in terms 
of the well-known explicit expressions of the poly­
nomials. 

(II) Explicit expressions of the orthogonal polynomials15 : 

1. Jacobi polynomial: 

p(c>:.al(u)= r(a+l+v) 
v v!(v+a+{3+1) 

xt (~') r(v+a+{3+1:-j) (u-l)i. 
i=O J 2)r(a+l+J) 

2. Laguerre polynomial: 

LC>:() ~ ()J r(a+l+v) i 
v U ={-;6 - (v-j)!r(a+l+j) u. 

a = aoc / ~ + col al • (CI5) ,3. Hermite polynomial: 

Hence, the Rodrigues' formula generates Laguerre 
[v/21, 1 

Hv(u)=v! 6 (-») '1( 2')1 (2U)V-2 i . 
)=0 J.v-J. 
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We solve the Einstein field equations for the interior of a static fluid sphere in closed analytic form. 
The model sphere obtained has a physically reasonable equation of state, and a maximum mass of 
2/5 the fluid radius (in geometric units). As the maximum mass is approached the central density 
and pressure become infinite, while for masses greater than about 0.35 times the fluid radius the 
velocity of sound in portions of the fluid exceeds the velocity of light, indicating that the fluid is 
noncausal in this mass range. In the low mass limit the solution becomes identical to the 
Schwarzschild interior solution. 

1. INTRODUCTION 

Exact solutions to the Einstein field equations in 
closed analytic form are difficult to obtain due to the 
nonlinearity of the equations. In particular the problem 
of constructing a static model sphere of perfect fluid 
(e. g., a neutron star model) is usually solved by nu­
merical methods using the Tolman-Oppenheimer­
Volkoff (TOV) equation1

,2,3 with an equation of state 
specified; this is a straightforward procedure, but 
yields results expressed in cumbersome numerical or 
graphic form. 3 

The small number of analytic solutions which have 
been obtained are valuable and interesting because one 
may study their properties in complete detail and with 
comparative ease, especially their behavior at high 
field intensity or high pressure and density. The analyt­
ic solutions are thus complementary to the numerical 
solutions obtained with realistic equations of state. 
Indeed in the pioneering work on neutron stars by 
Oppenheimer and Volkoff2 appeal was made to qualita­
tively similar closed analytic solutions obtained by 
Tolman for an understanding of such features as a maxi­
mum mass and infinite central densities. Similarly the 
classic interior solution of Schwarz schild for an incom­
pressible fluid has provided insight into the effects of 
relativity on qualitative features and order of magnitude 
quantitative features of white dwarfs and neutron stars. 4 

Indeed the density of the heaviest neutron star models 
is roughly constant throughout most of the star, making 
the Schwarz schild interior solution a surprisingly good 
approximation considering its extreme simplicity. 

The following questions are particularly interesting 
regarding analytic solutions for a static fluid sphere: 

(1) Does a maximum mass occur? 

(2) Can the central denSity and pressure become 
infinite? 

(3) Can the velocity of sound exceed c, thereby violat­
ing causality? 

(4) Can the average polytropic index y become less 
than 4/3, making the solution unstable to radial 
oscillation? 

In the present work we generate a closed analytic 
solution to the Einstein equations for a fluid sphere by 
specifying the metric term goo = eV

• All of the functions 
involved in the solution are algebraic, and a physically 
reasonable equation of state results. The solution has 
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the following properties, corresponding to the questions 
noted above: 

(1) A maximum mass occurs, and is equal in geomet­
ric units to 2/5 the fluid radius. This may be compared 
to the Schwarz schild interior solution, in which the de­
mand that the Schwarz schild radius not be exterior to 
the fluid leads to a maximum mass of 1/2 the fluid 
radius. 3,4 

(2) The central pressure and density both become in­
finite as the maximum mass is approached. This may 
also be compared with the behavior of the Schwarz schild 
interior solution, in which the central pressure becomes 
infinite when the mass reaches 4/9 the fluid radius, the 
denSity, of course, remaining constant. 3,4 

(3) The velocity of sound exceeds c in portions of the 
fluid when the geometrical mass is about 0.35 times 
the fluid radius. Thus the demand of causality provides 
a more stringent upper limit on the mass than occurs 
in (1) or (2) above. 

(4) The average polytropic index y remains greater 
than 4/3 for all masses less than about 0.35 times the 
fluid radius. 

A further remarkable property of the present solution 
is that in the low mass limit (<< the fluid radius) it is 
identical to the Schwarz schild interior solution and also 
to one of Tolman's analytic solutions. This is despite 
the fact that the Schwarzschild interior solution has no 
equation of state and, for example, cannot support sound 
waves. It thus appears that the present solution is in 
several respects superior to the Schwarz schild solution 
for illustrating some of the peculiarly relativistic quali­
tative features of a fluid sphere. 

2. SOLUTION BY QUADRATURES OF THE 
EINSTEIN EQUATIONS 

The Einstein equations for an ideal fluid are4 

(2.1) 

where G ILV is the Einstein tensor, u,.. is the 4-velocity 
of a fluid element, and gILv is the metric. (We set c and 
the gravitational constant K equal to 1 by choice of units 
and specify a zero cosmological constant.) For' a static 
spherically symmetric system an appropriate metric is 

ds 2 = ev (r)dt2 _ e~(r)dr - r(d8 2 + sin28acp2). (2.2) 

It then follows that the field equations may be written 
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eA 1 V'2 V " v 'A ' v' + A ' -=-----+--+--, r2 r2 4 2 4 2r (2.3a) 

81rP = _ \ _ e-A(_~ + v'), p =p(r), 
r T r 

(2.3b) 

1 _:>.(1 A') ( ) 81rp=r- e r 2 --:Y' p=pr, (2.3c) 

where a prime denotes differentiation with respect to r. 
It is well known that (2. 3a) may be solved by quadra­
tures in a number of ways; e. g., Tolmanl specifies 
various conditions on the functions v and A that simplify 
the equation and allow immediate integration, while 
Adler, Bazin, and Schiffer4 note that A may be obtained 
if v is given. Once v and A are obtained, p and p follow 
directly from (2.3b) and (2.3c). It is rather remarkable 
how simple the explicit solution of (2. 3a) can be made. 
We define 

(2.4a) 

(2.4b) 

Then (2. 3a) may be written as a linear first order equa­
tion for r 

, 2(y +ry' - ry") - 2y 
r - r(y+ry') T= r(y+ry') (2.5) 

This has the solution 

T(r) == exp[ - F(r)] {F exp[F(r')]g(r')dr' +C}, 

- 2(y + ry' _ r 2y") 
F(r)==Ff(r')dr', f(r)= r(y+ry') , (2.6) 

-2y 
g(r) = r(y +ry')' C = const. 

It is clear that (2. 6) combined with (2. 3b) and (2. 3c) 
represents all solutions for static spherically symmet­
ric fluid bodies. There is of course no reason to expect 
that all such solutions will be physically reasonable and 
have, for example, a positive p and p distribution. Only 
a subclass of these solutions, corresponding to certain 
functions y(r), will be physically reasonable in this 
sense, and a still smaller subclass will correspond to 
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FIG. 1. Density distribu­
tion p for mo = 3 km and ro 
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FIG. 2. Equation of 
state p(p) for mo = 3 
km and ro= 10 km. 

physically reasonable equations of state. A judicious 
chOice of y(r) is thus necessary for a physically inter­
esting solution. 

The solution (2.6) may be rewritten in many forms by 
transforming the independent variables y and T defined 
in (2.4); for example, rewriting (2.5) in terms of y 2 

leads to a solution analogous to (2.6), from which 
Tolman's solution number 4 may be most easily ob­
tained. Alternatively the dependent variable r may be 
transformed; the choice of p = logr leads to an analogue 
of (2.6) from which Tolman's solution number 5 may be 
obtained. 

3. SPEC I FIC ANAL VTIC SOLUTION 

We now wish to find a solution of (2.6) that is both 
simple and yields physically interesting results. The 
solution (2. 6) for T(r) will be particularly Simple if f = g, 
since in this case the integral in (2.6) will be exp[F(r)]. 
This is accomplished by demanding that ry' - ry" vanish 
or 

y(r) =A + Br2, 

in which case 

(3.1) 

(3.2) 

The constants A. B, and C are specified by matching the 
solution to the exterior Schwarzschild solution for a 
mass mo, at radius roo We then obtain as the solution 
the following algebraic functions: 

p=(e/bro)(1-e)2/3(1-~e +~ey2)-2/3 

X[3 - 2ey2/(1 - ~e +~ey2)], 

p = (e/41r~) 

(3.3a) 

(3.3b) 

(3.3c) 

x[ exp(- A)(1 - ~e +tey2)"1 - (1 - ~e +~el)"2/3], 

(3. 3d) 

where e=mo/ro and y=r/ro' The mass distribution, 
defined as m(r)=[1-exp(-A)]r/2, is 

(3.4) 
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In Figs. 1 and 2 we have plotted p(r) as well as the 
equation of state p vs p for this solution for the values 
mo = 3 km and ro = 10 km, characteristic of a heavy neu­
tron star. Unlike Schwarzschild's solution with p 
=const, the density peaks sharply at r=O, and the 
equation of state is physically reasonable. It is evident, 
moreover., that p and P will in general be positive 
functions. 

4. PROPERTIES OF THE SOLUTION 

For a fixed radius the sphere described by (3.3) 
has a maximum mass. We observe that the central 
density p(O) is a function of E = molro' 

3E (1_e)2/3 
p(O) = 41Tro 1 _ iE (4.1) 

so that for fixed ro the mass mo is a function of p(O). 
This function has a maximum value when dp(O)/dE is 
infinite, which occurs for 

(4.2) 

This may be compared with the larger value of tro 
obtained with the Schwarzschild interior solution by 
demanding that the Schwarz schild radius not be exterior 
to the fluid. 4 

From (3. 2c) and (3. 3d) it is evident that both p(O) and 
p(O) become infinite at the same value of E=2/5. The 
Schwarz schild interior solution has the similar property 
that the central pressure becomes infinite when E = 4/9, 
a less stringent mass limit than given by the present 
model. 4 

A further interesting property of the present solution 
is that for E ::;:; 0.35 the derivative of p with respect to p 
exceeds unity in parts of the fluid. This may be shown 
by calculating dp/dp = (dp/dy2)/(dp/dy2) and evaluating 
it as a function of E and y. We may interpret this to 
mean that the speed of sound, given by dp/dp, exceeds 
the velocity of light and the fluid becomes noncausal. 
We thereby infer a yet more stringent maximum mass 
of about O. 35ro' This is in fact comparable to the value 
obtained for realistic models of neutron stars. 5 

Let us now procede to the low mass limit mo« ro' 
The constant density solution of Schwarzschild4 has 

exp(v/2) = [%(1 - 2E) - t(1 - 2Ey2) 1 
and Tolman's solution (number four) has i 

exp(v)=(1-3E) +Ey2. 

(4.3) 

(4.4) 

Both of these solutions and the present solution have the 
following common limit functions for small E: 

exp(lI) = 1 - 3E +Ey2, exp(- y) = 1 _ 2Ey2, 
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(4.5) 

The Schwarzschild solution has p;: const for all values 
of E. For the present solution however we may expand 
p to second order in E to obtain 

p=(3E/41Tr~)(1+E-tEy2). (4.6) 

We then may use this and the expression for p above to 
eliminate y2 and obtain an approximate equation of state 
for small E 

(4.7) 

Note that E is contained in this relation explicitly. The 
same is true of the implicit exact relation contained in 
(3. 3c) and (3. 3d). The solution of Tolman has an equa­
tion of state that also depends explicitly on the mass 
and radius of the fluid. 

5. CONCLUSIONS 

Using a quadrature solution of the Einstein equations 
for a static fluid sphere we have obtained an interesting 
analytic solution with the following properties: (1) The 
structure of the fluid is expressible in terms of alge­
braiC functions. (2) The fluid has a denSity that peaks 
in the center, and a maximum value of mass of about 
0.35 the radius, dictated by causality. (3) The present 
solution, one obtained by Tolman, and the Schwarz schild 
interior solution are the same for asymptotically small 
values of mass/radius, but equations of state exist for 
our solution and Tolman's solution; these equations of 
state depend explicitly on the value of the mass and 
radiuS of the sphere. 
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A formulation is presented for the study of semiboundedness of coupled boson-fermion model field 
theories. Euclidean-boson fields and ordinary fermion fields are employed. Expansion steps used to 
derive estimates are presented. 

I. INTRODUCTION 

There is a great deal of interest at present in dis­
covering techniques for treating boson-fermion model 
field theories parallel to the use of Euclidean boson 
fields in studying purely boson models. We address our­
selves here solely to the question of semiboundedness 
of the energy (as the first problem usually encountered 
for any model) although there is no reason to exclude 
further applications of the machinery discussed. There 
are three superrenormalizable models available, Y2' 
Y3 , and the generalized Yukawa model in one space 
dimension (hereafter called GY2 ). The treatment of Y2 

and G Y2 is in some sense just practice for the tackling 
of Y3 • Four-dimensional theories so far appear 
impregnable. 

Glimm obtained semiboundedness of the energy for 
Y2 in Ref. 1. Schrader extended this result to show the 
linear dependence of the bound on the volume. 2 One of 
the authors showed the semiboundedness of the G Y2 

energy. 3 There are studies under way attempting to 
study boson-fermion field theory models by eliminating 
the fermi fields initially, using the closed form expres­
sion involving a Fredholm determinant, similar to the 
corresponding expression in the variational approach 
to field theory. 4,5 Here we continue the development 
initiated in Ref. 3. A unified treatment of Y2 and GY2 is 
obtained,6 whose basic line is here presented. Whether 
these methods, or the methods in Ref. 5, will be suc­
cessful in studying Y3 must be decided in the future. 
Other paths of evolution, or unifications, cannot be ex­
cluded, such as the work of Gross. 7 We are enthusiastic 
about the usefulness of the present program since it 
captures for boson-fermion models analogs of all the 
techniques used by Glimm and Jaffe in obtaining semi­
boundedness for ¢~, including localization. 8 

II. FEYNMAN-KAC FORMULA 

Any Hamiltonian we consider is of the form 

H=HOB +HOF+G(¢) + jdx jdyQ(x,y,¢)J!(x)z/i(y) (1) 

(2) 

There are volume and momentum cutoffs in the interac­
tion and renormalization terms in the G(¢). Subscripts 
F will often denote expressions in terms of Foch space 
operators. Using the Trotter product formula, we have 

(0 I exp( - HT) I O)F 

(3) 
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I O)F denotes the Foch vacuum. We introduce a total 
Hilbert space fI, the tensor product of Euclidean boson 
Hilbert space flEB and flF the Foch fermi Hilbert space 

and Euclidean boson fields ¢(x, t). We also introduce 
dummy variables into the Fermi fields 

z/i(x, t) = 'jJ(x). 

(4) 

(5) 

These dummy t variables will only be used to define a 
time ordering operation. (One may alternatively say we 
are developing a Euclidean Fermi field theory -transla­
tion invariant but not rotation invariant-with the zero 
operator generating time translations. The Fermi kinet­
ic energy terms are included in the interaction; in form, 
they and the interaction terms do not appreciably differ. 
This may be contrasted with the boson situation where 
the energy contains 7T'S and the interaction does not. ) 
KF is replaced by K(t) by substituting the time dependent 
fields for the (t = 0) Foch field: 

KF =HOF(ijj, >.jJ) + G(¢) + j dx j dy Q(x, y, ¢) ijj(x) >.jJ (y) 

K(t) = HOF(ijj(t) , lP(t» + G(¢(t» 

+ jdx jdyQ(x,y,¢(t»"ijj(x,t)z/i(y,t). (6) 

Equation (3) becomes 

(01 exp(-HT)IO)F= T(Olexp[ -.r K(t )dtJIO). (7) 

Here 10) is the vector in H that is the product of the 
boson Euclidean space vacuum with the Fermi Foch 
space vacuum. T indicates a time ordering in the t 
variables in the ¢(x, t) and z/i( x, t). All of our efforts are 
directed to finding techniques for estimating the right 
side of Eq. (7). 

III. THE DUHAMEL EXPANSION 

The process we have for removing parts of the ex­
ponent is the Duhamel expansion. We decompose K(t) 
into two parts: 

(8) 

where Ki(t) and Ri(t) are functions of z/i(t), "Ijj(t) , and ¢(t) 
¢(t)-all the fields at the fixed time t. Often in applica­
tions the Ki(t) and Ri(t) are picked to have no explicit 
time dependence. The Duhamel expansion assumes the 
form 

T(O I exp[ - 10 T K(t) dt JR I 0) 

=~(-l)"lTdt ltndt _ "'lt 2 dt ~ 0 >10 nl 0 1 

Copyright © 1974 American Institute of Physics 730 



                                                                                                                                    

731 D. Brydges and P. Federbush: Boson-fermion model theories 

(9) 

where to == 0 and tn• l == T. [The K(t) in (8) and (9) is not 
necessarily the same as in (6), but may be a similar 
expression such as one of the K/(t) arising in an induc­
tive procedure. J An example of this expansion for P(</J)2 
is found in Ref. 9 and for GY2 in Ref. 3. 

If space -time is divided into regions and a separate 
Duhamel expansion is developed for the interaction in 
each region, then the different Duhamel expansions can 
be combined into a sum of single Duhamel expansions 
such as (9). This is a primary device for localization. 

IV. THE PULL THROUGH EXPANSION 

The "pull through" operation was introduced in Ref. 
10. Like the Duhamel expansion it is purely algebraic 
and applies alike to Fermi and boson fields. An opera­
tor in some Ri(ti) in (9) is decomposed into creation and 
annihilation operators which are "pulled through" until 
they either annihilate on the vacuum, contract on the 
exponent, contract on some other RPj), or until the 
operator being pulled through has moved far enough to 
collect some desirable time factor, exp(-ut), and then 
stopped. This last operation is not used for bosons. It 
is possible to iteratively use pull through operations 
and Duhamel expansions, to generate an inductive 
procedure. 

After any number of applications of the two operations 
above one has an expression 

(01 exp(-HT) 1 O)F =6T", 
'" 

where a typical term T" has the form 

T" =.r dtT fc/ T 

dt T _l •·· Ia t2
dtlT(0IR" exp(-K)IO) 

(10) 

with 

K" =t .f/j.l K(s)ds (11) 
j.O t j J 

and 

R" = J dXl ••. dx,J dYl .. 'dy, ~(Xl' t" (1) ... ~(x" t,,(,») 

x· . . l/J(y., f" (2'») Q,,(~, ... ,x,, YH ..• ,y" </J, t). (12) i 

Summation over Fermion field indices is always implic­
it. As many of the time integrations as possible are in­
cluded in Q". Time variables arising from contractions 
from the exponent in which both fermions are contracted 
fall in this category. Combination of terms in T" is also 
advantageous; in the pull through procedure it is possi­
ble to construct time and space locally averaged boson 
fields as in Ref. 8 which would appear in Eq. (12). 

V. ESTIMATES AND DEFERMIATION 

When the algebraic operations of the last two sections 
are completed, estimates are required for K/s) and 
R". Assume estimates of the form 

(13) 

and 

(14) 
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with I giix) 12 = 1. The "defermiation" step is then the 
estimate: 

(01 exp(-HT) 1 O)F';; 61 T" I, 
" 

(15) 

xexp -t f j
•
l Cj(</J, s)ds 10). (16) 

j.O t j 

In (16) only boson fields remain, and all the techniques 
for estimating such a purely boson expression are 
available. Unlike the algebraic operations discussed 
above the defermiation can be performed just once in 
the procedure, it is a decisive step. 

In Ref. 3 is an illustrative use of a Duhamel expan­
sion, pull throughs, the estimates of Eq. (13), defer­
miation, and estimation of Eq. (16). There is one im­
portant technical imp~vvement here over Ref. 3, the use 
of 111 estimates for Q". The estimate procedure in Ref. 
3 is adequate to obtain semiboundedness for Y2 or G Y2 
in a finite volume, but yields an incorrect volume de­
pendence. The present procedure behaves correctly 
under localization and therefore is the correct one to 
use for obtaining the volume dependence and attempting 

Y3 • 

The statement that the estimates behaves correctly 
under localization is easiest to explain in the case when 
all the Ki contain only the fermion kinetic energies (a 
heuristic example). Then in estimates (15) and (16) the 
terms involving only contractions between operators 
lying in the same space -time squares contribute to the 
sum L: " IT" I an expression of the form 

6 IT"I,,;(OIIIDt.(</J)IO), 
nonoverlap L\ 

(17) 

where Dt.(</J) are corresponding estimates for the 
squares t:... When the K i contain other than just energies 
the localization property imposes conditions on the form 
of estimate (13)-the right side must be a sum of ade­
quate estimates for the individual squares cut at t = s. 
Localization methods as used in Ref. 2 are valuable to 
achieve this. 

VI. DISCUSSION 

We say a few words about the treatment of Y2 and GY2 • 

In these models in each unit space time block the 
Duhamel expansion may be performed just once-no 
induction is necessary. The interaction terms are in­
cluded in the Ki with an upper momentum cutoff on the 
fermions increasing with i. (Alternate developments are 
possible.) The pull throughs are used to exhibit the re­
normalization cancellation. Additional pull throughs are 
required also; those for GY2 are slightly different from 
those in Ref. 3 since III estimates are used. In parti­
cular each vertex (basic interaction term not in the ex­
ponent) must be connected to at least one other vertex 
by a fermion line, however the number of contractions 
is to be limited. In any expansion in which no fermion 
operators other than the kinetic energy appear in the 



                                                                                                                                    

732 D. Brydges and P. Federbush: Boson·fermion model theories 

exponents, the whole procedure could have been per­
formed using Osterwalder-Schrader fields. 4 

It is interesting to consider what special properties 
of fermions are used in the above program. One could 
have derived the same formulas for a boson ,p field, ex­
cept Eq. (14), The fermion nature has been used so far 
in three ways (two of these ways only implicit in this 
paper): 

(1) To derive Eq. (14) one has used that 1 <J!(J) I.;; 1/1 2 , 

(2) To derive in Eq. (13) a useful estimate for the Y2 
or GY2 scattering terms the free No"t/ 2 factor in NT es­
timates with fermions is useful. 

(3) To derive in Eq. (13) a useful estimate for the Y2 

or GY2 creation and annihilation terms, employing as 
in Ref. 1 a partial dressing for the fermions (see Ref. 
3), the sign of a term arising from the anticommutativi­
ty is crucial. This sign is available in other models and 
other dreSSings. 

Possibly to treat Eq. (13) for Y3 more properties will 
be discovered, though this may not be necessary. In any 
case the exchange of boson commutativity for these 
three properties, a three for one deal, may not be a bad 
trade. 

We feel that the approach of this paper provides suffi­
ciently powerful machinery to consider an attack on the 
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Y3 problem and that it may be as close as one can come 
to realizing for fermions a Euclidean formulation for 
performing estimates. 
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The energy levels of a pair of coupled anharmonic oscillators are studied. The technique employed is 
to find two approximately canonical coordinate momentum pairs. Particular emphasis is placed on 
the qualitative dependence of the coordinate and momentum operators on the quantum numbers. 

I. INTRODUCTION 

Quantum mechanics deals with operators rather than 
numbers as classical mechanics does. In this sense it 
its a technically more difficult subject. Perhaps though 
in a deeper sense it is much harder because it is harder 
to have a good intuitive feeling about what an interaction 
means in quantum mechanics. 

Newtonian mechanics is already somewhat removed 
from common sense. For thousands of years it seemed 
obvious that the exertion of effort produced velocity or 
displacement rather than acceleration. The quantum 
statement that when I exert effort I produce some col­
lection of matrix elements is an abstraction that I really 
cannot make. Thus my intuitions in quantum mechanics 
are wholly objective. They never follow from direct 
personal involvement. I have tried with some success to 
train myself to think about matrix elements, but the only 
success I have is in treating them as abstract quantities. 
quantities. 

I shall be primarily concerned with finding energy 
levels. A solution to this problem consists in diagonal­
izing the Hamiltonian. Less formally, the Hamiltonian 
is a function usually a polynomial of various coordinate 
and momentum operators. Somehow the matrix elements 
of these operators enter the Off-diagonal elements of 
the Hamiltonian with different signs in such a way as to 
cancel each other out. 

There are two sets of equations to be solved in a 
quantum mechanics problem. The commutator equations 
necessary to insure the operators x and p are a canoni­
cal pair and the equations necessary to make the off­
diagonal Hamiltonian matrix elements vanish. The first 
equations to solve are the diagonal commutator equation 
and the equations that insure the vanishing of the Hamil­
tonian matrix elements adjacent to the principal 
diagonal. 

I have found that in one-dimensional oscillator equa­
tions this type of solution can generate a step-by-step 
procedure that yields an accurate solution and offers a 
good insight into the dependences of the matrix elements 
on the parameters of the problem. 1 In the present work 
we explore the lowest order solution of this type for a 
coupled problem. 

The most primitive understanding of a quantum prob­
lem is to see just which operators enter a particular 
Hamiltonian matrix elements with what signs to permit 
this cancellation without any regard for the magnitudes 
of the operators. At a more quantitative level one may 
attempt to determine the dominant behavior of the var­
ious coordinate and momentum operator matrix ele­
ments. A definitive solution to a problem results from 
a specification of how the more delicate dependences of 
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the coordinate and momentum operators are to be sys­
tematically determined and finally what they are. 

Here I have divided the quantum problem into two 
parts. The first discussed above is to operate with a 
mathematical intuition to determine the proper form for 
the coordinate and momentum operators. The second 
part, which I do not discuss here, would be to relate the 
calculated matrix elements to physically observable 
properties. The problems that I would like to solve­
field theory-is suffiCiently complicated so that I can 
only consider simple models at the present time and the 
physical interpretation of my current results is not of 
great interest to me. 

I have tried to adopt this point of view and to instruct 
my intuition accordingly. I think the effort can be of 
some help in gaining a qualitative feeling for what hap­
pens in quantum mechanical problems. I would like to 
emphasize one feature of the quantum problem which 
seems of central importance to me. Most wavefunctions 
extend over all of configuration space. Thus a wave­
function responds to all of a potential not to its values 
in some region. A specific number may be related to 
values of the potential in a region of configuration 
space, but the qualitative character of a wavefunction 
and the solution to a quantum problem depends on an en­
tire potential. It enforces a uniformity condition in the 
mathematician's sense of uniformity on arguments about 
quantum mechanics. Specifically a perturbation must be 
uniformly small or it is not small. 

I would like to consider this notion in relation to per­
turbed harmonic oscillators from the problems of a 
single oscillator to the problems of interacting scalar 
fields. A typical theory of this type has a potential with 
an harmonic part together with so-called perturbing 
terms. The perturbing terms involve powers of the field 
or coordinate operators higher than the second. The 
first claim is that the anharmonic terms are not uni­
formly small. In fact, over most of configuration space 
the anharmonic part of the potential is larger than the 
harmonic part. Thus such theories are never weak cou­
pling theories. Attempts to estimate the numerical 
values of some quantities, e.g., the ground state ener­
gy of an anharmonic oscillator, may be carried through 
successfully with a weak coupling technique, but no gen­
uine inSight into the character of the solution can be ob­
tained this way. 

A much.more severe problem can occur in a problem 
with many degrees of freedom or a field theory with an 
infinite number of degrees of freedom. In these cases 
the theory becomes effectively a strong coupling theory 
no matter what number multiplies the potential. This 
follows because not only are most of the off-diagonal 
matrix element of the Hamiltonian larger than the diag-
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onal ones but because they are also much more numer­
ous than the diagonal ones. Thus any field theory of this 
type is automatically a strong coupling theory. The 
harmonic term is really the perturbation. 

To gain a real understanding of such a theory, the an­
harmonic terms should be treated first. In the following 
exercise I consider the oscillator with Hamiltonian H 

The choice is the simplest one in which the two an­
harmonic oscillators interact. With just A or C different 
from zero the oscillator would decouple. The technique 
I shall employ is to assume that the various coordinate 
and momentum operators only have matrix elements 
that connect states in which one quantum number is 
changed by unity. This is certainly not a correct repre­
sentation of the situation. The only justification for this 
procedure is that for a single uncoupled anharmonic os­
cillator it is apparently a good first approximation. 2 

In the next sections some elementary algebra of quar­
tic polynomials is studied. In Sec. III the assumptions 
are used to formally determine energy levels and ma­
trix elements. The real concern in the solution is to try 
and view the quantum problem as an infinite set of alge­
braic equations and to throwaway most of them. In the 
ensuing set one tries to see how cancellations can be 
made to occur in off-diagonal positions of the 
Hamiltonian. 

II. POSITIVE DEFINITENESS OF THE POTENTIAL 

The fourth degree potential V is given by the homo­
geneous polynomial 

V{x 1> x 2) = Axi + 4Bx~X2 + 6Cx~x~ + 4Dx lX~ + Ex~. 

In this section the condition that V be positive for all Xl 

and x 2 are considered. It is clear that A and E must 
both be positive. If there is any value of (X U x2) for 
which V is negative, then it is also negative and has an 
arbitrarily large negative value by considering the se­
quence of points (AXI'AX2). 

Let the ratio of (x / x 2 ) be ~. The polynomial 

P= ~4+ {4B/A)~3+ {6C/A)e+ (4D/A)~ +E/A 

must be positive for all real values of ~. If a, {3, Y, 6 
are the roots of P, then the relations 

a + {3 + Y + 6 = - (4B / A) 

a {3 + ay + a6 + {3y + {36 + y6 = 6C / A, 

a{3y + a{30 + ay6 + {3y6 == - 4D/A, 

hold. The quantities 

q= (B/A)2_ (CiA), 

c=D/A) - 3 (BC/A 2) + 2 {B/A)3 , 

b= (E/A) -4(BD/A2) + 3 (C/A)2 

are functions of the differences of the roots; they are 
invariant under the translation ~ - ~ +~. They are 
called q, c, and b because q is quadratic, c cubic, and 
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biquadratic in the roots. Explicitly they are given by 

q =fs{a2 + ~ + r + 62) - -k{a{3+ ay+ a6 

+ {3y + {30 + y6) 

=is[{a + {3- y- 0)2+ {a - {3+ y- 0)2 

+ {a - {3- y+ 6)2], 

c=i2(- a 3 
- ~ - y3 - 63 + a 2{3+ a 2y+ a 26 + a{32+ {Py 

+ {326 + ay2 + {3r + r6 + a6 2 + {36 2 + y6 2 

- 2a{3y- 2a{30 - 2ay6 - 2{3y6) 

=-~(a + {3- y- 6)(1'1. - {3+ y- 6)(1'1. - {3- y+ 6), 

b = rr{a2{32 + a 2y2 + 1'1. 262 + {Pr + {P6 2 + r62 - a 2{3y - a 2{30 

- a 2y6 - a~y- aff6 - ~Y6 - a{3r - ar6 - {3r6 - a{36 2 

- ay6 2 - {3y6 2 + 6 1'1. {3y6 ) 

=i:r[(a - !3)2{y- 6)2+ (a - y)2{{3- 6)2+ {a - 0)2{{3- y)2]. 

If the polynomial P has a double root, the discriminant 
of P given by 

d== (a - {3)2{a - y)2{a - 6)2({3- y)2{{3- W{y- 0)2 

must vanish. The discriminant d can be expressed in 
terms of the coefficients of P or more compactly in 
terms of the invariants q, c, and b: 

d == {24b)3 /54 - i7[27{4c)2 - (12q)3 + t{12q )(24b»)2 

There are three possible configurations for the roots of 
P: 

(1) all real roots, 
(2) two real roots and a complex conjugate pair, 
(3) two complex conjugate pairs. 

In order that P always be positive, it is necessary that 
all the roots be complex. The transition between the 
three cases occurs when d== O. This is because a com­
plex conjugate pair becomes a real double root at the 
transition between the three cases. A simple calcula­
tion shows that 

(1) d{a, b, c, d) > 0 if a, b, c ,d are real, 
(2) d(a,b,c+id, c-id)<O, 
(3) d{a+ib, a-ib, c+id, c-id»O. 

Thus in order that P be everywhere positive it is nec­
essary but not sufficient that d> O. Cases (1) and (3) can 
be separated by conSidering the expression 

v'12b -12q, 

In case (1) where the roots a, {3, yand 6 are real, b can 
be written as 

0"" 12b 

== t [(a - !3)2(y-6)2+ (a - y)2(j3_ 6)2+ (a -6)2({3- y)2] 

== i2{[ (a - {3 + Y - 6) + (a - {3 - y + 6)]2 [(a - {3 + Y - 6) 

- {a - {3- y+ 6)]2 

+ [(a + {3 - Y - 6) + (a - {3 - y + 6)]2 [(a + {3 - Y - 6) 

_(a_{3_y+6)]2 

+ [( a + {3 - Y - 6) + (a - {3 + y - 6)]2 

X [(a + {3- y- 6) - {a - {3+ y- 6»)2}, 

== i2 {[ (a - {3 + Y - 6) 2 - {a - {3 - y + 6 )2]2 + [a + {:3 - Y - W 



                                                                                                                                    

735 Francis R. Halpern: A pair of coupled quantum anharmonic oscillators 735 

_ {ct - j3 - y + 15)2]2 + [{ct + j3 - Y - 0)2- {ct - j3 + Y _ 15 )2]2} 

= 16 [{ ct + j3 - Y - 0)4 + {ct - j3 + Y - 0)4 + {a - j3 - y + 0)4 

_ {ct + j3- y - 15)2 {ct _ j3+ y_ 15)2 

_{ct_j3+y_15)2{ct_j3_Y+15)2 

- {ct - j3 - y + 0)2 {ct + j3 - y - 0)2] 

= fg[ {ct + j3 - Y - 15)2 + {a - j3 + Y - 0)2 + {ct - j3 - y+ 0)2)2 

- fs[ {ct + j3 - Y - 15)2 {ct - j3 + Y - 0)2 + {a! - j3 + Y - 15)2 

{ct - j3- y+ 15)2 + {ct - j3- y+ 0)2 {a! + j3_ y_ 15)2] 

= {12q)2 - iH{ct + j3 - y- 0)2 

X {Q _ j3 + Y _ 15)2 + {Q _ j3 + Y _ 15)2 {a! _ j3 _ y+ 15)2 

+ {Q _ j3_ y+ 15)2 {a + j3_ y_ 15)2]. 

It follows that 

{12q)2;, 12b;, 0 

so that 

0;, ..fi2lj" - 12q. 

On the other hand, for two pairs of complex conjugate 
roots Q+ij3, a!-ij3, y+i15, y-i15, 12b is given by 

12b=[{a _y)2+W+15 2)]2+12j3215 2 

and 12q is given by 

12q = (Q _ y)2 _ 2{j32 + 15 2). 

The term 12b can be rewritten 

12b= [12q + 3{j32 + 15 2)]2 + 12j32152 

so that if 12q;'0, ..fi2lj";,12q. If, on the other hand, 
12q'; 0, then ..fi2lj";, 0;, 12q; hence the inequality 

..fi2lj" - 12q ;, 0 

is always valid and the sign of ..fi2lj" - 12q distinguishes 
between cases (1) and (3). The necessary and sufficient 
conditions for a stable potential are 

d> 0, v'12b -12q > O. 

III. APPROXIMATE SOLUTJON 

The oscillator under consideration has the Hamilto­
nian H given by 

H = t{pi + p~ + xi + x~) + Axi + 2Bxix~ + Cx~. 

The invariants q, c, and b of Sec. IT for this quartic 
polynomial are 

q= -HB/A), c= 0, b=C/A + i{B/A)2. 

The discriminant d is given by 

d= 256{C/A)[{C/A) - (B/A)2]2;, 0 

and is indicated is nonnegative. The other quantity 
needed to test the potential, ..fi2lj" - 12q is given by 

v12b -12q = v'12{C/A) + 4 {B/A)2 + 4{B/A) 

This quantity has its only root at 

v'C/A+B/A=O 

so the requirements for a positive potential are C > 0, 
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A>O, and 

B/A> -{C!A. 

In this simple case this requirement could have been 
derived much more directly 

The assumed form for the oscillator operators is 

{P2)n'm'nm = icnm15 n'n 15 m'-1 m - iCn m-l 15 n'n 15 m'+l m' 

{xl)n'm'nm = bnm 15n'-l n15 m'm + bn-1 m15 n'+1 n15 m'm' 

(x2)n'm'nm = dnm 15n'n 15 m'-1 m + dn m-l 15 n'n 15 m '+l m' 

The six commutators of these operators are calculated 
and listed in the Appendix. 

For our purposes we consider only the diagonal ele­
ments of [p"x 1] and [P2'X 2 ], These are 

[p" xl]n m nm = 2i{an_1 mbn-l m - anmbnm ), 

[P2' x 2]nm,nm = 2i{cn m-ldn m-) - cnmdnm )· 

In addition to these diagonal matrix elements the com­
mutators have 20 off-diagonal matrix elements that are 
not explicitly equal to zero. There are 10 conjugate 
pairs. These matrix elements may not be set equal to 
zero in the approximation I am conSidering. The quanti­
ties a, b, c, and d would be overdetermined. The qual­
ity of the approximation depends in part on the size of 
these nonvanishing Off-diagonal matrix elements of the 
commutator compared to unity the value of the commu­
tator diagonal matrix elements. 

The diagonal equation can easily be summed to give: 

The failure of Xl and x 2 to commute makes the Hamilto­
nian non-Hermitian. This can be remedied by choosing 
3B(x~x~ + x~i) or more practically by ignoring the diffi­
culty because the numerical results of the nonhermitic­
ity of lower order than I will consider here. 

The Hamiltonian may be expressed in terms of the 
function anm , bnm , Cnm ' and dnm • This result is recorded 
in the Appendix. Within the limits of the approximation 
I am considering, it is adequate to neglect differences 
between the values of function anm whose indices nand m 
differ by less than 4. The same assumption will be 
made for the function bnm , Cnm ' and dnm• This assump­
tion leads to a greatly Simplified Hamiltonian: 

Hn'm'nn 

=Ab~m{15n'n+4 + 15 n'n-4)15 m'm + Cd~m15n'n{15m'm+4 + 15 m'm-4) 

+ 2Bb~md~m{15n'n+215m'm+2 + 15n'n+215 m'm-2 

+ 15 n'n-2 15 m'm+2 + 15 n'n-2 15 m'm-2) 

+ (- ta~m + tb~m + 4Ab~m + 4Bb~md~m) 

x {15 n'n+2 + 15n'n-2)15 m'm + (- k~m + d~m + 4C~m + 4Bb~md~m) 

X15 n'n(15 m'm+2+ 15 m'm-2) 

+ {a~m + b~m + c~m + d~m + 6Ab~m 

+ 8Bb~m~m + 6C~m)15m'm15n'n' 

In this Hamiltonian the term proportional to 
15m'mon'n%415n'n' and 15m'm%215n'n%2 may not be set equated to 
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zero consistently with the requirements that A, B, and 
C are not zero and the implications of the diagonal com­
mutator equations. The terms proportional to 0n'n±20m'm 
and 0m'm±20n'n may, however, be equated to zero in this 
approximation. If this is done, the pair of equations 

- ta 2 + tb2 + 4Ab4 + 4Bb2£l2= 0, 

-tc2 + td2+4C~+4BbW=0 

results. The diagonal commutator matrix elements can 
be used to eliminate a and c and give the equations 

32Ab6 + 32Bb4~ - n2 + 4b4 = 0, 

32Cd6+ 32Bb2~ _m2 +4~= O. 

The situation is simplified if the harmonic terms 4b4 and 
4d6 are dropped. If the variables {3=n-1/3 (32A)1/ 6b and 
0= m-1/3 (32C)1/ 6d are introduced the equations become 

~+af3402-1=0, 
(1 ) 

06+ T{3204_1=0, 

where a=BA-2/3C"1/3(m/n)2/3 and T=BA-l/3C-2/3(n/m)2/s. 
The relation aT=B2/AC is obvious. 

It is not possible to give an exact and simple solution 
to this pair of equations. In order to bring out the qual­
itative features of the energy levels and the coordinate 
and momentum operator matrix elements, I will use an 
approximate solution to these equations. Since the exact 
,8 and ° would themselves give only an approximate so­
lution to the eigenvalue problem, there are two levels 
of approximation. In the following paragraphs I deal with 
f30 and 00' an approximate solution to the equations for 
{3 and 0. I can check numerically and determine how 
good or bad an approximation {30 and 00 are to (3 and 0, 
and these figures are reported below. 

An approximate solution f30 , 00 to these equations is 
given by 

1 + al/ 12 + Tl/6 1 + T1/ 12 + al/ 6 

f30 = 1 + Tl/ 6 + ails ' °0= 1 + a1/ 6 + (11Is • 

The approximation f3iJ o is valid asymptotically in the re­
gions a and T separately large or small to lowest non­
vanishing order. The equations for f3 and ° may be 
solved by Newton's method if f30 15 0 is the first trial solu­
tion. The results are too complicated to carry out alge­
braically. Numerically work indicates that the maximum 
error (f3 - (30 )/ {30 or (0 - 00)/150 is about 35% where f3 and 
° are the exact solutions of Eq. (1). 

The energy levels can be given in terms of f3 and ° by 

Enm = 2-1/3{(An4)1/3[(~ + 4)/4(32] 

+ (Cm4)1/3[(15 6 + 4)/402
]}. 

The equations satisfied by f3 and ° are used to reduce the 

APPENDIX 

energy to this form. If f30 and 00 are substituted for f3 
and 0, the energy is accurate to better than a factor of 
2. 

The quantities a and T are dimensionless since A, B, 
and C have the same dimensions. Only the ratio of (m/n) 
occurs in a and T. The energy depends on the quantities 
(An4)1/3 and (Cm4)1/3 multiplied by dimensionless func­
tions; functions of a and T. I believe this is a feature of 
an exact solution to the eigenvalue problem. 

The expression for E given above is only valid to low­
est order in each of the four regions, 

I: a and T small, 

IT: a small T large, 

Ill: a large T small, 

IV: a and T large. 

By using Newton's method more accurate approxima­
tions of f3 and ° can be achieved in each of these asymp­
totic regions and the energy can be calculated to greater 
accuracy. This gives the following results for the 
energy: 

I: Enm = 1. 25[ (tAn4)1/3 + (tCm4)1/3] 

+ t(2AC)"I/3B(n2m 2)tl 3, 

IT: Enm = 1. 25 (tAn4)1/3 +H(B3/A)1/ 2nm3]1/ 3, 

Ill: Enm= 1. 25 (tCm4) 1/3 + H(B3/C)1/2n3m]I/3, 

IV: Enm= 2 (tBm 2n2)1/3. 

An examination of the off-diagonal portions of the 
commutator and the Hamiltonian indicates they are 
small compared to the diagonal portions so that the ap­
proximation furnished by the exact solution of (1) is a 
reasonable one. 

IV. CONCLUSIONS 

It is possible either by exactly solving the cubic 
equations (1) for f3 and ° or approximately by using the 
approximate solutions f30 and 00 to give momentum and 
position operators that simultaneously satisfy the diag­
onal commutator equations and the first off-diagonal 
Hamiltonian equation. This is the first step in a step­
by-step procedure to solve the two-coupled oscillator 
problem. 

In higher orders of the approximation additional terms 
more remote from the diagonal would be added to x and 
p, and further commutator and Hamiltonian equations 
would, be solved. -I do not yet know the order in which 
this is to be done. My experience with the single oscilla­
lator suggests that the dependence on m + m' and n + n' 
should be the same for the additional terms, but they 
should rapidly decrease with 1m' - m I and In' - n' I 
leading to the convergence of the approximation. 

The operators Pit P
2

, Xl' and x 2 are given in Ill. The calculated values of the six commutators of these operators 
are listed below: 
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[PI 'P2]n'm'nm = {anmcn+1 m - an m+lcnm)llm'm+llln'n+1 + (an m-Icn m-I - an mCn+1 m-I) 

X Ilm'm_llln'_1 n + {an-I m+lCnm - an-l mCn-l m)llm'm+llln'+1 n + (an-l mCn-l m-l - an-l m-lCn m-l)llm·m-llln.,,-1> 

[p I> x2]n'm'nm = i{an m+ldnm - anmdn+l m)1l m·m+llln.,,+1 + i{an m-Idnm-l - anmdn+l mol) 

X 0m'm-llln.,,+1 + i{an_1 mdn-l m - an_l m+ldnm)Om'm+lOn'n-l + i{an_l mdn-l m-l - an-l m-ldn m-l)O m'm-lOn'n-1> 

[P2'X l]n'm"'m = i{bn .. cn+l m - bn m+lCnm)Om·m+l0n.,,+1 + i{bn m-lCn m-l - bnmcn+l mol) 

X O .. 'm_IOn"'+1 + i {bn-1 mCn-1 .. - bn_1 m+lcnm)llm'm+IOn'n-1 + i{bn_l m-lCn m-l - bn-l mCn-l .. -1)0 m'm-lOn'n-U 

[X U X2],,'m"'m = {bn m+ldnm - bn",dn+1 ",)Om'm+llln'n+1 + (bn m-ldn m-I - bnmdn+1 m-I) 

X 0m'm_IOn.,,+1 + {bn_1 m+ldnm - bn_1 mdn-I m)llm'm+IOn'n-l + (bn_1 m-Idn m-I - bn_1 mdn-l m-I)Om'm-llln'n-1> 

Hn'm'nm =A{bn+3 mbn+2 mbn+1 mbnmon'n+40m'm + bn-4m bn_3 mbn-2 mbn-I mOn'+4 nOm'm) 

+ C{dn m+3dn m+~n m+ldnmlln'n ll m'm+4 + dn m-4dn m-3dn m-~n m-llln'n0 m'm-4) 

+ 2B{bn+1 m+2bn m+ ~n m+ld nmll n"'+20 m'm+2 + bn+1 m-2bn m-2dn m-2dn m- IOn'n+20m'm-2 

+ bn-2 m+2bn-1 m+2dn m+ldnm lln'n-20m'm+2 + bn-2 m-2bn-l m-2dn m-2dn m-IOm'm-20 n'n-2) + [- tan +1 manm + tbn+1 mbnm 

+ A{bn+1 mbnmb!-I m + bn+1 mb~m + b~+I",bnm + b!+2mbn+l mbnm) + 2Bbn+1 mbnm{d; m-I + d;m)]On'n+2Il m'm 

+ [ - tan-2 man-I m + tbn-2 mbn-I m + A {b;_3 mbn-2 mbn-l m + b~_2 mbn-I m + bn-2 mb~_1 m + bn-2 mbn-l mb;m) 

+ 2Bbn_2 mbn-l m{d; mol + d!m) ]On'n-20 m'm + [- tCn m+IC ... + tdn m+ldn ... + C{dn m+ldnmd! m-l + dn m+ld~m + d~ m+ldnm 

+ d; m+~n m+ldnm) + 2B{b~_1 m+2 + b! m+2)dn m+ld nm]ll n'n 0 m'm+2 + [- tCn m-~n m-I + tdn m-2dn m-I + C{tf. m-3dn m-2dn m-I 

+ d; m-~n m-I + dn m-~~ m-I + dn m-~n m-Itf.m) + 2B{b!_1 m-2 + b; m-2)dn m-2dn m-I]On'n 0 m'm-2 + [t{a~_1 m + a~) 

+ t{c! m-I + C!m) + t{b!_1 m + b!,,) + t{d! mol + d!m) + A{b;_2 mb!_1 m + b~_l m + 2b!_1 mb;m + b~m + b;mb!+l m) 

+ 2B{b;_1 m + b;m)(d! mol + d;m) + C{d; mold! m-2 + ~ m-I + 2d! mol ~m + d~m + d;md; m+l)]On'nOm'm' 

I 
Phys. 

737 

*Work supported in part by the United Stated Atomic Energy 
Commission. 

IF. Halpern and T. W. Yonkman, ''Matrix mechanics ap­
proach to a nonlinear oscillator," submitted to J. Math. 

2A. Z. Capri, Lett. Nuovo Cimento 3, 351 (1972); Francis R. 
Halpern, J. Math. Phys. 14, 219 (1973). 

J. Math. Phys .• Vol. 15. No.6. June 1974 



                                                                                                                                    

Differential inequalities and stochastic functional differential 
equations 

G. S. Ladde 
Department of Mathematics. The State University of New York at Potsdam. Potsdam. New York 13676 
(Received 27 November 1973) 

Consider the system of stochastic functional differential equations 
dx =f(t,x,)dt+<T(t,x,)dz(t), x'o=~()o (S) 

where <T is a n X m matrix, column vectors of <T, f are continuous, and z (t) is a normalized 
m -vector Wiener process with 

E[(z(t)-z(s)· (z(t)-z(s)Tj=Ilt -sl. 
By developing a comparison principle, sufficient conditions are given for stability and boundedness 

in the mean of solutions of (S). The main technique here is the theory of functional differential 

inequalities and Lyapunov-like functions. 

1. INTRODUCTION 

stochastic differential systems provide a mathemati­
cal model for sophisticated dynamical systems in 
physical, biological, medical and social sciences, In 
many circumstances, the future state of a system de­
pends, not only on the present state but also on its 
past history, Stochastic functional differential equations 
give a mathematical formulation for such systems in 
which the stochastic increment (in the sense of Ito) of 
the system may depend on the influence of its hereditary 
effects. 

The problem of existence and uniqueness of stationary 
solutions of functional differential equations has been 
investigated by Ito and Nisio. l In a recent paper 
KolmanovskiF has studied the problem of stability in 
the mean, In that paper, an attempt was made to form­
ulate the asymptotic stability criteria by employing 
Lyapunov functionals, 

The notion of Lyapunov function, together with the 
theory of functional differential inequalities provide a 
very general comparison principle by means of which a 
number of qualitative properties of solutions of func­
tional differential equations may be studied in a unified 
way. For more details see the book of Lakshmikantham 
and Leela. 3 It is natural to expect such an extension to 
stochastic functional differential systems. 

In this paper, we wish to extend this comparison 
principle to stochastic functional differential systems. 
In Sec, 2, we define various notions of stability and 
boundedness in the mean, In Sec. 3, we develop general 
comparison principle based on functional differential 
and integral inequalities, In Sec, 4, we give sufficient 
conditions for stability and boundedness in the mean. 
These results include some of the results of Ladde, 
Lakshmikantham, and Liu. 4 At the end, we provide 
examples to illustrate the applicability of our results, 

2. NOTATIONS AND DEFINITIONS 

Let R" denote the n-dimensional Euclidean space with 
any convenient norm 11° II. We also denote by the same 
symbol II ° II the norm of a matrix, R+ and R stand for the 
nonnegative real and real line respectively. Let (n,J, p) 
be a complete probability space, By E[x/K] we shall 
mean the conditional mean of x, where K c J is a sub C/­

algebra of J. Given any T> 0, let C" = e[[ - T, ° ],R"] de-
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note the space of continuous functions with domain [- T, 

0] and range in R", For cP E C", we define II cP 110 

= SUP_TEsEO II cp(s) II. 

Let (.)T denote the transpose of a vector or a matrix. 
Suppose x E e[[ - T, 00), R"]. For any t", 0, we shall let 
xt denote a translation of the restriction of x to the 
interval [t - T, t]; more specifically, xt is an element 
of C" defined by xt (s) = x(t + s), - T <:; S <:; 0, Let S[C"] and 
S[C+J denote the system of all Cn and C+ valued random 
variables, where C+= e[[ - T,O],R+J. 

Consider the system of stochastic functional differen­
tial equations of the type 

dx= f(t, xt)dt + C/(t, xt)dz(t) , xt = CPo, (2,1) 
o 

where x, fERn, C/(t,·) is a nXm matrix, and z(t) is a 
normalized m-vector Wiener process with 

E[(z(t) -z(s»o (z(t) -z(s»TJ=II t- sl, 
where I is an identity matrix, 

We assume that the functions f, C/, and CPo satisfy the 
following assumptions: 

(al) th.e m column vectors of C/(t, cp) and f(t, cp) belong 
to e[R+xcn,R"J; 

(~) for all (t,cp), (t,1/J) EWXC", 

II f(t, cp) - f(t, 1/J)11 <:; J 0 II cp(s) -1/J(s)JJ dK 1 (s) 
-T 

and 

where dKl and dK2 are bounded measures on [- T, OJ; 

(a3 ) CPo (s), s E [ - T, OJ is a sample continuous stochas­
tic process, i.e., CPoES[C"] independent of z(t), for 
t E R+ and satisfies the relation 

SUP_TEsEOE[II CPo(s)1I4J <:; e, 
for some constant e > 0. 

Under these assumptions, it is knownl that the solu­
tion x(t) = x(to' CPo)(t) of (2,1) is 

(I) sample continuous on [to - T, 00), 

(II) strictly stationary process, i.e., x(t) and z(t) 
are strictly correlated, 

Copyright © 1974 American Institute of Physics 738 
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(Ill) E[IIx(t)1I 4J ~ Ci sup E[II cf>0(s)1I 4 JeC 2t , 
-T'ES:iliiO 

for some Ci , C2 > 0, 

We shall now formulate the definitions of stability and 
boundedness in the mean of the trivial solution of (2,1), 

Definition 2.1: The trivial solution of (2, 1) is said to 
be: 

(0 equi-stable in the mean, if for each E > 0, to E W, 
there exists a positive function 0 = O(to,E) that is con­
tinuous in to for each E > 0 such that the inequality 

sup E[II cf>o (s)ll J ~ 0 
-TIl!iSEQ 

implies 

E[lIx(to, cf>o)(t)IIJ <E, for t~ to; 

(ii) uniformly stable in the mean, if the 0 in (0 is 
independent of to; 

(iii) quasi-equi-asymptotically stable in the mean, if 
for each E > 0, to E R+, there exist 00 = o(to) > 0 and T 
= T(to,E) > 0 such that for t ~ to + T and 

sup E[II cf>o (s)ll J ~ 00 
-""s"o 

implies 

E[IIx(to, cf>o)(t)IIJ <E; 

(iv) quasi-uniformly asymptotically stable in the 
mean, if 00 and T in (iii) are independent of to; 

(v) equi-asymptotically stable in the mean, if (i) and 
(iii) hold simultaneously; 

(vi) uniformly asymptotically stable in the mean, if 
(ii) and (iv) hold together. 

Definition 2,2: The stochastic system (2,1) is said 
to be: 

(i) equi-bounded in the mean, if each Ci ~ 0, to E R+, 
there exists a pOSitive function f3= f3(to, Ci) that is con­
tinuous in to for each Ci such that 

sup E[IIcf>o(s)IIJ ~ Ci 
-TIl!iiS:GO 

implies 

E[IIx(to, cf>o)(t)IIJ < f3, t ~ to; 

(ii) uniformly bounded in the mean, if the Ci in (0 is 
independent of to; 

(iii) quasi-equi-ultimately bounded in the mean, if 
given a ~ 0, to E R+, there exist numbers Nand T 
= T(to , Ci) such that 

sup E[II cf>o (s)ll J ~ Ci 
·T\l!iisGliQ 

implies 

E[Ux(to, cf>0)(t)l1J <N, t~ to + T; 

(iv) quasi-uniformly-ultimately bounded in the mean, 
if the number T in (iii) is independent of to; 

(v) equi-ultimately bounded in the mean, if (i) and (iii) 
hold at the same time; 

(vi) uniformly ultimately bounded in the mean, if (ii) 
anq.(iv) hold simultaneously. 
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u' =g(t,u) +G(t,ut ), ut =0'0 (2.2) 
o 

where gE C[R+XW,RJ, GE C[WxC+,RJ and G(t,O') is 
nondecreasing in 0' for each t E R+, 

Relative to the comparison functional differential 
equation (2,2), we need the corresponding definitions in 
our discussion which may be defined analogously, For 
example, the definition of equi-stability runs as follows: 
The trivial solution u,; 0 of (2.2) is said to be equi­
stable, if for each € > 0, to E R+, there exists a positive 
function 0 = 0 (to, E) that is continuous in to for each E > 0 
such that 10'0 I 0 ~ 0 implies u(to, O'o)(t) < €, t ~ to 

Definition 2.3: A function b(r) is said to belong to the 
class/(, if bE C[R+,W], b(O)=O and b(r) is strictly in­
creasing in r, 

Definition 2.4: A function a(t,r) is said to belong to 
the class C/(, if aE C[[ - T,oo)xR+,R+], a(t,O)';O and 
a(t, r) is concave and increasing in r for each t E R+. 

3. COMPARISON RESULTS 

In this section, we wish to prove some comparison 
theorems for stochastic functional differential system, 
This is achieved by employing the notion of Lyapunov 
function and the theory of functional differential and 
integral inequalities analogous to the deterministic 
case. 3 These results play an important role to study the 
qualitative behavior of (2.0. Note that these results are 
extension of corresponding result. 3 

Let the function VEC[[-T,OO)XR",R+], Vp Vx' Vxx 
exist and are continuous for (t,x)ER+xR", the calculus 
introduced by nos shows that 

av 
dV(t,x, cf»=LV(t,x, cf»dt + ax' O'(t, cf»dz(t), (3.1) 

where 

av av 1" a2v 
L V(t,x, cf» =-;-t +-;;-. f(t, cf» +-2 6 -., --., bij (t, cf», 

u uX 1.J=lUXiUXj (3.2) 

cf> EC", and (blJ) = 0'- rfI' • 

Here and after, we shall assume that Eq. (2.2) and 
the function V satisfy the following hypotheses: 

(Hi) gE C[R+XR+,R], g(t,u) is concave and nonde­
creaSing in u for each t E R+ . 

(H2) G E C[R+x C+,R], G(t,O') is nondecreasing in 0' for 
each tE Wand for any O'E S[(+J, G(t,O') satisfies the 
relation 

E[G(t, O')J ~ G(t, EO') , (3.3) 

where EO'= E[O'(s) J, s E [- T, 0]. 

(H3 ) Let r(to,O'o)(t) be the maximal solution of the func­
tional differential equation (2.2) existing for t ~ to, to 
ER+. 

(H4 ) Assume that g(t, 0),;0,; G(t, 0). 

(Hs) VE C[[ - T,oo)xR", W], av/at, av/ax, a2v/axax 
exist and are continuous for (t,X)E R+xR". Further­
more, for (t,cf>(O),cf»ER+xR"XC", 



                                                                                                                                    

740 G.S. Ladde: Differential inequalities 

(3.4) 

and 

LV{t, ep(O), ep) ~ get, Vet, ep(o))) + G (t, Vt), (3,5) 

where KE C[R+,Rm], 1 ~u~4, and L is the operator as 
defined in (3,2), 

(Hs) Assume that the hypothesis (Hs) holds except that 
the inequality (3. 5) is strengthened to 

A(t)L V{t, ep(O) , ep) + V(t, ep(O»A' (t) ~ g(t, V(t, ep(O»A(t» 

+G(t,AtVt ), (3,6) 

where A(t) is continuously differentiable positive func­
tion for [- r, (0) and At Vt =A (t + s)V(t + s, ep(s» for s 
E[-r,O]. 

(H7 ) For (t,x)EWXR", 

b(llxll)~ V(t,x)~a(t,llxlj), 

where b EK, b is convex, and a E C!< . 

(Ha) For (t,x)EWXR", 

b(lIxll)~ V(t,x)~a(t,lIxll), 

where a E CK, b EJ<, b is convex, and b(u) - 00 as 

We shall state and prove the following main compari­
son theorem. 

Theorem 3.1: Let the hypotheses (H), (H2 ) , (H3) , and 
(Hs) be satisfied. Assume that, for the stationary solu­
tion process x(t)=x(to, epo)(t) of (2.1), E[V(t,x(t) exists 
andE[V(to+s,epo(s»]~(1o(s), SE[-7",O]. Then, we have 

E[V(t,x(to, epo)(t))] ~ r(to, (1o)(t) , t?- to' (3.7) 

Proof: Let x(t) = x(to' 1>o)(t) be any stationary solution 
process of (2.1) with initial data (to, epo)' By the hypo­
thesis (Hs) and the calculus introduced by Ito, s we have 

OV av 
dV (t, x(t), xt ) = at (t, x(t))dt + ax (t, x(t)) • f(t , Xt )dt 

1" a2v + -2 6 --,,-(t,x(t))bjj(t,xt)dt 
1.1=loXl uXJ 

av 
=LV(t,x(t),xt)dt+ ox (t,x(t))· (1(t,xt )dz(t). 

This together with the hypotheses (H), (H2 ) , (Hs) and 
the existence of E[V(t,x(t»] yields the inequality 

E[V(t,x(t))] - E[V(to, epo(s»] ~ t [g(s, EV(s, xes))) 
to 

Set 

met) = E[V(t, x(t»], m (to) = E[V(to, epo(to»], 

then in view of (3.8), we have 

Define 

J. Math. Phys., Vol. 15, No.6, June 1974 

(3.8) 

(3.8') 

740 

to 

1 
m(to) + f [g(s, m(s», + G(s, ms)]ds, for t?- to, 

u(t) = 
met), for tE [to-r,to]' 

so that 

met) ~ u(t), for tE [to - 7", (0), (3.9) 

and 

(3.10) 

From (3.9), (3.10), and nondecreasing property of g 
and G in u and (1 respectively, we get 

(3.11) 

and 

mto=uto~(1o' (3.12) 

From an application of Theorem 6.9.4 in Ref. 3, we 
deduce that 

u(t)~r(to,(1o)(t), t?-to' 

The assertion (3.7) is now immediate in view of (3.9) 
and the definition of met). The proof is complete. 

The following variant of Theorem 3.1 is often more 
useful in applications. 

Theorem 3.2: Let the hypotheses of Theorem 3.1 
hold except that (Hs) is replaced by (Hs)' Then 

A (to + s)E[V(to + s, epo(s»] ~ (1o(s) 

implies 

E[V(t,x(t»]~R(to,lPo)(t), t?- to, (3,13) 

where R(to, lPo)(t) is the maximal solution of the differen­
tial equation 

v' = [-A'v + g(t, vA(t)) + G(t ,Atvt)]I A(t), Vto = lPo, (3.14) 

existing for t?- to' 

Proof: Setting 

W(t,ep(O))=V(t,ep(O))A(t), tE[-r,OO), 

we see, because of (3.6), that 

L W(t, ep(O) , ep) =A(t)LV(t, 1>(0), ep) + A' (t)V(t, ep(O» 

~ get, W(t, ep(O») + G(t, Wt). 

This shows that W(t,x) satisfies all the hypotheses of 
Theorem 3.1 and, as a consequence, we have 

E[W{t,x(t»]~ r(to,(1o)(t), t?- to, 

provided that 

W(to + s, epo(s» ~ (1o(s). 

(3.15) 

Here r(to,(1o)(t) is the maximal solution of (2.2), It is 
easy to verify r(to, (1o)(t) = A(t)R (to , lPo)(t) with lPo(s)A(to 
+ s) = (1o(s). This implies because of (3.15) and the 
definition of W(t, x), the desired inequality (3.13). 

Remark 3.1: Theorem 3.1 is analogous to Theorem 
8.1. 4 in Ref. 3 for determinstic case. However, it is 
required that u, ut are "separated" on the right-hand 
side of 8.1.16 in Ref. 3, i.e., 

get, u, ut ) = g(t, u) + G(t, ut ). 
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Furthermore, our results are obtained by employing 
integral inequalities, so we require monotonicity in u. 
However, if (2.1) is a system of diffusion equations, 
the differential inequalities can be employed to discuss 
such results. For more details see Ref. 4. 

Remark 3.2: The drawback of Theorem 3.1 is the 
assumption that E[V(t, x(t»] exists for each t E R+. Under 
certain conditions, one could show that this assumption 
holds. For example, let V(t,x)~ a(t, IIXII), where a 
E C[R+xR+,R+J and a(t,u) is concave in u for fixed 
t E R+. Then we would have 

O~ E[V(t,x(t))J~ a(t,E[IIx(t)IIJ), 

in view of the property (III) of the solution process x(t). 

Remark 3.3: Observe that the nondecreasing nature 
of g(t, u) in u can be dropped, if the inequalities (3.3), 
(3.4), and (3.5) are equalities. However,we do require 
nondecreasing nature of G (t, a) in a, in order to insure 
the existence of the maximal solution for (2.2). See 
Ref. 3 for more details. 

Remark 3.4: The restriction E[ G (t, a) J ~ G (t, Ea) for 
aES[C+J on G(t,ut } is natural. However, the class of 
functionals G(t, ut ) having such a property is nonempty. 
For example, 

G(t, a) = A(t} r a(s)dK(s}, for a E s[c J. 
-T 

where dK is a bounded measure on [- 1',0 J. One can 
easily see that 

E[G(t), a)J = A(t)r E[a(s)JdK(s) , 
-T 

whenever E[a(s} J exists for s E [ - 1',0 J. 

4. STABILITY AND BOUNDEDNESS IN MEAN 

In this section, by employing the comparison theo­
rems developed in the preceding section, we shall pre­
sent various results giving sufficient conditions for 
stability and boundedness in the mean. 

Theorem 4.1: Assume that the hypotheses (H), (H2) , 

(Ha) , (H4 ), (Hs), and (H7 ) hold. Furthermore, the sys­
tem (2.1) possesses the trivial solution. Then: 

(i) equi-stability of the trivial solution of (2.2) im­
plies equi-stability in the mean of the trivial solution of 
(2.1) ; 

(ii) quasi-equi-asymptotic stability of the trivial solu­
tion of (2. 2) implies quasi-equi-asymptotic stability in 
the mean of the trivial solution of (2.1); 

(iii) equi-asymptotic stability of the trivial solution 
of (2.2) implies equi-asymptotic stability in the mean of 
the trivial solution of (2.1). 

Proof: Let x(ta, ¢a)(t) be any stationary solution pro­
cess of (2.1). By the hypothesis (H7 ), we have 

o ~ E[b(llx(ta, ¢a)(t)II)] ~ E[V(t ,x(ta, ¢a)(t»] 

~ a(t, E[II x (ta , ¢a)(t)11 J), 

which implies that E[V(t,x(ta,¢a)(t»J exists, in view of 
the Remark 3.2. Hence, by Theorem 3.1, we have the 
following inequality, 
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(4.1) 

(4.2) 

Let us first prove statement (i). Let e > 0 and ta E R+ 

be given. Assume that the trivial solution U'" 0 of (2.2) 
is equi-stable. Then given b (e), ta E R+, there exists a 
positive function <\ = 01 (ta, e) that is continuous in ta for 
each E such that I aa I a ~ 01 implies 

u(ta, aa)(t) < b (E), t?- ta, (4.3) 

where u(ta, aa)(t) is any solution of (2.2). We choose 

aa(s) = a(ta + s, E[II ¢a(s)11 1>. 
Since a Eel<, for fixed s E [ta - l' ,toJ. we can find ° (ta 
+ s, E) = Os > 0 that is continuous in ta for each E, such 
that 

E[II¢a(s)IIJ <os 

implies a(ta + s, E[II ¢a(s)11J) ~ 01' (4.4) 

Our aim is to choose ° which is independent of s 
E [- 1',0 J. From the continuity of E[li cf.>a(s)11J in sand 
(4.4), we can find 1)s' for fixed s E [ - 1',0 J such that 

E[IIcf.>a(lI)IIJ<os' for 8E (-1)s,1)s)n [-T,OJ. 

Thi s is true for each s E [ - 1',0 J. Consider the collection 
of open sets in [- l' ,OJ defined by 

U={Os:Os=(-1)s,1)s)n [-T,O}, for SE [-T,Ol}. 

It is easy to verify that it is an open covering of [- 1',0 J 
and hence by Heine-Borel theorem, we can extract a 
finite subcover corresponding to 1) , 1) , ••• ,1) for 

Sl S S 

some fixed integer n. Take the correspbnding nl'Imbers 
0Sl' 0S2"'" 0Sn and set 

o=min{os ,os , ... ,os}· 
1 2 n 

Then, we have 

sup E[IIcf.>a(s)IIJ~ ° 
-T:!5 s:Ei 0 

implies a(ta + s, E[II ¢a(s)l!) ~ °1, 

Now, we claim that if 

sup E[IIcf.>a(s)IIJ ~ 0, 
--rEsEO 

then 

E[llx(ta, ¢a(t)lll <E, t?- ta' 

(4.5) 

Suppose that this is false. Then there would exist a solu­
tion x(ta, ¢a)(t) with 

sup E[IIcf.>a(s)111~0 and t1>ta 

such that 

E[llx(ta, cf.>a)(t1)lll =E. 

This, in view of the hypotheSiS (H7 ) , gives 

b(E[lIx(ta, cf.>a)(t1)1IJ) ~ E[V(tl'x(ta, cf.>a)(t)]. 

(4.6) 

(4.7) 

The relations (4.1), (4.3), (4.6), and (4.7) lead us to 
the contradiction 

b (e) ~ E[V(t1, x(ta' cf.>a)(t1» 1 ~ r(ta, aa)(t1) < b (e). 

This proves the conclusion (i). 
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Now, we shall prove the conclusion (ii). Let E > 0, 
toER+, be given. By quasi-asymptotic stability of (2.2), 
given b (e) and to E R+, there exist numbers /)0 (to) = /)0 > 0 
and T(to,e) = T > 0 such that 

u(to, O"o)(t) < b(e), t ~ to + T, (4.8) 

whenever 10"010';; /)0. Choosing O"o(s) = a (to +s,E[II<1>o(S)II]), 
we can find, as before a/)o = /)0 (to) > 0 such that 

sup E[II <1>0 (s)ll J < 150 

hold at the same time. We claim that 

_~~~oE[II<1>o(s)IIJ.;; 150 

implies E[IIx(t)llJ<e, for t~to+T. As a result, we 
have, because of (4.1), (4.8), and (H7), 

b (E[II x (t) II]) .;; E[ V{t , x(t» J 
.;; r(to, O"o)(t) < b(e), t~ to + T, 

which implies, arguing as before that 

E[IIx(t)II]<e, t~to+T, 

whenever 

This proves (it). 

The proof of (iii) follows from the proof of (i) and (ii). 
Thus the proof of the theorem is complete. 

Theorem 4. 2: Let the hypotheses (H1) , (H2) , (H,) , 
(Hs), and (He) be satisfied. Then: 

(i) equi-boundedness of solutions of (2.2) implies the 
equi-boundedness in the mean of solutions of (2.1); 

(ii) quasi-equi-ultimately boundedness of solutions of 
(2.2) implies the quasi-equi-ultimately boundedness in 
the mean of solutions of (2.1); 

(iii) equi-ultimate-boundedness of solutions of (2.2) 
implies equi-ultimate boundedness in the mean of solu­
tions of (2.1). 

Proof: Let x(to' <1>0)(t) be any stationary solution pro­
cess of (2.1). By following the proof of the Theorem 
4.1, we have the inequality (4.1). 

Let a ~ 0 and to E R+ be given and let 

sup E[II <1>o(s)ll].;; a. 
-1''' .... 0 

Define 

a 1 = sup a(to+s,a). 
-1'''s''O 

Assume that the solutions of (2.2) are equi-bounded. 
Then, given a l ~ 0 and to E R+, there exists a positive 
function 

(31 (to, a) = (31) 0 

that is continuous in to for each a such that 10"010';; a I 
implies 

(4.9) 
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where u(to,O"o)(t) is any solution of (2.2). Since b(u)-oo 
as u - 00, we can find a fJ(to, a) = 13 > 0 satisfying the 
relation 

(4.10) 

Now let O"o(s) = a(to + s, E[II <1>o(s) 1 I]) so that 10"010';; a l • 

With the 13 obtained in (4.10), we claim that the solutions 
of (2.1) are equi-bounded in the mean. If this is not 
true, then there exists a solution x(to, <1>o)(t) with 

sup E[II <1>o(s)II].;; a 
-1'''8''0 

and t1 > to such that 

E[lIx(to, <1>0)(t1)IIJ = {:3. (4.11) 

This together with (4.1), (4.9), (4.10), and (He), we 
have 

b(fJ) .;; E[V(t1, x(t1»].;; r(to, 0"0)(t1) < b«(3), 

which completes the proof of (i) • 

To prove (ii), let a ~ 0 and to E R+ be given and let 

sup E[II <1>o(s)II].;; a. 
-1'''8''0 

Define 

a 1 = sup a(to + s, a). 
"'''8''0 

Assume that the solutions of (2.2) are quasi-equi-ulti­
mately bounded. Then, given a 1 ~ 0 and to E R+, there 
exist positive numbers N1 and T = T(to, a) such that 

u(to,O"o)(t) < N1 , t ~ to + T, (4.12) 

whenever 10"010';; a l' Since b(u) - 00 as u - 00, it is 
possible to fine N> 0 such that 

(4.13) 

As before, choosing O"o(s)=a(to+s,E[II<1>o(s)IIJ), we can 
conclude, because of the relations (4.1), (4.12), and 
(4.13), 

E[V(t,x(to,<1>o)(t»J<b(N), t~to+T. 

From this and (He), it is easy to deduce that E[IIx(t)IIJ 
<N for t~ to + T, whenever sup_1'''s,"o E[II<1>o(s)IIJ.;; a. 
This proves (ii). 

The proof of (iii) follows from the proof of (i) and (ii). 
Hence the theorem is proved. 

In Theorem 4.1, the assumption that the trivial 
solution of (2.2) is asymptotically stable, in general, 
may not be valid. In such cases, the following result 
which is based, on the comparison Theorem 3.2, is 
useful to discuss the asymptotic stability of (2.1). We 
state the result in the following. 

Theorem 4.3: Assume that the hypotheses of the 
Theorem 4.1 hold except that (Hs) is replaced by (He)' 
Then: 

(i) equi-stability of the trivial solution of (3.14) im­
plies equi-stability in the mean of the trivial solutions 
of 2.1; 

(ii) equi-quasi-asymptotic stability of trivial solution 
of (3.14) implies equi-'quasi-asymptotic stability in the 
mean of the trivial solution of (2.1); 
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(iii) equi-asymptotic stability of the trivial solution of 
(3.14) implies equi-asymptotic stability in the mean of 
the trivial solution of (2.1). 

Prooj: Let x(to, rpo)(t) be any solution of (2.1). As be­
fore, by the hypotheses (H7), E[V(t,x(to, rpo)(t»] exists 
for t ~ to and hence by Theorem 3.2, we have 

E[V(t, x(to' rpo (t))] .; R(to1f!o}(t) , t ~ to, 

whenever E[V(to + s, rpo(s»],; o'o(s), where R(to, 1f!0)(t) is 
the maximal solution of (3.14). We now follow an argu­
ment similar to the proof of Theorem 4.1 to complete 
the proof of the theorem. 

Also, one could formulate the result corresponding 
to uniform notions by assuming V(t,x) is decrescent and 
the corresponding notion of the comparison equation 
(2.2) or (3.14) is also uniform. 

5. EXAMPLES 

In this section, we shall give some examples to dem­
onstrate the usefulness of our results. 

Example 1: Relative to the system (2.1), assume that 

(a) rp(O)·j(t,rp).;O, 

rp(O)' O'(t, rp).; L(t)(l + J)rp(s>ll"dS) , 

and 

for (t,rp(O),rp)EWXR"XC, 

where I is the identity matrix, 

b (t, rp) = O'(t , rp). rfI"(t, rp), 

(b) rp(0)'j(t,rp)';-ll'llrp(0)11 2 , ll'>0, 

rp(O)O'(t, rp).; L(t) (1 + J.:llrp(s)II"dS) 

and 

'" p'(t) LO 
1;t,,/iJbiJ(t,rp).; p(t) -1" exp(ll's)11rp(s)1I2ds, 

for (t,rp(O),rp)EWXR"XC", where p(t) is a polynomial 
in t. Then taking V(t, x) = IIx112 , we see that 

LV(t, rp(O), rp).; A(t)r V(s + t, rp(s»ds, -.,. 

when (a) holds. The comparison equation is 
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and consequently u=O is stable. Hence, by Theorem 
4.1, it follows that the trivial solution of (2.1) is stable 
in the mean. If on the other hand, (b) holds, we get 

LV(t, rp(O) , rp) 

p,(t) (0 
.; -ll'V(t, rp(O» + P(t) Lr exp(ll's)V(t+s,rp(s»ds 

so that 

P' (t) 10 

u' = -ll'U + p(t) -T exp(ll's)u(t + s)ds 

is the corresponding comparison equation. It is easy 
to see that u;: ° is quasi-asymptotically stable. As a 
result, Theorem (4.3) gives quasi-asymptotic stability 
in the mean of the trivial solution of (2.1). 

Example 2: Consider the stochastic functional differ­
ential equations 

dx = - j(t) x (Odt + F(x(t - '7"»dz(t) , (5.1) 

where '7"~ 0, jE e[R+ ,R+] and FE e[R,R],F satisfies the 
Lipschitz condition with Lipschitz constant K and F(O) 
= 0. Furthermore, assume that 

lim inf(t~t jOj(U)d;;" >~. (5.2) 
t·oo 0 to 'J 

By taking V(t,x)=x2, A(t)=exp[2!Jj(u)du], it is easy to 
see that 

A(t)L V(t, rp(O) , rp) + A' (t)V(t, rp(O».:; K2V(t - '7", x(t - '7"»A(t). 

(5.3) 

The comparison equation is u' = - 2j(t)u + K2u(t - '7"). 

Consequently, U'" ° is asymptotically stable, in view of 
(5.2). Hence, by Theorem 4.3, it follows that the 
trivial solution of (5.1) is asymptotically stable in the 
mean. 

lK. Ito and M. Nisio, J. Math. Kyoto Vniv. 4-1, 1 (1964). 
2V. B. Kolmanovskil, Prohl. Predaci Inform. 5, 59 (1969). 
3V. Lakshmikantham and S. Leela, Differential and Integral 
IneqULllities, Theory and Applications, Vols. I and II (Aca­
demic, New York, 1969). 

4G. S. Ladde, V. Lakshmikantham, and P. T. Liu, "Differen­
tial inequalities and Ito type stochastic differential equa­
tions," Proc. of the Int. Conference on Nonlinear Differential 
and Functional EqULltions, Bruxelles et Louvain, Belgium 
(Harman, Paris, 1973), pp. 611-40. 

51. 1. Gikhmen and A. V. Skorohod, Introduction to the Theory 
of Random Processes (Saunders, Philadelphia, 1969). 



                                                                                                                                    

The evaluation of "Kondo" and other integrals of arbitrary 
range 

Norman Louat 
Department of Physics, The University of Connecticut, Storrs, Connecticut 06268 
(Received 9 October 1973) 

It is pointed out that integrals over arbitrary ranges and indefinite integrals may often be obtained 
very simply by the methods of contour integration. 

By resorting to Fourier transforms Glasser1 has 
evaluated integrals of the form 

fD wn dw 
Inm= (w2+~2)m (eBw+1) 

-D 

(1) 

where n and m are integers. The difficulty overcome by 
Glasser lies in the fact that D is arbitrary. We shall 
show here that such integrals may be evaluated through 
contour integration as a matter of routine. In essence 
this procedure is not new but seems to have been re­
peatedly forgotten and rediscovered. The first reference 
of which the author is aware is in Whittaker and Watson2 

in the form of a problem for the student. Later discus­
sions have been couched in complex terms. Accordingly, 
we shall here present the matter stripped to its essen­
tials and then point out some rather obvious generaliza­
tions which do not appear to have been noted. 

Given the integral 

1= ff(X)dx 

we consider the contour integral 

le= J /(z)ln[(z -b)/(z -a)]dz 

(2) 

(3) 

with a contour which consists of the two lines jOining the 
branch points at z = b, z = a and the circle at infinity. 

Now provided j(z) is a single-valued function in the 
interval of integration, the integrand of Eq. (3) takes 
the values 

[In(x - a)/(x - b) + 7Ti]/(x) 

and 

[In(x - a)/(x - b) -7TiJf(x) 

on the upper and lower lines a-b, respectively. Ac­
cordingly, provided j(z) is single valued everywhere and 
without poles in the interval of integration, we have 

Ie = 27Ti 1 b f(x)dx + 1. /(z)ln[ (z - b)/ z - a] dz 
a r 

= 27Ti x sum of residues of f(z)ln[z-b)/(z-a)] (4) 

where the second integral represents the contribution 
from the great circle r. It may be noted that: (1) This 
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procedure may be generalized immediately to cover in­
tegration over any number of segments. Furthermore, 
the weight accorded to each interval need not be the 
same. This is clear from a consideration of the function 

In[(; =~~r\; =~: f·· .(; =~:tJ· (5) 

(2) The method also lends itself to the evaluation of in­
definite integrals. Thus, e. g., the use of the function 
In[ (z - b)/ (z - a)] with the function to be integrated f(x) 
leads to a result 

I=F(b) -F(a) 

where 

~~) ==f(x). 

To illustrate the method we shall now evaluate the 
generic integral considered by Glasser: 

1== fD (w2 ~ ~2) (eB~w+ 1) • 
-D 

We consider then 

f z 1 z-D 
le== (Z2+~2) (eBz+l) In z+D dz. 

(6) 

(7) 

(8) 

For this function there are simple poles at z == ± i~ and 
at z ==± i(k7T/B) provided B~ *" krr where k is any positive 
odd integer. 

It is clear from inspection that the integral around r 
vanishes. The evaluation of the residues is straight­
forward and we obtain 

I -1 D B~ 4 " k -1 ~B 
==tan ~ tan 2 + 7T Uk odd B2~2 _ k2rr2 tan k1i 

which is the result given by Glasser! 

1M. L. Glasser, J. Math. Phys. 10, 1105 (1969). 
2E. T. Whittaker and G.N. Watson, A Course oj Modern 
Analysis (Cambridge U. P., Cambridge, 1902), p. 122. 
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The unitarity equation for scattering in the absence of spherical 
symmetry 

Michael Tortorella 
Department of Mathematics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211 
(Received 26 December 1973) 

We consider the problem of determining the scattering amplitude from the differential cross section 
at a fixed energy by using the unitarity equation when the scattering potential does not have 
spherical symmetry. We indicate some of the problems peculiar to this case. We prove two existence 
and uniqueness theorems. We give an example of nonuniqueness. 

1. INTRODUCTION 

The purpose of this article is to give an account of 
some of the existence and uniqueness questions which 
arise in connection with the problem of determining the 
scattering amplitude from the differential cross section 
at a fixed energy by using the unitarity condition for 
the scattering of scalar waves in the absence of spheri­
cal symmetry. We take the differential cross section as 
given with infinite accuracy. A forthcoming article will 
discuss the interesting question of how experimental un­
certainties affect the construction of solutions of the 
unitarity equation, both in this case and in the case in 
which there is spherical symmetry. 

The principal results in this article can be summa­
rized as follows. We first show that the additional nec­
essary condition imposed by the absence of spherical 
symmetry leads us naturally to consideration of a set 
of functions which is nowhere dense in the space 
C q:(S XS), the Banach space of continuous complex­
valued functions defined on the compact set S x S, where 
S is the unit sphere in 1R3 , with the usual maximum 
norm. Next we prove two uniqueness theorems for the 
unitarity equation in this case. One of these is quite 
elementary, and has been known to the author for some 
time. The other is a generalization of a theorem given 
by Atkinson, Johnson, and Warnock. 1 We also point 
out a minor error in their proof, and it is easily cor­
rected, as is seen below. Finally, we give an example 
to show that at least one of the hypotheses of this last­
mentioned theorem cannot be dispensed with. 

2. A FEATURE PECULIAR TO THIS CASE 
We shall use the unitarity equation in the form 

41Tlmj(nu n2) = fsj(nu ii)j(n2 , n) dn(n) , (2.1) 

where j is proportional to the scattering amplitude, and 
nu n2 , n are unit vectors in IR3 [see Ref. 2, expression 
(10), or Ref. 3, expression (1)]. We shall suppose that 
there is no spherical symmetry, but that the scattering 
potential has inversion symmetry, so that we have 
j(n2 ,n1 )=j(nU n2) and (2.1) is valid (Ref. 2, part I). As 
usual, we obtain the two equations 

41Tlmj(nu n2) = is[Rej(nu n) Rej(n2, n) 

+Imj(nu n)Imj(n2, ii)] dn, (2.2a) 

0= is[Re f(nu n) Imf(n2 , ii) - Ref(n2, n)Im f(~, n)] dn. 

(2.2b) 
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It is well known that if the potential is spherically sym­
metric, (2.2b) is identically satisfied. However, if the 
potential possesses only inversion symmetry, (2.2b) 
is not, in general, identically satisfied [here the two 
sentences following (2') of ReL 4 are in error], In fact, 
we have the following interesting observation: 

Proposition 2.1: Let 9 ={XE C a:(SXS): 
f sx(nH n)x(n2 , fl) dn is real for every n1 , n2 E S}. Then 9 
is nowhere dense in C a:(S XS). 

Prooj: Let A ={XE C c(SXS): 1m f s x(flu n)x(fl2 ,n)dn 
> 0, for every nu n2 (= S}. Then the boundary of A, aA 
=AnAc, is nowhere dense in Ca:(SXS), and 9 is a 
closed subset of aA, so that 9 is itself nowhere dense 
in C a:(S XS). 

The following not very surprising corollary follows 
immediately. 

Corollary 2.2. The set of solutions of the unitarity 
equation (2.1) is nowhere dense in C a:(SXS), 

Proposition 2. 1 shows that if the potential has only 
inversion symmetry, the set of solutions of (2. 2b) does 
not occupy very much space in C c(S XS). In fact, a no­
where dense set is sometimes called a sieve. 5 This 
presents a problem in that the results we have so far 
for this case all deal with Eq. (2. 2a) only, and Eq. 
(2. 2b) then represents an additional necessary condi­
tion on the solutions spoken of in these results. The 
theorems below then, are uniqueness and construction 
theorems for Eq. (2. 2a) as they stand. If the solutions 
constructed by the iteration procedures also satisfy 
(2.2b), we get the existence of a solution of (2.1) as 
well. However, the set of solutions of (2. 2b) is rather 
sparse. 

3. TWO UNIQUENESS THEOREMS 

For the notation used in the remainder of this article, 
see Sec. 2 of Ref. 4. To solve (2.2a), we seek a fixed 
point of the transformation Iii defined on C IR (S x S) by 

j}J (cp)(nll n2) = arcsin is H(nll n2, n) COS[CP(flu n) 

- cp(n2, n)] dn. 

We introduce the notation M(G) =sup{fsH(n1O n2 ,n) dn: 
nu n2 (= S} and M1 (G) = (21T)-lM(G)3[ 1 - M(G)2 + M(G)4]-1 
xsup{f sG(nvn) dn: n1 E S}. We first make the trivial 
remark that, for (20 2a) to have a solution, it is neces­
sary that f SG(n1' n) dn "'" 41TG(nu n1) for every n1 (= So In 
the spherically symmetric case, the corresponding ob­
servation was made by Newton [Ref. 3, expression (8)]. 

Copyright © 1974 American Institute of Physics 745 
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Lemma 3.1: Let G: SXS- IR+ be continuous, M(G) < 1, 
and let cP be a square-integrable solution of the equa­
tion cP = !IJ(cp). Then 0 <:; cp(nu 112) <:; arcsinM(G) for al­
most every [d20] lil and n2 in S. 

Proof: The proof of this result given by Martin6 for 
continuous solutions in the spherically symmetric case 
is still valid in this more general case. 

The importance of this lemma is that if we restrict 
M(G) to be less than one, we need only look for fixed 
points of /11 in the set D={CPEX: 0";CP(fiU n2) 
<:; arcsin M(G), liu n2 EO S}, where X is the appropriate 
function space. 

Theorem 3.2: Let G: SXS- IR+ be continuous and non­
vanishing, and suppose M(G) < [S-l(m _1)]1/2", O. 6255. 
Then there is a unique continuous solution of the equa­
tion cP =!IJ(cP). The solution is the limit of a sequence of 
successive approximations which converges uniformly 
on SXS. 

Proof: Let X = C R (S x S) and let D be as above. Then 
because M(G) < 1, /11: D- D. Let CPu CP2 F D. From the 
identity cos A - cos B = 2 sin~(A + B) sin~(A - B) follows 
the Lipschitz condition 

11/11 (CP1)-/I1(CP2)11 <:;2M(G)2[1-M(G)2]-1/21Icp1-CP211, 

and then the result follows from the Banach contraction 
mapping prinCiple. 

The next theorem gives other sufficient conditions 
for the existence of a unique solution of Eq. (2.2a). 

Theorem 3.3: Let G: SXS- IR+ be continuous and non­
vanishing, and suppose M(G) < 1 and M1(G) < 1. Then 
there is a unique square-integrable solution of the equa­
tion cP =/11 (cp). The solution is the limit of a sequence 
of successive approximations which converges in the 
norm of L 2(SXS, d20). 

Proof: Let X be the completion of C IR(S XS) in the 
norm 

(3.1) 

X is the Hilbert space of real-valued measurable func­
tions on Sxs which are square-integrable in the mea­
sure Gd20, which is the measure dO x dO on S x S with 
the weight G. Since G> 0, the norm (3.1) is equivalent 
to the usual norm on U(S x s, d2n). Let 

D={CPEX: o <:; cp(liu 112) <:;arcsinM(G) a.e. [d20J}; 

D is a closed convex subset of X, and hence is a com­
plete metric space with the distance induced by the 
norm (3.1). To solve (2. 2a), we seek a fixed point of 

/11 in D. Since M(G) < 1, /11: X - D; in particular, !IJ :D- D. 
Also, at each cP EO D,!IJ has a Gateaux variation 5/11(CP:x) 
which satisfies the following equation: for every x EO X 
and cP E D, 

41TG (1110 li2) cos!IJ (cp )(nu 112) 5/11 (cp ;x)(Jzu 112) 

= fsG(nu n)G(li2, fi) sin[cp(11u n) - CP(li2, n)] 

x [x(112,n) -x(n1,n)]dO. (3.2) 

This is the defining equation for the Gateaux variation 
of /11 at-cp in the direction x. 7 Using (2.2a), (3.2), !IDd 
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the method of Martin (Ref. 6, pp. 137-39), we obtain 
the inequality 

fsxsG(liu n2) 15/11 (cp;x)(lil> 112) 1
2d20 

..; M1 (G) fsxsG(liu 112) I x(l1u fi2) 1
2d20. 

In the language of the norm (3.1), this is 115/11 (cp;x)11 
~M1(G)1/21Ixll for every XE X and cP ED, or II 5/11 (cp;.) II 
..;M1(G)1/2 for every cP E D. Let CPUCP2E D and apply a 
mean value theorem (Ref. 7, theorem 5.4) to obtain the 
estimate 

I 1/11 (CP1) -/I1(CP2) II <:; IIcp1 -CP211 

x sup{ II 5/11 « 1 - t)CP1 + tCP2; .) II: 0 <:; t <:; 1 } 

<:; Ml (G)l /211cp 1 - cP 211. 

By the Banach contraction mapping principle, there is 
then exactly one solution of (2. 2a) in D. But by Lemma 
3.1, because M(G) < 1, all solutions of (2. 2a) are in D, 
so that this solution is the oilly one in all of X, The 
square-integrability of the solution and the convergence 
of the approximations in L2(S x s, d20) follow from the 
equivalence of the norm (3.1) and the usual norm on 
U(SXS,d20). 

Remarks: (1) In the spherically symmetric case, 
f sG(~, Ii) dO is independent of 111 ; and so no "sup" is 
required in the definition of Ml(G), and in this case the 
condition M1 (G) < 1 is the original condition of Martin 
(Ref. 6, expression 31). 

(2) Theorem 3.2 is not included in Theorem 3.3 be­
cause it is presumably possible that M(G) < O. 6255 
while Ml(G) > 1. Of course, in the spherically symmet­
ric case this cannot occur. 

(3) A Significant difference in this case in which no 
spherical symmetry is present is that we cannot guaran­
tee that the solution cP which corresponds to the contin­
uous G is itself continuous. In the spherically symmet­
ric case, an easy approximation argument shows that if 
G is continuous and M( G) < 1, then /11 takes U functions 
onto continuous functions (Anderson, Johnson, and 
Warnock also show this in a different way in Ref. 1, 
Theorem 2). When there is no spherical symmetry, if 
G is continuous and satisfies f sG(nu n) dO <:; 41TjJ.G(nu fill 
for some jJ. < 1 and every liu n2 E S, then!IJ (cp) is at least 
continuous in the forward direction (i. e., on the diag­
onal li2 = n1), because 

(4) The transformation /J1, even in the spherically 
symmetric case, is not Frechet differentiable in the 
space X (or in U[ -1,1] in the spherically symmetric 
case). Thus, the mean value theorem as it appears in 
Dieudonne,8 which is used in Ref. 1, Theorem 2, is not 
applicable. However, this is not at all serious, since, 
as we have seen, /11 has a Gateaux variation (in fact it 
can be shown that !11 has a Gateaux derivature) and there 
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are stronger mean value theorems available than 8, 5.4 
of Dieudonne: for example, the one we used in Theorem 
3.3, or proposition 2.3 of Ref. 9. Also, as indicated 
in remark (1), our Theorem 3.3 includes the spherical­
ly symmetric case as a special case. An excellent dis­
cussion of many of the aspects of differentials in non­
linear analysis is given in Ref, 7. 

4. AN EXAMPLE OF NONUNIQUENESS 

The following example illustrates that the hypothesis 
that G be nonvanishing cannot be relaxed in uniqueness 
theorems such as Theorems 3.2 and 3.3. The idea for 
this example is due to Professor Michael Golomb, and 
the author wishes to express his gratitude to Professor 
Golomb for his help. 

Let 1/J be a real-valued continuous function on S such 
that 1/J assumes both positive and negative values and 
f s I Wi)l2dO =41T. Let 01 E' (0, 1). Put G(l1u 112 ) 

= 011 /211/J(f;) 111/J(112) I and F(l1u 112) = (31/J(111) 1/J(fi2), where {3 
= (01 - (1

2)1/2 + iOi. Then I F I = G and F satisfies (2. 1) 
since I (31 2 =01 and 1/J is real-valued. Now let 1/J1 be con­
structed from 1/J by replacing 1/J(n) -1/J(n) in some 
places in such a way that 1/J1 is continuous. Then 
F 1 (fiu n2) = {31/J1 (n1)1/J1 (fi2) al~ satisfies (2. 1), and IF 11 
=G, but F1 *-F and F1 *- -F. 

Also, we have H(~, n2, fi) = (41T)-1 01 1/21/J(fi)2, and so 
M(G)=0I 1 / 2• Putting p*=sup{I1/J(fi)l: tiES}, we have 
M1 (G) <S 2P*0I 1/2(1 - 01 + 0I 2t1, and both M(G) and M1 (G) 
can be made less than one by choosing 01 small enough, 
Then all the hypotheses of Theorem 3.3 (or Theorem 
3.2) are satisfied, except that G be nonvanishing, and 
we have two (nontrivially different, see Ref, 3, Sec. 2) 
solutions of (2.1). 

From the physical point of view, this example cer­
tainly seems rather contrived. However, it does serve 
to point out a difficulty which arises in treating the 
unitarity equation in a purely mathematical way. In fact, 
the example is all the more useful because it deals di­
rectly with Eq, (2.1), rather than with (2. 2a). 

5. CONCLUSION 

While giving some results for the solution of the uni­
tarity equation for scattering in the absence of spherical 
symmetry when the differential cross section is known, 
we have tried to point out some of the problems which 
arise which are peculiar to this case. The most promi-
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nent of these is that, in this case, there is an additional 
necessary condition on the scattering amplitude, rep­
resented by equation (2, 2b). There is no reason to be­
lieve a priori that a function which satisfies (2,2a) will 
also satisfy (2. 2b) without some further conditions; in 
fact, we have seen (Proposition 2.1) that the set of solu­
tions of (2. 2b) is rather widely distributed in C c(SXS). 
Thus the conditions given in Theorems 3.2 and 3.3 are 
sufficient conditions only for the uniqueness of solutions 
of (2,1) [while they do give existence for (2,2a)]; the 
treatment of the question of existence of solutions of 
(2,1) must also take into account Eq. (2.2b). We do 
know that using these theorems, we cannot expect any 
better conditions for existence of solutions of (2.1); 
however, other methods may yield more promising 
results. 

We have also given an example to show that even under 
fairly restricted assumptions on the differential cross 
section, if this cross section vanishes, Eq. (2.1) may 
have two essentially different solutions. This example 
as given is peculiar to this case in which there is no 
spherical symmetry, for this construction cannot be 
made if the potential is spherically symmetric. 
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The power spectrum of the Mellin transformation with 
applications to scaling of physical quantities 
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The Mellin transform is used to diagonalize the dilation operator in a manner analogous to the use 
of the Fourier transform to diagonalize the translation operator. A power spectrum is also introduced 
for the Mellin transform which is analogous to that used for the Fourier transform. Unlike the case 
for the power spectrum of the Fourier transform where sharp peaks correspond to periodicities in 
tninsla'tion, the peaks in the power spectrum of the Mellin transform correspond to periodicities in 
magnification. A theorem of Wiener-Khinchine type is introduced for the Mellin transform power 
spectrum. It is expected that the new power spectrum will play an important role extracting 
meaningful information from noisy data and will thus be a useful complement to the use of the 
ordinary Fourier power spectrum. 

1. INTRODUCTION 

In Refs. 1 and 2 we introduced the scale-Euclidean 
group in one and three dimensions and showed how 
physical quantities could be expanded in terms of the 
irreducible representations of the group. One could then 
use the expansion to construct correlations between 
physical quantities which are independent of the transla­
tion of the origin of coordinate/?, of the units used in 
measuring the physical quantities, and of the orienta­
tion of the axes (in three dimensions). The expansion 
which was given is a generalization of a Fourier expan­
sion and the Fourier coeffiCients provide a basis for 
diagonalizing the translation operator. One can intro­
duce a power spectrum in the Fourier transform space, 
which is a slight modification of the usual power spec­
trum that has been found so useful in data analYSiS, 
particularly when noise is present. 

One of the elements of the scale-Euclidean group is 
the dilation. One can expand the phySical quantities in 
terms of the irredUCible representations of the dilation 
operator and define a power spectrum in terms of the 
amplitudes. This expansion corresponds to the use of 
the (imaginary) Mellin transform. The power spectrum 
associated with the Fourier transform can be used to 
detect periodicities in the phYSical function, since the 
wavenumbers at which sharp peaks of the spectrum 
occur give the wavelength of such periodicities. By con­
trast, the pOSitions of the peaks in the spectrum asso­
ciated with the Mellin transform give the magnification 
(or compression) which will reproduce features in the 
physical function. We believe that the power spectrum 
associated with the Mellin transform is as important as 
the power spectrum associated with the Fourier trans­
form. The use of both power spectra together appears 
to be a most useful tool in extracting meaningful fea­
tures from data. 

It is the object of the present paper to show the utility 
(theoretically, at least) of the Mellin transform in the 
one-dimensional case. We shall therefore review brief­
ly the expansions of physical quantities in terms of the 
scale-Euclidean group in the one-dimensional case and 
show how the Mellin transform makes its appearance. 
We shall then review properties of the power spectrum 
associated with the Fourier transform and give the 
analogs of those associated with the Mellin transform. 
Finally, we shall derive an analog of the Wiener-
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Khinchine theorem which will greatly simplify the calcu­
lation of the new power spectrum. 

2. THE SCALE-TRANSLATION GROUP. 
EXPANSIONS OF PHYSICAL QUANTITIES IN 
TERMS OF THE IRREDUCIBLE REPRESENTATIONS 

A. The group and its irreducible representations 

We shall concern ourselves with the scale-translation 
group in one dimension which is a subgroup of the scale­
Euclidean group in one dimension. Let us consider a 
one-dimensional coordinate system, in which the coor­
dinate is labelled x. The variable x may be a space 
variable or a time variable. For many applications, the 
interpretation as a time variable is more interesting. 

We label the transformation of the coordinate 

x' =x-a (1) 

T(a). This transformation is called the translation. 

The transformation 

(2) 

is called the scale transformation or dilation and corre­
sponds to a change of scale. The transformation is 
denoted by S(A). The set of transformations form a 
group with the multiplication laws 

T(O)=S(O)=l, T(a)T(b)=T(a +b), 

S(>,)S(f..I.) = S(>. + f..I.), S(A)T(a} = T(eAa) S(A), (3) 

where 1 is the identity transformation. 

The scale-translation group is the abstract group 
whose elements satisfy the multiplication rules (3). In 
Ref. 1 it is shown that irredUCible unitary representa­
tions of the group in a separable Hilbert space are two 
in number. 'The Hilbert space corresponding to one of 
the representations is the space of complex functions 
(j(p)} defined for p > O. The inner product and unitary 
operators are defined by 

-(l1>,j) = fo~ f(l)*(P)j(p} I~ , (4) 

T(a)j(p) = exp(iap}j(p) , S(A)j(P) = j[exp(A)p], (5) 

where the asterisk means complex conjugate and the 
unitary operators are given the same name as the corre­
sponding elements of the transformation and abstract 

Copyright © 1974 American Inst1tute of Phy.sics 748 
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groups. We shall always label the operators this way in 
any representation. 

The second irreducible representation consists of the 
space of functions {f(p)} defined for p <0 with the inner 
product 

(j(1) j)= fO f1)*(p)fip).!!:P..... 
, • _00 Ip 1 

The operators representing the group elements are 
given by Eq. (5). 

(6) 

[It should be mentioned that our results for the 
irreducible representations of the scale -translation 
group in Ref. 1 were anticipated in Ref. 3 in a different 
form and with a different derivation. However, the ex­
pansion of physical quantities in terms of the irreducible 
representations, the definition of correlations, and the 
generalization to three dimensions which are given in 
Refs. 1 and 2 are not in Ref. 3. 1 

B. Physical quantities and their expansion in terms of 
the irreducible representations 

We now consider field quantities or physical quantities 
1J(x). The quantity v might, for example, be a linear 
density or velocity component in one dimension. It will 
have a dimensionality in units of length L. For example, 
if v(x) is a linear density, v(x) - L -1. If v(x) is a veloci­
ty, v(x) -L. If we now regard x as time instead of a dis­
tance, and take v(x) to be an acceleration, v(x) -L -2. 
Generally we shall write as an expression of 
dimensionality, 

v(x)-LN
, 

where N is any real number. 

Under the transformation T(a), v(x) transforms to 
v'(x') which is the same variable measured in the 
transformed frame. Clearly 

v'(x)=v(x+a). 

We shall write Eq. (8) as an operator relation 

T(a)v(x) = v(x + a). 

Similarly under the scale transformation S('\) 

v'(x) = exp(NA)v [exp( - ,\)x] 

which is in operator notation 

S(A)V(X) = exp(NA)v[exp( - A)X]. 

(7) 

(8) 

(9) 

(10) 

(11) 

On constructing the space of functions {v(x)} with the 
same dimensionality N, it is seen that the operators 
T(a) and S(A) are linear operators. Furthermore, they 
satisfy the multiplication laws Eq. (3) for the scale­
translation group. Hence the space {v(x)} provides a 
representation of the scale-translation group for every 
N. 

Let us now assume that the functions v(x) have a 
Fourier transform and that their average is zero, i. e., 

(12) 

That is, we regard v(x) as being measured from a mean 
value. 
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We may then write 

v(x) = (21T)-1/2 1.:00 

Ip 1-<N+llfip) exp(ipx)dp. 

From Eq. (12) it follows that 

lim Ipl-<N+Uf(p)=O. 
Ip 1·0 

It is readily seen that 
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(13) 

(14) 

T(a)v(x) = (21T)-1/2 r:oo 
Ip 1-<N+1 )[T(a) f(p)] exp(ipx) dP, (15) 

S(A)V(X) = (21T)-1/2 1.:00 

Ip 1-<N+1)[S(,\)J(p)] exp(ipx)dp, (16) 

where T(a)fip) and S(,\)fip) are defined in Eq. (5). Thus, 
by rewriting the Fourier amplitudes slightly, we have 
been able to reduce the representation of the group 
operators acting on the physical quantities. In particu­
lar, it is noted that the translation operator is diagonal­
ized. It is also to be noted that the functions fip) are 
dimensionless. 

We shall now introduce an inner product between two 
functions v(l)(x) and v(x) of the set {v(x)}, namely 

(v(1) v) = J- j<l)*(P)fip).!!:P....· 
'-0(> Ip I (17) 

With this inner product, the representation of the opera­
tors acting on {v(x)} is a unitary representation and 
Eqs. (13), (15), and (16) give the reduction of this 
representation to the irreducible unitary representations 
of the group. 

The inner product (v (l) , v) is invariant under the 
transformations of the group, that is, it has the same 
value under the translation of the coordinate Eq. (1) and 
under the change of scale of units Eq. (2). In Ref. 1 we 
defined the correlation between v <1 )(x) and v(x) as being 
the inner product (17). Hence this correlation is in­
variant under the transformations of the group. We 
further defined the translation autocorrelation (T AC) as 
being given by (v, T(a)v) which is closely related to the 
usual autocorrelation except that it is now scale­
invariant. Furthermore, we defined a new type of auto­
correlation called the scale autocorrelation (SAC) by 
(v, S(A)V). The TAC compares a function with itself when 
the function is shifted. The SAC compares a function 
with itself when it is stretched. 

As usual the norm of v(x), denoted by Ilvll, is defined 
by 

Ilvll = [(v, V)]1/2 (18) 

and is an invariant magnitude of the physical quantity. 

It is readily seen that a necessary and sufficient con­
dition that v(x) be real is that 

j( -p) = j*(p) (19) 

in the expansion Eq. (13). 

The power spectrum of v(x) in this representation, 
in which the operator T(a) is diagonal, is defined by 
Ij(p) 12 which is nondimensional. The amount of power 
in the interval a <p < b is 
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3. DIAGONALIZATION OF THE SCALE 
TRANSFORMATION OPERATOR THROUGH THE 
USE OF THE IMAGINARY MELLIN TRANSFORM 

A. Transformation from the space in which T(a) is 
diagonal to the space in which S (A) is diagonal 

For - 00 <s < + 00 and m = ± 1, let us define the com­
plex function G(s, m) by 

G(s, +1)=(27T)-1/2 fo"lpl-iS-lf(P)dP, (20) 

G(s, _1)=(27Ttl / 2 r:lpl-is-1f(P)dP. (21) 

It is readily seen that the inverse of Eqs. (20) and (21) 
are respectively 

j(p)=(27Ttl / 2 J~"lpIISG(s,+l)dS forp>O, (22) 

f(p)=(27T)-1/2 r:"lpl isG(s,-l)ds forp<O. (23) 

These transformations provide another basis for the 
scale-translation group. From Eqs. (22) and (23) it 
follows that 

S(A)f(P) == (27T)-l/2 r: Ip I is[S(A)G(S, + 1) 1 ds, 

for p >0, (24) 

S(A)j(P) == (27T)-l/2 r:"lp I is[S(A)G(S, - 1) lds, 

for P <0, (25) 

where 

S(A)G(S, m) =exp(iAs)G(S, m). (26) 

One also has preservation of the inner product in the 
form 

r:: G(l )*(s, + 1 )G(s, + 1) ds = fa'" f (1 )*(P)f(P) f:, ' 
r:" G(l)*(s, -l)G(s, -l)ds = L~f(l)*(P)f(P) I~' (27) 

The variable m = ± 1 labels the two irreducible repre­
sentations of the group. While the above statements can 
be verified directly, the motivation for the form of the 
transformation will be given in Appendix A, using tech­
niques of Ref. 1. 

The transformations Eqs. (20)-(23) are seen to be 
Mellin transforms with an imaginary argument is (see, 
e. g., Ref. 4). This transformation is related to the 
usual Mellin transform as the Laplace transform is 
related to the Fourier transform. 

B. Expansion of physical quantities in the new basis. 
Power spectra 

By substituting Eqs. (22) and (23) into Eq. (13) we 
obtain the following expansion for v(x): 

We note that Eqs. (28) and (29) are a generalized 
imaginary Mellin transform pair. 

We define the power spectrum with respect to the 
Mellin transform as 
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A necessary and sufficient condition that v(x) be real 
is 

G*(s,l)=G(-s,-l). 

4. SIGNIFICANCE OF PEAKS IN THE POWER 
SPECTRA 

A. Fourier power spectrum 

(31) 

Let us assume that the power spectrum If(P) 1,2 has 
a peak P -k. There is then a contribution to v(x) from 
f(P) in the vicinity of the peak given by 

vk(x) - (2 7T)-l/21 k I -(N.l) f(k) exp( ikx). (32) 

If v(x) is real, f(P) also has a contribution near P --k. 
The sum of the two contributions give 

v
k
(x)-(2/7T)l/2Ikl-(N.l)lf(k)1 cos(kx+ cp), (33) 

where cp is given by f(k)=lf(k)1 exp(icp). For either Eq. 
(32) or Eq. (33). 

(34) 

where n is any integer, positive or negative. Equation 
(34) states that v(x) contains a feature which is invariant 
under translations which are multiples of the wavelength 
A=(27T/k). Of course, this discussion is the familiar 
one for identifying peaks of the power spectrum with 
translationally invariant components. We are reviewing 
the theory because we shall give analogs to it when we 
consider the power spectrum associated with the Mellin 
transform. 

lff(P) were infinitely sharp atp=k, i.e., iff(P) 
were a delta function centered at P = k, the approxima­
tions of Eqs. (32), (33), and (34) would be replaced by 
equalities. However, the peaks have a "line width." The 
approximations become increasingly poor with increas­
ing line width. In particular, one expects the periodici­
ty condition Eq. (34) to become increasingly poor with 
increasing values of In I. We shall characterize the 
degree of approximation by giving a bound such that, if 
I n I does not exceed this bound, the periodicity condition 
of Eq. (34) is satisfied within a prescribed error. 

To obtain this criterion, we shall consider only the 
contribution to v(x) from the peak. We shall thus take 

j(p)=O for p <k - A and for p >k + A, (35) 

v(x) = (27T)-1 ~ r:"(- imx)N-lsr( - N + is)G(s, m) ds. (28) where 2A is the line width (0 <2A < I kl). 

The inverse transformation is 

G(s, m) == (27T)-lr(N - is + 1) r:"(imx)iS-N-l1J(x)dx. (29) 

Equations (28) and (29) are verified in Appendix B. 
From Eqs. (17) and (27) the inner product of V O ) and v 
is 

(30) 
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Let us define the relative error in periodicity by 

E = II[T(27Tn/k) -Il vII / I! v II. 

The error will depend on n and on A. 

From Eqs. (17), (15), and (5), 

II v 112 = Jk.a I f(P) 12~, 
H. Ipi 

(36) 

(37) 
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But by the second mean value theorem of integral calcu­
lus and from Eq. (37) 

II [T(21Tn/k) -/]v 112 =4[sin(1Tn/k)(k +~)]211 v 112 

= 4[sin( 1Tn~/k) ]211 v 11 2, (39) 

where 

-6<~<+6. 

Thus 

E < 2 JT( 6/ I k I) ! n! . (40) 

Thus if 

(41) 

where Eo is a prescribed (positive) limit of error, then 

E <Eo. (42) 

Equations (41) and (42) provide the criterion. 

B. Mellin power spectrum 

Let us assume that the Mellin power transform 
~m 1 G(s, m) 12 has a peak at s = r. Then at least one of 
the functions G(s, + 1) or G(s, -1) also has a peak in 
absolute value near s = r. Without much loss in gener­
ality, let us assume that G(s, + 1) has this peak and that 
G(s, -1) is small. The contribution to v(x) from G(s, + 1) 
near the peak is 

vr(x) - (21T)-1 (- ix)N-irr( - N + ir) G(r, + 1). (43) 

If v(x) is real, G(s, -1) has a peak near - r. 
bution of both peaks is given by 

vr(x) - (1T)-1 A! x! N exp[ - p1Tr/2)] 

where 
xcos[rlog!x! +Np1T/2 +cf>], 

p=sgnx, A=!G(r,+l)r(-N+ir)!, 

and cf> is given by 

G(r, +1)r(-N+ir) =Ae- i ". 

The contri-

(44) 

(44'a) 

(44'b) 

In either case vr(x) exhibits the property 

exp(N21Tn/r)vr [exp( - 21Tn/r)x] = S(21Tn/r)vr(x) -vT(x), 

(45) 

where n is a positive or negative integer. 

The significance of Eq. (45) is that a peak in the 
power spectrum of the Mellin transform gives a contri­
bution to v(x) such that when this feature is stretched 
(for positive n) or compressed (for negative n) by multi­
plying the units by the scale factor exp(21Tn/r) it is 
identical to the original feature. Furthermore, the 
stretching and compressing needed to obtain the original 
feature is periodic. We believe that periodicities in 
scale may be as important as periodicities in transla­
tion, especially where noise is present. Moreover, one 
can set up a theory of noise using the Mellin transform 
in a very similar way to the usual theory in terms of 
the Fourier transform. It seems likely that the use of 
both transforms can lead to better ways of extracting 
meaningful information from a noisy background. 
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Fourier transform. It seems likely that the use of both 
transforms can lead to better ways of extracting mean­
ingful information from a noisy background. 

As in the Fourier power spectrum case, the width of 
the peak in the power spectrum determines the accuracy 
of Eqs. (43), (44), and (45). We can set up an error 
estimate similar to that of Eqs. (41) and (42), To study 
such a peak, let us defines 

G(s,m)=O, for r-6<s <r+6. (46) 

We also define a relative error E as in Eq. (36) but re­
place T(21Tn/k) by S(21Tn/r). Then Eqs. (41) and (42) 
hold with 1 k 1 replaced by 1 rl . 

5. A THEOREM OF WIENER-KHINCHINE TYPE 

The direct way to obtain the new power spectrum 
~ m 1 G(s, m) 12 is to use the Mellin transformation Eq. 
(29). While in principle there is no difficulty in using 
the Mellin transform, the numerical evaluation of such 
a transform has not yet been sufficiently studied to 
enable one to do this easily. We shall show that the 
power spectrum can be obtained using a Fourier trans­
form. Of course, the Fourier transform has been 
studied exhaustively from a numerical point of view and 
therefore offers, for the present, great advantages. 

The scale autocorrelation F(.\) is defined by 

F(.\) = (v, S(.\)v). (47) 

But from Eqs. (5) and (17) 

F(.\) = f:OOj*(p)j[exp(.\)p],~ , (48) 

where f(P) is obtained from v(x) using the somewhat 
generalized Fourier transform which is the inverse of 
Eq. (13): 

j(p) = (21T)-1/ 2!p! IN.l) f:oo 
v(x) exp( - ipx) dx. (49) 

In Refs. 1 and 5 it is noted that if 1 f( p) 1 has sharp 
maxima atp=k i (i=1, 2", .), then IF(.\)I, in general, 
has maxima at .\=.\ij where .\ii=log(k/k). This prop­
erty of F(.\) helps one identify periodicities in v(x) or, 
equivalently, peaks in the Fourier power spectrum. 

On using Eq. (26) and Eq. (30), one obtains another 
expression for F(.\), namely, 

F(.\) = roo (~! G(s, m) !2)exp(i.\s)ds. (50) 
_00 m 

Thus the Mellin power spectrum is the Fourier trans­
form of F(i\): 

~!G(s,m)!2=(21T)-1 J:: F(.\)exp(-i.\s)d.\. (51) 

The substitution of the right-hand side of Eq. (48) 
gives the Mellin power spectrum entirely in terms of 
Fourier transforms. 

Equations (48) and (51) constitute a theorem of the 
Wiener-Khinchine type. 
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APPENDIX A: DERIVATION OF THE TRANS­
FORMATION BETWEEN THE REPRESENTATION 
WHICH DIAGONALIZES THE TRANSMISSION 
AND THAT WHICH DIAGONALIZES THE 
DILATION 

For brevity we shall assume that the reader is 
acquainted with Ref. 1, particularly Sec. 4. References 
to equations therein will be denoted by a prime. 

We consider the space of kets Ip) for p)O and for 
which the spectrum is continuous. Hence the kets 
satisfy the completeness relation Eq. (69)'. 

We recollect that 

Ip) = exp( - i/lD) 11), /l = logp 

from Eqs. (50)', (37)', and (47)'. 

(A1) 

Let the eigenvalues of the Hermitian operator D be 
denoted by the real numbers s and let the corresponding 
eigenkets be denoted by Is). Hence 

(A2) 

Of course, the kets I s) also diagonalize S(;\.). 

S(;\.)ls) =exp(i;\.s) Is). (A2') 

The transformation between the basis which diagonalizes 
the translation operator and that which diagonalizes the 
dilation operator is (sip). But 

(s Ip) =(s I exp(- i/lD) 11) =exp(- i/ls)K(s) 

= exp(- is logp)K(s) =p-iSK(s), (A3) 

where K(s) =(s 11). Now if Is) diagonalizes S(;\'), so does 
[(27T)1/2K*(s)]-1Is). On USing the latter set of kets we 
have 

(s Ip) =(27T)-1/2 p -is. (A4) 

Now from the completeness relation Eq. (69)' 

(sls')=fa~(slp) I~ (pis'). (A4a) 

On using Eq. (A4) and changing the variable of inte­
gration P in a suitable fashion, one finds 

(s Is') = o(s - s'), (A5) 

which is the orthonormality relation between the kets. 

Similarly one finds 

1.:'" (p IS>ds (s Ip') = o(p -p'). (A6) 

Equation (A6) is a completeness relation for the kets 
I s) and is equivalent to the resolution of the identity 

(A7) 

Equations (A6) and (A 7) show that the spectrum of D is 
continuous and extends over the entire real axis. 
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Let us define G(s) as being I q,) in the Is) 
representation: 
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G(s)=(sl<l»· (A8) 

Then from the completeness relation (69)' 

(A9) 

On using Eq. (A4) and (56)' one obtains (in a slightly 
different notation) Eq. (20). Equations (21), (22), and 
(23) are derived Similarly. 

APPENDIX B: THE TRANSFORMATION FROM THE 
PHYSICAL SPACE TO THE SPACE IN WHICH THE 
DILATION OPERATOR IS DIAGONAL 

On substituting Eqs. (22) and (23) into Eq. (13) we 
obtain 

v(x) = (2 7T)-1 ~ fa +'" p-(N +1) exp(imxp) dp 1.:~ p iSG(s, m) ds . 

(B1) 

Interchanging order of integration gives 

v(x) = (27Ttl ~ G(s, m) ds fa+'" pUs-Noll exp{impx} dp. (B2) 

But from Eqs. (4 -1 - 7) and (4 -1 - 8) of Ref. 4 

fa+~p(iS-N-l)exp(impx)dP=r(iS -N)(-imx)N-ls. (B3) 

On substituting Eq. (B3) into Eq. (B2) we obtain Eq. 
(28). However, Eq. (B3) holds, as an expression for 
the integral, only for -1(N(0. For other real values of 
N, Eq. (B3) is to be regarded as an equality in the 
sense of distributions. The proof that Eq. (B3) is an 
equality in the sense of distributions follows standard 
procedures. One multiplies both sides of Eq. (B3) by a 
suitable test function j(x) and integrates with respect 
to x. On differentiating by parts in a suitable fashion 
one proves the result. For the sake of brevity we re­
frain from details. 

Equation (29) is proved as follows: Eq. (49) is sub­
stituted into Eq. (20) and (21) and the order of integra­
tion is interchanged. The use of Eq. (B3) leads to the 
final result. 

lH.E. Moses andA.F. Quesada, Arch. Rat. Mech. Anal. 44, 
217 (1972). 

2H. E. Moses and A. F. Quesada, Arch. Rat. Mech. Anal. 50, 
194 (1973). 

31. Gel'fand and M. Neumark, C.R. (Dokl.) Acad. Sci. USSR 
55, 567 (1947). 

41. N. Sneddon, Use of Integral Transforms (McGraw-Hill, 
New York, 1972). 

5V. Corbin, H. E. Moses, and A. F. Quesada, J. Geoph. Res. 
78, 6199 (1973). 
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The Lie algebra, which was introduced in a previous paper to treat the hypergeometric functions by 
Lie theory techniques, is used to derive generating functions of the hypergeometric functions. Several 
generating functions are obtained from the theory of multiplier representations. Weisner's method is 
also applied, giving another generating function. 

1. INTRODUCTION 

In a previous paper1 six operators forming the Lie 
algebra ~ were introduced, which transform the hyper­
geometric functions among themselves. Therefore these 
operators can be used to treat the hypergeometric func­
tions by Lie theory techniques. This is done in the 
present paper, 

In Sec. 2 the Lie algebra ~ is used to derive gener­
ating functions of the hypergeometric functions. First, 
three generators forming the subalgebra sl(2) are em­
ployed. From the theory of multiplier representations 
of local Lie groups and the matrix elements of the rep­
resentations 2 D(u,mo) and tu of the algebra s1(2), two 
generating functions of the hypergeometric functions are 
derived, Several interesting relations are obtained as 
special cases of them, in which a hypergeometric func­
tion is expanded in a series of hypergeometric functions 
of another variable. 

Subsequently the boost operator in the direction X3 is 
used to derive two more generating functions in a simi­
lar fashion. The matrix elements of this operator cor­
responding to finite rotations were employed, which 
were calculated recently3-6 for both series of unitary 
representations of the Lorentz group7,8, the principal 
series and the supplementary series. In Sec. 3 
Weisner's method9

,lO is applied, and another generating 
function of the hypergeometric functions is derived. 

In Ref. 1 we considered the operators 

o 
L 12 = t at' 

L24=~[ -t(wa~-t:t+a)+f(W-1)a~ + t:t + a)]. 

(1.1) 

[w(t2-1)+1](2w-1) 0 +t2-1~_kw(t2-1)+1 
2t ow 2 at t 

+ (t2 -1)(2w -1) 
a 2t ' 
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(t2 + 1 )(2w - 0) 
+ a 2t 

which satisfy the commutation relations 

[L"v, Lp~] = i(gvpL,,~ + g,,~4p - g"pLv~ -gvAL"P) , 

gu =g22=g33= -g44 = 1. (1. 2) 

Therefore the above operators form the Lie algebra ~ 
in the notation of Cartan. If we write 

42=~' L.3=Mu 41 =~, L,u =Nu L42=~' L43 =Ns, 

the Casimir operators are 

M2 _ N2 = a2 + (k + 1)2 - 1, M. N = - ia~ + 1), 

i. e., the letters a and k determine the eigenvalues of 
the Casimir operators, and therefore characterize the 
irreducible representations of the group generated by 
the operators L"v' 

We defined also in Ref. 1 the operators ~, J±, and H± 
by 

L I2 =J3 , L14 = -~(J' +J-), 

~ = ~(J' - J-), H±= L 23 ±iL23 . 

Equations (1.1) and (1. 3) give 

a 
~= tai' 

J"= -!(w _1)1...+ t~+ a\ t aw at r) 

Which satisfy the commutation relations 

[~, r]==±J±, [J', J"]=2~. 

Therefore the operators ~, J± form the Lie algebra 
sl (2). 

(1. 3) 

(1.4) 

(1. 5) 

It can be shown1 that the operators L"v of Eqs. (1.1) 
transform among themselves the functions I u, m) 
==F(a-u, a+u+l; a-m+1;w) tm , where 
F(a-u, a+ u + 1; a-m + 1;w) is the well-known Gauss 
hypergeometric function. For convenience we introduce 
the functions I u, m)', 

rem -a) rem _ u) F(a-u, a+ u + 1;a- m + 1;w)tm , 

(1. 6) 

Copyright © 1974 American Institute of Physics 753 
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for which we get 

L12 Iu,m)' =mlu,m)', 

rl u,m)' = (m - u) lu,m + lY, 

J-Iu,m)' = - (m +u)/u,m -1)', 

H+I ,\ _ (u -m)O'(k + 1) I + 1\ _ (u + 0"+ l)(u -k) 
u,m;- li(u + 1) u,m I (u + 1)(2u + 1) 

(u- O")(u +k + 1)(u - m)(u -m -1) 
u(2u + 1) 

H-I \- (u +m)O"(k + 1) I 1~ 
u,mj- u(u+l) u,m- '/ 

(u + 0"+ l)(u -k) I ~ 
+ (u + 1 )(2u + 1) u + 1 , m - 1/ (1. 7) 

+ (u - O")(u +k + 1)(u +m)(u+m -1)\ u -1,m-~, 
u(2u + 1) 'I 

I ~ .('mO'(k+l)1 X (U+O'+I)(U-k)1 X 
£.4 u,m/==t u(u+l) u,m/+ (u+l)(2u+1) u+l,m/ 

+ (u-0")(u+k+l)(m 2 -u2 )1 -1 ~). 
u(2u+l) u ,mj 

The states lu,m/ will be used in the next section. 

2. GENERATING FUNCTIONS 

Let us consider the multiplier representation induced 
by the operators~, J', and.r of Eqs. (1.4). We want 
to calculate the expression 

(2.1) 

The complex parameters b', c', and 1"' are related to 
the representation g of SL (2 , c), 

(2.2) 

exp(T'/2)=d-1, b' == -bid, c' == -cd. (2.3) 

The action of the group element eT'.Ja is obtained by 

solving the differential equations 

dt( T') == t(1"') (0) d1"' ,t == t, 

giving 

The action of the group element eb'J' is obtained by 
solving the differential equations2 

dw(b') = _ t(b') (b') 
db' w, 

dt(b') == t 2 (b') dv(b') 
db' , (jjjI 
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(2.4) 

(2.5) 

=-O'l(b')v(b'), w(O)=w, t(O)=t, v(0)=1 (2.6) 

The solutions of the above equations are 

t dt d + bt 
t(b')=--=--, w(b')= (1-b't)w=--w 

1 - b' t d + bt d ' 

(
d+ bt)<1 v(b')= (1- b't)<1= -d- , (2.7) 

where Eqs. (2.3) have been used. Finally, the action of 
the element eC'.J'" is found from the equations 

dw(e') __ w(e')-I, dt(c') __ 1 dv(e') 0" , 
dc' - tee') dc' - '"dC'"= - t(e') v(e ), 

w(O)=w, t(O)=t, v(O)=1. 

Solving the above equations, we get 

w{t-e')+e' 
t(e')=f-e' t+cd, w(e')=--'--'"":"t-'---'--

Therefore, we get 

(2.8) 

wet +cd) -cd 
t 

(2.9) 

(/ [I a +c/t \ 
xf ~d+bt) (a+e t)(w-l)+a], d+bt tJ (2.10) 

The operators ~, J+, and J- form a basis of the com­
plex Lie algebrasl(2). Letfmo'n(w,t), n=O, ~1, '2,"', 
be the basic vectors of the representation12 D(u, mol of 
sl (2) defined for all complex u and mo such that mo ± u 
are not integers and 0 ,,; Re mo < 1. In this representation 
the spectrum of the operator .fa is mo + n, 
n = 0, '1, ~2, •. '. We have 

(2.11) 

where the matrix elements A)n(g) are given by13 

A ( )_ u+m +X~-m -n n_>.r(u+mo+n+l)F(-u- m o-X, -u+mo+n; n-x+l; belad). 
)n g -a 0 0 e r(u+mo+X+l)r(n-X+l) (2.12) 
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We identify 1m (W, t) with the basic vector I u, mo>' of Eq. 
(1.6). Then wOe get from Eqs. (2.10), (2.11), and (2.12) 
if we take n = 0 and introduce new indeces m, /J., and II 
by Il=a-u, lI=a+u+1, m=a-m o+1, 

(d + bt)m-l(a + e/t)u.+v-m r(l - m) 
r(ll-m+1) 

xF{Il, II; m ;(d + bt)[a + e/t)(w -1) +a ]}rm+(u.+v+1)/2 

x r(lI-m + l)r(X -m + 1) 
r(v-m+X+1)r(-X+1)r(ll-m+X+1) 

xF(m -11- X, Il - m + 1; - X + 1; be/ad) 

x F(Il, II; m - X; w)tA- m+(u.+v+1J/2 
(2.13) 

with the restrictions (coming from the fact that the pow­
er series and the hypergeometric series must converge) 

1~1<1, l:tl<l, I (d+bt{(a+e/1w -fJI<1, Iwl<1. 

(2.13') 

In Eq. (2.13) and in all equations which we shall derive 
from it Il, v, and m are arbitrary complex numbers 
such that Il-m, v-m, and m are not integers. 14 In Eq. 
(2.13) the terms corresponding to X= 1, 2, 3, ..• are 
well defined because of the relation 

lim rea, b;e;z) 
c-." r(c) 

a(a + 1) ... (a +n) b (b + l)"'(b +n) 
(n + I)! 

X zn+1F(a +n+ 1,b +n+ l;n + 2;z), 

n=0,1,2,···.(2.14) 

If we define T and y by 

T= e/at, y= be/ad, 

Eqs. (2.13) and (2.13') give 

F( 
" (1 +YT-1)[(1 + T)(W -1) + 1]) 

1l,II,m, 1 
-'V 

(2.15) 

= t T-A r(lI-m + 1)r(A-m + l)r(1l -m + 1) 
A=-OO r(v- m + X + 1)r(- X + l)r(1l - m + A + l)r(1 - m) 

XF(m -V-A, Il - m + 1; -A + l;y)F(Il,II;m -A;W), 

IYI<ITI<I, 1(I+YT-1)[(I+T)W-T]I<11-yl, Iwl<1. 

(2.16) 

Fory=O, Eq. (2.16)gives, 

F[Il, v;m;(1 + T)W - T](1 + T)u.+v-m 

= t TA r(lI-m + l)r(-A -m + 1) 
hO r(lI-m-A+1)r(A+l) 

J. Math. Phys., Vol. 15, No.6, June 1974 

755 

r(/J.-m+1) 
X r(1l -m _ A + l)r(l- m) F(Il, lI;m + X;w), 

171<1, 1(1+7)W-TI<1, Iwl<1. (2.17) 

IfRe (ll-m+l»O, Eq. (2.17) can be written in the 
form 

F[Il, lI;m;(1 + 7) W - 7](1 + 7)U. +V-m 

.. 
= L;r(}t)F(-X, -Ilj -X-m+1jl) 

bO 

XF(Il, vjm + X;w), 

(2. 18) 

Let us set y=X7 and then take the limit T- O. If we 
use Eq. (2.14) and the relation 

r(z)r(1-z)=7T/simrz, (2.19) 

we get from (2. 16) 

F[/J., Vjm; (1 + x) w](1 + x)m-l 

.. 
'" A-m =L.J (_X)A( A )F(/J.,II;m -A;W) 
A.O 

Ixl<l, 1(I+x)wl<l, Iwl<1. (2.20) 

For w' = (1 + T)W, (2.17) becomes 

F(J.L, v;mjw' - 7)(1 + T)V-m=t TAt~m) 
A'O 

x r(-A-m+l)r(/J.-m+l) ( w' ) _ 
r(/J. _ m _ X + 1)r(1 _ m) F\/J., vim + Aj 1 + T (1 + 7) u., 

ITI<1, IW'-TI<1, Iw'l< 11+TI. (2.21) 

Using the relation2 

F( /J. !I'm + A'~)(1 + T)-U. 
" '1+7 

.. 
~ ,,+p-l 

=L.J(-T)p( P )F(/J.+p !l'm+X'w') 
paO ", , 

(2.22) 

we get 

F(J.L, lI;m;w' _ 7)(1 + 7)V-m=I; t (-1)PTP+JII- m\ (/J. + p - 1) 
A.O P.o \ A ) \ p 

X r(-A-m+1)r(/J.-m+1) 
r(/J. -m -A + l)r(l-m) 

XF(/J. + p, vjm + A;W') 

= t t (-1)p TP+A(~m)(u.~-l) 
bOp.o 

x F( - A, - J.L; - A - m + 1 j 1) 

XF(J.L + p, v;m + AjW'), 

17 1<1, 1w'-TI<I, Iw'l< 11+71, 1w'1<1. (2.23) 
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The second equality above hold if Re (Il - m + 1) > O. 
Similarly, hypergeometric functions of the form 
F[Il,v;m;(I+ljJ)z-r] and F[Il,v;m; z/(1 + ljJ)-r] can be 
expressed in terms of hypergeometric functions with 
argument z. 

For m = - u + n, n == 0, 1 , 2, .. " 2u * 0, 1, 2, ... , the 
states I u, - u + n)' of Eq. (1. 6) are the basic states of 
a local multiplier representation of the type t u in 
Miller's notation,2 induced by the operators ~, J± of 
Eqs. (1.4). In this case we have 

(2.24) 

where2 

B ( )_ Ad2u-n n_A r (n+l)F(-,\, -2u+n;n-,\+I; be/ad) 
An g -a e r(,\+I)r(n-A+l) , 

A,n ~ O. (2.25) 

Proceeding as in the case of the representation D(u, m o), 
we get 

( 
. . (1 +yr-1)[(1 + T)(W -1) + 1]) 

F Il, V,II-n, 1 -y 

x (1 + yr- 1)V-n-1 (1 + r)It+n(I_y)-It 

-'ET"-A r(n+l)r(A-II+1)r(n+Il-II+1) 
- AcO r (A + 1) r (n - A + 1) r (,\ + Il - II + 1) r (n - II + 1) 

x F( - A, n + Il - II + l;n - A + l;y) 

XF(Il, 11;11- A;W), 

Iyl< Ir l<l, 1(I+yr-1)[(I+T)w-r]l< Il-yl, Iwl<1. 

(2 0 26) 

The condition 2u * 0,1,2, .. 0 is now translated into 
11- Il * 1,2,3, 0 •• and is imposed to (2.26) and to all 
equations derived from it. If we write y == xr and take 
the limit r- 0, we get from (2.26) 

F[Il, 11;11 - n ;(1 + x) w](1 + x)V-n+l 

.. 
== ~ (_ X)A-n(A A.::." n)F(Il, 11;11 - A ;W) 

X=n 

~ X v"n"l . 
=uX ( A )F(Il,II,II-n-,\,w), 

1.=0 

Ixl<l, 1(I+x)wl<l, Iwl<1. 

For y = 0 (2.26) gives 

F[Il, 1I;II-n;(1 + r)w - r](1 + T)It+n 

_ t T"_A(~)lr(1l +n - II + l)r(A -II + 1) 
-1.=0 I r ('\+Il-II+1)r(n-II+1) 

XF(Il, 11;11- A;W), 

I r 1< 1, I (1 + T) W - r I < 1, I W I < 1, 

(2.27) 

(2.28) 

which, ifRe(ll+n-II+1»0, A-II+1*0, -1, -2,"', 
can be written in the form 
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F[Il, 1I;II-n;(1 + r)w - r](1 + T)It+n 

=I; T"-A(~)F(A -n, - Il;A - II + 1 ;1) 
1.=0 

XF(Il, 11;11- ,\;w), 

I r 1 < 1, 1 (1 + r) w - r 1 < 1, 1 w 1 < 1. (2.29) 

We shall also consider the multiplier representation 
induced by the operator L 34 , whose matrix elements are 
known. In the case of the physical Lorentz group the ro­
tation in the X3 - x4 plane generated by this operator, 
corresponds to an accelaration, or boost, in the direc­
tion x 3 • The action of the group element esL34 is obtained 
from the solution of the equations 

dt(s) = i t (s) 
ds ' 

dW(s) .[ -a;-= 2z w(s) -1]w(s), 

dll(s) . dS'== z[2(a-k)w(s) +k - a]lI(s) , (2.30) 

t(O)=t, w(O)=w, 11(0)=1. 

Solving the above system of differential equations, we 
get 

t(s)=te is , 

w(s)= w/[w - e2iS (w -1)], 

lI(s)=eiCcr-k)s/[w _e2is (w _1)]cr-k. 

The matrix elements of the boost operator in the di­
rection X3 corresponding to finite rotations, have been 
calculated in the canonical basis lu,m;a,k)o If we denote 
this operator by Fs, we gee· 8 

Fslu,m;a,k} 

_ i ( (u 2 
- m 2 )(u 2 

- a")[u 2 
- (k + 1)2]) 1/2 

- u2(4u 2 - 1) 

) 
\ ima(k+l) I \ 

x u-l,m;a,k/ - u(u+l) u,m;a,k/ 

_ .( [(u + 1)2 _m2][(u + 1)2 _ a"][(u+ 1)2_ (}? + 1)2J)I/2 
Z (u+l)2[4(u+l)2-1] 

xl u +l,m;a,k)' (2.32) 

Comparing the above expression with the last of Eqs. 
(1. 7), we get 

F3=-L34 • (2.33) 

Let us define the operators L
ltv 

by 

(2.34) 

If m is the eigenvalue of L 12' the eigenvalue of L 12 is . 
-m. The basic functions lu,m;a,k) in the canonical ba­
sis corresponding to generators L

ltv 
are obtained from 

expressions (1· 6) by the replacement m - - m, apart 
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for a normalization, i. e. , 

lu,m;O',k) C!: lu, -mY. (2.35), 

To find the normalization we make in the last of Eqs. 
(1.7), the substitutions L34 - - L34 , and m - - m and 
compare with Eq. (2.32). In this way we find 

I 
. ~-( r(u+0'+1)r(u-k)r(u+m+1) +1.\1/ 2 

u,m,O',kj - r(u-0'+1)r(u+k+2)r(u-m+1) (u 2)j 

r( - m - u) \ )' _ I :\ 
X r(-m-O') u, -m =N",m u, -mj (2.36) 

The matrix elements of the boost operator F3 , corre­
sponding to finite rotations, i, e., the expressions 15 

(u' ,m' ;0', k I e 1aF3
1 u, m;O',k):; D~;:,u'm.(a), 

have been calculated before3
-

6 in the case of unitary 
representations of the Lorentz group, because of their 
physical interest. The unitary and, therefore, infinite-
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classified into the following two series7
,8: 

(a) The principal series for which we have in our no­
tation: 

O'=O,~, 1, "', k + 1: pure imaginary, 

U=O', 0'+1, 0'+2, "', m=-u, -u+1, ·",u-1,u. 

(b) The supplementary series for which we have 

0'= 0, 0 ~ k + 1 ~ 1, 

u=O,~,l,···, m=-u,-u+1,···,u-1,u. 

(2.38) 

(2.39) 

In the case of the principal series the expression for 
D~;:'u'm,(a) can be obtained, for example, from the ex­
pression D}::' JV (E) of Ref. 3 by the replacements 

(2.40) 

d_l_' m_e_ns_i_o_n_a_l_r_e_p_r_e_se_n_t_a_h_' o_n_s_o_f_th_e_L_o_r_e_n_tz_g_ro_u_p_a_r_e_---l1 We get for T= E-
4 

r (u' + k + 2)r(u _ k))1/2 
x r(u + m + l)r(u' - 0'+ l)r(u' + 0'+ l)r(u' - m + 1):r(u' + m + 1) r(u' -k)r(u + k + 2) 

( ~( l)d+d' r(u+u'-d-d'-m-O'+1) 
x d,d' - r(d+1)r(d'+1)r(u-m-d+1)r(u'-m-d'+1)r(O'+m+d+1)r(O'+m+d'+1) 

x r(d+d' +m + 0'+ 1) F(u -k d+d' +m + 0'+ l'u +u' +2'1- T)T(2d+m+a-k)/~ 
r(u-O'-d+1)r(u'-O'-d'+1) ' " "J' (2.41) 

where the relation 

F(a, b;c;z) = (1 - z)-bF(c - a, b;c; z/(z -1)), (2.42) 

was used. The above expression coincides with the 
corresponding expression of Strom's paper, 5 for a prop­
er choice of a phase. 

From (2.37) we get 

e-iaLS4lu m'O' k)= ~ Dak • • (a)lu' m"O' k) 
, " U't m' urn, u m " , 

or using Eq. (2.36) 

e-laL34lu _mY. = ~ Dak (a)Nu',m' I u' -m'\ , I u',m' um,u'm' ~,m ' / • 
(2.44) 

The left-hand side of the above equation is easily ob­
tained from Eqs. (1. 6) and (2.31). We get 

x F (O'-u,O'+u+1;O'+m+1; 2( 1)-) rm. (2.45) 
w-eaw-

Therefore, for T=e-2a , Eqs. (1.6), (2.36), (2.41), 
(2.44), and (2.45) give the generating function 
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x ' ,. . r(u-m+l)r(u'+m+1) 
F(O'-u ,O'+u +1,O'+m+1,w) r(u+u'+2) 

x [6 (_l)d+d'(u - 0')( U' + a ) 
d,d' d u' -m -d' 

x (d + d' ~ a + m) (u + u' - a - m - d - d') 
d u-m-d 

x F(u - k, d + d' + a + m + l;u + u' + 2; 1 - T) T dJ ' 

(2.46) 

where the range of the parameters a, k, u, and mare 
given in (2.38). 

The matrix elements of the finite rotation e iaF3 in the 
case of the supplementary series of unitary representa­
tions of the Lorentz group have been calculated in Ref. 
6. In this case a= 0 and the expression for the matrix 
elements are Simpler that the corresponding expres-
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sions of the previous case. The matrix elements in our 
notation are obtained from those of Ref. 6 by the 
replacements 

l - u, l' - u', n - m, S - - k - 1. 

Since 0,;; S ,;; 1 we have 

1,;; -k';; 2. 

We get for the supplementary series 

Ii' I ) _ (l)u+u' °m,m' 
I um,u'm' \a - - r(u + u' + 2) 

(2.47) 

(2.48) 

[ 
, (r(u'+k+2)r(-k) ) 

X (2u+l)(2u +1) r(k+2)r(u'-k) (l-ou',o)+ou',o 

( 
r(u-k)r(k+2) \ 

X r(_k)r(u+k+2)(1-0u,o)+ou,Oj 

X r(u +m + l)r(u' +m + 0J V2 

r(u -m + l)r(u' - m + 1) 

X[ 6 (_l)d+d'(U - m\( u' -m) 
d,d' d j d' 

x r(u + l)r(u' + l)r(u +u' -m -d -d' + l)r(m +d+d' + 1) 
r(u - d + l)r(u' - d' + l)r(m + d + l)r(m + d' + 1) 

XF(u -k,m+d+d' + l;u +u' + 2, 1- T)T(2d+m-k)/2J ' 

(2.49) 

where again T=e-2a• 

From Eqs. (2.36), (2.44), (2.45), and (2.49), we get 

F( -u,u+l;m+l;l+(~~l)W) 
x[l + (T-OW]k= t (_1)u+u'(2u' + l)F(-u' ,u' + l;m + l;w) 

u'=o 

x r (u'+m+l)r(u-m+l)[6 (_l)d+d'(U)( u' ) 
r(u+u'+2) d,d' d u'-m-d' 

x (d+d', +m\ (u +u' -m -d -d') 
d j u-m-d 

XF(u -k,d+d' +m + l;u +u' + 2;1- T)T d
] , 

(2.50) 

where the range of the parameters k, U, and m are given 
in (2.39). 

3. WEISNER'S METHOD 

Relations involving the hypergeometric functions can 
be derived by applying Weisner's9,lO method. The meth­
od in general is the following: If C is the Casimir oper­
ator of a group G with generators L,.v and CE its eigen­
value, we consider the simultaneous partial differential 
equations 

J. Math. Phys., Vol. 15, No.6, June 1974 

758 

The coefficients rILv and ro are arbitrary constants. (Of 
course we cannot have r,.v = 0 for all /.J. and II, ro'* O. ) If 
S is an element of the group G, since [C, S] = 0 we get 
from the above equations 

(3.2) 

Given Q the operators of the form SQS-l constitute its 
conjugate class. Equations (3.2) imply that it is suffi­
cient to consider only one operator from each class. 
Each solution Sf of Eqs. (3.2) is a linear combination 
with constant coefficients of the solutions of equation 
(C -CE)f= O. 

In our case let us consider the operators ~, J+, J-. 
We have 

and we get 

eb'J+ec'J-(A3~ - m)e-c'J-e-b'J+= A3 (- c' b,2 - b')J+ + A3C' J_ 

+A3(2b'c' +l)~-m. 

(3.3) 

(3.4) 

Therefore we find that Q = rl~ + r2 J+ + r3 J.. + ro is a con­
jugate of 

(i) A3~ - m if r1
2 + 4r2r3 '* 0, 

(ii) A.J+-(3 (orA_J..-Y) ifr1
2+4r2r3=0. 

(3.5) 

(3.6) 

The ratios m/A3 and (3/A+ (or Y/AJ are not important and 
we may choose 

(3.7) 

We shall apply Weisner's method for case (ii), i. e., 
we shall consider the simultaneous partial differential 
equations 

( 
a2 a2 

[C -u(u + l)]g(w, t) = w(w -1) aw2 + t awat 

+ (a+ 1)(2w -1) a~ + a(a+ 1) - u(u + l~g(w, t)= o. 

The solution of Eq. (3.8) is 

g(w, t)= tah(wt) , 

(3.9) 

(3.10) 

where h is an arbitrary function of wt. Substituting 
g(w, t) of Eq. (3.10) into Eq. (3.9) the function h is cal­
culated. In this way we find that the solutions of the 
simultaneous Eq. (3.8) and (3.9) are 

(3.11) 

We get for c,*O 
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(3.12) 

Therefore, 

(1 + :t Y+u[ (1 + :t ) W _ IJ u-cr Pc2u 

= t h).F(a-u, a+ u + l;a+u - A + l;w)t).-u, 
).=0 

(3.13) 

which comes from the fact that the left-hand Side must 
be a linear combination of functions of the form 
F(a-u,a+u+l;a-m+l;w)tm• It follows from the 
series expansion of the left-hand side of Eq. (3.13) that 
m must be of the form m=A-u where A=O, 1,2, •. o. 

To calculate the coefficients h). we put w = 0 in Eq. 
(3.13). We get then 

(3.14) 

Therefore, 

h).=(_I)u-ac2U(a:u)(~y , (3.15) 

and, for at/c=s, Eq. (3.13) becomes 

~ (<7+u) = LJ F(a - u, a+u + 1;<7+ u - A + l;w)s\ 
).=0 A 

I s I < 1, I (1 + s) w I < 1, I w I < 1, (3. 16) 

which can also be written in the form 

~ (b 1) =6 - F(a b'b - A:W)S). 
),=0 A " , , 
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I s 1< 1, I (1 + s) w I < 1, I wi < 1. (3.17) 

Therefore the expression [1- (1 +s)w]-a(1 +S)b-l is a 
generating function of the hypergeometric functions of 
the form F(a, b;b - A;W). The solution g(w, t) = w-u-cr-lru-l 
gives again Eq. (3.16) with u replaced by - u-1. 
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The optical equivalence theorem relating c -number and q -number formulations of quantum optics is 
rigorously extended to cover various unbounded operators. and in particular those operators that 
directly yield counting rates. 

1. INTRODUCTION 

The optical equivalence theorem has enjoyed a wide 
application in quantum optics since its introduction by 
Sudarshan1 and subsequent development. 2 This theorem 
uses the "diagonal" coherent state representation for the 
density operator p, which, for a single degree of free­
dom system, may be formally expressed as 

p==7T-
1 jcp(z)Iz)(zld2z , (1) 

where d 2z;;;, dRezdImz and the integration is over the en­
tire complex plane. The coherent state I z) 
==exp(atz -z*a)IO), where a and at are conventional an­
nihilation and creation operators with a I z) == z I z). Al­
though cp(z) is a generalized function for a general den­
sity matrix P we may always find an approximating 
density matrix for which 'I' (z) E S(R2). 2 More specifical­
ly, for a general p a sequence PM exists, with the rep­
resentation (1) and 'I' M(Z) E S(R2), such that lip - PM11 1- 0, 
1. e., p M- P in trace class norm. Consequently, for an 
arbitrary bounded operator B, 

(B);;;, Tr(Bp) ==lim Tr(BpM) 
M_oo 

=lim 7T-1 j cpM(Z)(Z IBlz)d2z, 
M_oo 

where convergence is ensured since 

1 Tr{B(p -PM») I.;: II B 1111 p - PM 11 1-0. 

Indeed convergence is uniform for that class of B with 
operator norm II B II.;: c < 00, c fixed. 

Although this form of the optical equivalence theorem 
covers a number of important cases (see Ref. 2, pp. 
190-192), there has been some concern3 since it does 
not deal with certain unbounded operators, especially 
those that determine photon counting rates. For a single 
normal mode the counting rates are given, up to an in­
essential factor, by 

Tr(atmamp) , (2) 

which in a formal sense may be expressed as 

n-1 j 'I' (z) I Z 12md2z • 

While it is physically plausible that such moments exist, 
it is by no means true that every density matrix p has 
finite counting rates, and thus any proposed extension of 
the optical equivalence theorem to unbounded operators 
cannot apply to an arbitrary p. A convenient and physi­
cally reasonable subclass of density matrices are those 
for which ellN p is in trace class for some /3 > 0, where 
N == at a is the number operator. For each such density 
matrix the moments (2) exist and we seek to calculate 
them as the limit of a sequence of means based on den-
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sity operators PJ/ admitting a diagonal representation 
with 'I'M E S(R2). Specifically we have proved the 
following: 

Theorem I: Let p be a density operator such that 
eBN p is in trace class for some /3 > O. Then there is a 
sequence of functions 

'1'.\# E 5 (R2) 

such that for the trace class operators 

PM;;;' ~ f cpM(Z) 1 z)(z 1 d2z 

the following properties hold: 

(i) IIp-pJ/1I1-O asM-oo; 

(ii) for all operators T for which Te-llNand e-BN /2Te-BN12 

are both bounded 

Tr(TpJ/)_Tr(Tp) 
M-'" 

uniformly on any subset of T for which 

Ile-BN / 2 Te-BN/ 2 11 .;: c < 0:, c fixed; 

(iii) the approximate density operator PM gives rise to 
the representation 

Application to counting rates 

Suppose we deal with a density matrix P that fulfills 
the condition that eBN p is in trace class for some /3 > O. 
For 

the two conditions on T are the same, and 

II Te- BN lI==max(nl/(n-m)l)e-lIn, 
n 

which is finite for all m. Thus Theorem I assures us 
that a sequence of functions 'I' M(Z) ES(R2) exists such 
that, for all m, 

Tr(atmamp) == lim 7T-1 j cpM(Z) I z 12,"~Z , 
M-" 

which is the desired result. 

2. PROOF OF THEOREM 

We note first that eBNpEBl (=trace class operators) 
for p a density operator implies that 

(3) 

a fact we establish below in Lemma 2. As such we may 
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approximate Ps in trace class norm by trace class 
operators 

P!t')= ~ f d2Zcp~M)(z)lz)(~1 (4) 

where cP Jf" ) E S (R2) for all M. 2 We next introduce a sup­
port-controlling function S(x) which is unity for x <s 0, 
vanishes for x;.1 and falls smoothly in between such as 

S(x) ==exp[- (1_X)-2 e-x -2] , O<sx <s 1. 

We next define weight functions of compact support by 

CPS.M(z)=s(lz 1 -rM)cps(M)(Z)E S(R2) , 

and associated density operators 

PB,M = ~ f cP S.M(Z) 1 z)(z 1 d2z , 

choosing r M < 00 so that (cf. Lemma 1 below) 

II PS.M - p~M) III <s II p~M) - Ps Ill' 

Finally, we introduce 

PM = e-BN /2 pS•Me-BN /2 

(5) 

(6) 

(7) 

(8) 

which evidently is again in trace class. Making use of 
the basic fact that 

e- BN /21 z,) == e-1/2 (l-e-S) I .. 121 e-S/ 2 z,) (9) 

and a change of variables e-S / 2z'_z, readily leads to the 
diagonal representation 

PM==~ f CPM(z)lz)(zld2z (10) 

where 

cP M (z) == eSe- <eB..l) I~ 12 cP S.M( eS/2z) ES(R2) • 

Indeed this function has compact support within the 
circle I z I <s e-S/ 2 (rM + 1) < 00. 

The operators PM constructed above constitute the 
desired approximating sequence and we now turn to 
establishing the properties listed in the statement of the 
Theorem. For property (i) we let E> ° and choose M 
such that 

IIp:t)-PBlll<~' 

Then, in addition, from (7), 

II p~M) -PB,M III < ~E, 

so that we have the estimate 

II PM - pill == II e -BN /2(PB.M - pS>e-BN /2111 

<s II e-BN /211211 PB,M - PB III 

<s II PB,M - p(f) III +!I pJM) - PB III 

<~E +~E==C 

Since E was arbitrary, PM- P in trace class. 

For property (ii) we first note that eOlN PM is a bounded 
operator for any complex (Y. since CPM(Z) has compact 
support. Because 

eotN PM == eoN e (""l)N PM' 

it follows that e OlN PM is in trace class being the product 
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of a trace class operator and a bounded operator. Thus 
we are assured that 

and 

are in trace class using the fact that trace class opera­
tors form a two-sided ideal of the algebra of all bounded 
operators. 4 

The trace of such operators may be computed in an 
arbitrary basis, such as the number operator eigen­
state I n). For TPM we find 

Tr(TpM) ==t (n 1 TPM 1 n) 
"=0 

== t (n 1 e-BN /2 Te-BN /2 eBN /2pMeBN /21 n) 
"=0 

== Tr(e-aN /2 Te-aN/2Pa.M)' 

and Similarly with the index M omitted. As a result 

1 Tr(TpM) - Tr(Tp) 1 == 1 Tr(e-BN /2Te- BN /2(pS,M - PB» 1 

<s II e-BN /2Te- BN /21111 Pa.M - Palll 

which goes to zero as M - 00 uniformly for all T with 
II e-BN /2Te- BN /211 <s c < 00. 

For (iii) we observe that 

Tr(TpM) == Tr(e-SN /2Te- BN /2 pS•M) , 

while the diagonal representation (6) for Pa,M leads t02 

Tr(e-BN /2Te-BN /2p ) B,M 

== ~ f d2z'cp B,M(Z')(Z' 1 e-BN /2 Te-BN /21 Z'). 

Use of (9), coupled with the same change of variables, 
establishes that 

completing the proof of the Theorem. 

lemmas and additional remarks 

In order to justify the statement in (7) we appeal to 

Lemma 1: Let cp(z) ES(R2) and 

CPR(Z) =s( Iz I-R)CP(z) ES(R2). 

Then 

converges to Aoo in trace class norm. 

Proof: Consider the expression 

<lA =Aoo -AR == ~ f cp~(z) 1 z)(z 1 ~z, 

where the integrand 

cp~(z) = [1 - S( 1 z I-R)]CP(z) E S(R2) 
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vanishes for I Z I ~ R. The operator ~A E B1 and fulfills 
the condition 

I(I/JI~II/J>I~ (I/JIMII/J> 

for all II/J>, where 1iA is nonnegative and given by 

M=; !ICfJR(z)llz>(zld2Z. 

The positive and negative, Hermitian and skew-Hermiti­
an parts of ~A may each be so bounded as well leading 
to 

II ~A 111 ~411 Mill 

=~ L: f ICfJ~(z)ll(zln>12~z 
7T n 

=;f ICfJR(Z)I~z 
I.I~R 

which evidently vanishes when R- 00, as desired. 

The required property given in (3) is established by 

Lemma 2: Let p be a density operator such that eBN p 
E Bl for some {3 > 0. Then 

eBN /2peBN /2 E Bl • 

Proof: We may write 
~ 

p= 6akll/Jk>(l/Jkl , 
k=O 

with 

ak '" 0, L: ak = 1 

and {II/Jk>} an orthonormal basis. Let I={i: a i *o}. Then 
for all i E I 

II/J l> E R(p) C D(eBN) C D (eBN /2) • 

To evaluate the trace of eBN pEB1 we may use any basis,4 
e. g., the basis {llh)}. Then 

Tr(eBN p) = t L: al(l/Jk I eBN II/JI>(I/JI II/Jk> 
k=O lEI 

= L: al(1/J1 I eBN II/JI> , 
lEI 

which clearly converges absolutely. Let 

Pn = L: ai II/JI>(I/JI I 
lEI 
I"n 

and I X> E D(eBN /2). Then 

eBN /2PneBN /21 X) = eBN /2 IPr al (I/Jl I eBN /21 X) II/JI) 
I"'n 

= L: al(CfJllx)ICfJ i >, 
lEI 
lEn 

where I CfJ I) = eBN /21I/JI>. Consequently, 

pB = eBN /2p eBN /2 C L: a I CfJ > (CfJ .1 E B 
n n lEI I I • 1 

I"'n 

being an operator of finite rank. These operators and 
their differences are semidefinite so trace norms equal 
traces. 4 For m > n> no(e), ' 
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II p~ - p~ 111 = Tr(p~ - p~) 

= L: al(CfJIICfJ I) 
iEI 

n< iE;m 

= L: al ( I/JI I eBN II/JI) < e 
lEI 

n(iErn 

because of the absolute convergence of Tr(eBN pl. 4 We 
conclude that there exists 

limp~=limeBN/2pneBN/2= L:a ICfJ )(CfJ IEBI • 
n- ~ n- ~ IE I I I I 
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Does this limit agree with eBN /2pe BN /2? Let I X) E D(eBN /2) 
and introduce 

18n) = PneBN /21 X> E D(eBN /2) • 

It follows that 

s-lim 18n) = peBN /21 X) = 18), 

since we can estimate 

1118n)-18)11=II(Pn- p)eBN /
2 Ix)1I 

~ II Pn -p 11111 eBN /2Ix) II. 

By a similar estimate it follows that 

s-limeBN /218n>=( L: al ICfJ 1)(CfJ i I) I X). 
lEI 

Since eBN /2 is a closed operator, 

s -limeBN /218 n) = eBN /2S -lim 18 n) 

= eBN /218) 

= eBN /2peBN /21 X) • 

Consequently, 

establishing the desired result. 

Remark 1: The preceding proof makes no special use 
of the fact that N is the number operator. Consequently, 
it follows, for any density operator p, if A2p E Bl then 
ApA E Bl for an arbitrary self -adjoint operator A", 1. 
Indeed it is a trivial extension to allow p to be a general 
element of Bu which in turn, under the stated condi­
tions, implies that pA2EBl" 

Remark 2: While only one condition on p is necessary, 
the two conditions imposed on T are not redundant as 
may be seen in the following examples: 

(a) Let 

T=t In) e2&1(2nl. 
"=0 

Then 
~ 

Te- BN = L: In> (2n I (bounded), 
n=O 

e-BN /2Te- BN /2 = t I n>e&1 /2 (2n 1 (unbounded). 
n=O 

(b) Let 
~ 

T = L: 12n)e3Bn/2(n I. 
"=0 
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Then 
.. 

Te-aN = L; 12n)eBn / 2(nl (unbounded), 
n=O 

.. 
e-aN /2Te- aN /2 = L; 12n) (n I (bounded). 

n=O 
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In classical and in quantum mechanics physical variables play a dual role as observables and as 
generators of infinitesimal transformations in the invariance groups. We show that if the Lie algebra 
of generators is central simple. the observable-generator duality restricts the structure of the algebra 
of observables to two cases: a commutative. associative algebra as in classical mechanics. or a central 
simple special Jordan algebra as in quantum mechanics. 

I. INTRODUCTION 

It is a peculiar feature of both classical and quantum 
mechanics that the physical variables of these theories 
playa dual role as observables and as generators of 
infinitesimal transformations in the invariance groups. 
(For example, one and the same variable plays the role 
of an observable, called the energy, and of a generator, 
called the Hamiltonian). The fundamental Significance 
of this pointwise identification of two sets of conceptual­
ly different objects manifests itself in the description 
of the measurement process. l In fact, the observable­
generator duality is at the root of the Bohr-Heisenberg 
principle of equivalence between definability and mea­
surability in physics, a principle which has played a 
fundamental role in the discussions of the foundations of 
quantum mechanics. 2 

In this paper we study the identification of observa­
bles and generators from an algebraic point of view. 3 

Each of the sets of observables and generators is an 
algebra, and the observable-generator duality mani­
fests itself as a map from the space of observables to 
the space of generators. This map interrelates the two 
algebras, imposing restrictions on their structures. 
Our purpose is to investigate these restrictions. 

In Sec. II we construct an abstract algebraic struc­
ture that has the observable-generator duality as a 
fundamental property. We show that such a structure is 
a system {fI, 7', Oi }, where H is a linear space over a 
field J, equipped with two algebraic products, 7' and Oi, 
such that the product Oi is a Lie product and its distri­
bution law with respect to the product 7' is the deriva­
tion rule. The duality map is the canonical projection 
of the Lie algebra {H, Oi} onto its algebra of inner 
derivations. 

In Sec. III we investigate the important class of struc­
tures {fI, 7', Oi} for which the kernel of the duality map 
is minimal, i. e., {Or or the field J, and the image of 
this map is a central simple Lie algebra. Since objects 
of this type first appeared in physics in Hamilton's 
formulation of classical mechanics, we call such struc­
tures Hamilton algebras. 

One sees that if {H, 7', Oi} is a Hamilton algebra, and if 
7' = a + 1T, where the products a and 1T are, respectively, 
the symmetric and antisymmetric parts of the product 
7', then the structures {H, a, Oi} and {H, 1T, Oi} are also 
Hamilton algebras. 

We show that there exists no nondegenerate antisym­
metric Hamilton algebra {H, 1T, Oi}. We further prove 
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that in symmetric Hamilton algebras {fI, a. Oi}, there is 
a relation between the association properties of the 
products a and Oi. Specifically, according to this asso­
ciation relation the associator with respect to the 
product a is proportional to the corresponding asso­
ciator with respect to the product Oi, the proportionality 
constant being an element of the field of scalars, J. If 
this constant vanishes, we call the structure {H, a, Oi} a 
classical Hamilton algebra. Thus, in a classical Hamil­
ton algebra the substructure {j-;, a} is an associative and 
commutative algebra. If the proportionality constant in 
the association relation does not vanish, we call the 
structure {H,a, Oi} a quantum Hamilton algebra. We 
show that in a quantum Hamilton algebra the substruc­
ture {H, a} is a central simple special Jordan algebra. 

II. ALGEBRAS WITH DUALITY 

In the standard formulation of classical mechanics the 
observables are real functions on a phase space and the 
product of observables is the commutative and associa­
tive product of these functions. In the standard formula­
tion of quantum mechanics the observables are self­
adjoint operators on a Hilbert space and the product of 
observables is the commutative, but not associative 
Hermitian product (i. e., the anticommutator) of these 
operators. 

In addition to the commutative and associative pro­
duct of functions, the space of classical physical vari­
ables is equipped with a second bilinear operator, the 
Poisson bracket {, }, which is a Lie product. For every 
classical physical variable j(p,q), the symbol {t, } 
represents a linear operator which arts on the algebra 
of observables and produces in that ~lgebra an infini-
tesimal canonical transformation: . 

h(p, q) - h(p, q) +E' {j, h}(P,q), 

where E is an infinitesimal real parameter. Similarly, 
in addition to the Hermitian product, the space of self­
adjoint operators of quantum mechanics is equipped with 
a second bilinear operation, the commutator [, 1Iih', 
which is a Lie product. For every quantum physical 
variable A, the symbol [A, l! in represents a linear 
operator which acts on the algebra of observables and 
produces in that algebra an infinitesimal unitary 
transformation: 

B - B +E 0 [A, B II in 
Thus, in both theories, each variable plays a dual 

role as an observable and as a generator of a transfor­
mation belonging to the invariance group of the theory. 
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We shall now construct an abstract algebraic struc­
ture in which the observable-generator duality is in­
corporated. As a first step, we give a formal definition 
of this duality. Let {H, 7'} be an algebra, L e. , H is a 
linear space over a field J, and 7' is the symbol for the 
product in H: 

7': H0H-H. 

For our present purpose it is unnecessary to specify the 
field of scalars J. Of course, the scalars of the alge­
bras of observables in classical and quantum mechanics 
are the real numbers. Let C' denote the associative 
algebra of linear operators acting on the linear space 
H, and let C ~ be the subset of C I consisting of the in­
finitesimal automorphisms of the algebra {H, 7'}. Every 
element of the set C~ has the form l' + ED I, where l' is 
the identity operator, and D I some linear operator, both 
belonging to C '. The automorphism condition reads 

(I' +ED')(f7' g) = «(I' +ED')f) 7'«/' +ED')g) 

where f, ... , EH. This implies 

D'{f7' g) = (D'thg + f7'(D 'g), 

i. e., the operator D' is a derivation in the algebra 
{H,7'}. The setiJ I, j) I C C' , of derivations in {H, 7'} is a 
Lie algebra {iJ " [, ]} with the commutator as Lie 
product. 

If we think of the linear space H as the space of physi­
cal variables, and of the algebra {H, 7'} as the algebra of 
observables, then the observable-generator duality is 
a requirement that every element of the linear space H, 
i. e., every physical variable, in addition to being an 
element of the algebra {H, 7'}, L e., an observable, also 
be able to uniquely define an infinitesimal automorphism 
of the algebra {H, 7'}. Thus, to every element ofH there 
is associated a unique element of the derivation algebra 
{O ,[, J}, i. e., a generator of an infinitesimal automor­
phism. In other words, the observable-generator 
duality amounts to the existence of a map 

cp' :H-/)'. 

The map cp', which shall be called the duality map, is 
to be a fundamental structure of the mathematical object 
we are constructing. This means that the other struc­
tures of the object must be compatible with it, and that 
the object must be so constructed that the duality map 
is "natural," i. e., that no choices have to be made in 
order to exhibit it. 

To bring out the structural conditions which the duali­
ty map cp' imposes on the system consisting of the alge­
bras {H, 7'} and {O', [, n, we separate the operator 
structure from the algebraic structure of the setj) I. 
Let C be a linear space isomorphic with C I, and y be 
a map 

defined by the requirement that for every operator U' 
E C', and the corresponding vector U E C, the identity 
U'f= UdlyfEH should hold for every fEH. In short, U' 
=Uy. Further, letucc denote the abstract vector 
space which corresponds to the space iJ I of derivations. 
A Lie product 11 is now defined iniJ by the requirement 
that the Lie algebras {iJ, Il} and {iJ " [, n be isomorphic. 
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Specifically, the product 11 inL) is related to the commu­
tator inL) I by the identity 

(Ull V)yf = [Uy, Vy 1f = Uy(Vy f) - Vy(Uy j} (1 ) 

for all U, VE/) andfEH. We shall denote by cp the map 
from H into iJ corresponding to the duality map cp', and 
by B the image space of cp, L e. , B = cp(H). The elements 
of B will be denoted by the letters F, G, H, ... where 
F=cp{f) for fEH, etc. 

Every element ofL) generates two infinitesimal auto­
morphisms, one in the algebra {H, 7'} via the map y, and 
one in the Lie algebra {iJ, Il} itself via the product 11. 
Clearly, for the map cp to be compatible with the other 
structures, its image space B mus.t be invariant with 
respect to the infinitesimal automorphisms generated 
by elements ofB itself, Le., BIlBr;;;:,B. Hence, {B,Il} 
is a Lie subalgebra of the derivation algebra {iJ, Il}. 

The duality map cp induces a new algebraic product, 
a, in its domain space via the diagram 

which is equivalent to the identity 

fag=Fyg. (2) 

Thus, the two linear operators onH, f a and Fy=cp(/Jy 
are identical: 

fa = Fy (3) 

The condition that the product a be preserved by the 
infinitesimal transformations in H generated by the 
operators Hy, HEB, reads 

Hy{f ag) = (Hyf)ag + f a(H y g). 

With identity (3), this relation becomes 

ha (f a g) = (ha/Jag + f a (hag) (4) 

From relation (3) one obtains, for the commutator, the 
expression 

[Hy, Fy k= [ha,fa] g= ha{fag) - fa(hag) 

which, with Eq. (4), yields 

[ha, fa 1 = (ha/Ja. 

The antisymmetry of the commutator implies the same 
property for the product a: 

fah = -haf. (5) 

The antisymmetry condition (5) and the derivation rule 
(4) yield the Jacobi identity 

fa(gah) +ga(ha/J +ha{fag) =0. (6) 

Hence, the algebra {H, a} is a Lie algebra. 

The diagram shows that (Ker cp)alt' = {O}. Thus, Kercp 
r;;;:,(., where (. is the center of the algebra {It', a}. This 
further implies the condition ByKercp = {O}. One also 
sees that the image spaces of the linear maps y and a 
coincide, i. e., Ima = Imy. 

The duality map also induces a product, v, in its 
image space B via the diagram 
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which is equivalent to the identity 

cp(Fyg) = FIlG. (7) 

This diagram is possible only if By Kercp ~ Kercp, bu~ 
since the previous diagram required By Kercp = {O}, no 
new condition is being imposed. One sees that the image 
of the induced map II cOincides with the image space of 
the composite map cpoy, Le., Imll=cp (Imy). 

Identities (2) and (7) yield the relation 

cp{fag) = cp(Fyg) = FIIG. 

Thus, the diagram 

is commutative, L e., the algebra {B, II} is a homomor­
phic image of the Lie algebra {H, a} under the duality 
map cpo Consequently, Ker cp is an ideal in {H, a} and 
{B, II} is isomorphic to the Lie algebra {H, a}/Kercp. 

From the previous identities one obtains the relations 

[ja, ga] = (fag) a = (cp( fag»y = (FIIG)y, 

[ja,ga] = [Fy, Gy] = (F/J.G)y, 

which imply FIIG=F/J.G for all F, GEB, i.e., the pro­
ducts II and /J. are identical. 

The set H a of operators fa is the algebra of inner 
derivations of the Lie algebra {H, a}. It is isomorphic 
to the quotient algebra {H, a}lC. Since, due to relation 
(3), all operators in the set By are inner derivations 
in {H, a}, one has BY~Ha. On the other hand, Kercp 
~(; implies 

{H, a}/( ~{N, a}/Kercp, 

L e., H a is isomorphic with a subalgebra of {B, /J.}, so 
that By:2 H a. Thus, Kercp =C, L e., the kernel of the 
duality map is the center of the algebra {H, a}. In other 
words, the duality map is the canonical projection of 
the Lie algebra {H, a} onto its algebra of inner 
derivations. 

In summary, the system consisting of an algebra 
{x, T} a subalgebra {B', [, ]} of the algebra of deriva­
tions in {N, T}, and a duality map of H onto B', is 
equivalent to an algebra {H, T, a} with two products such 
that the distribution law of the Lie product Q with re­
spect to the product T is the derivation rule, and the Lie 
algebraHa of inner derivations in {H, a} is isomorphic 
to the Lie algebra {B', [, ]}. 

I". HAMILTON ALGEBRAS 

Having shown that a structure with duality is equiva­
lent to an algebraic system with two products {H, T, a}, 
we now investigate the restrictions that are imposed on 
the product T and the Lie product Q by the conditions 
that they exist in a common underlying space and be 
related by the derivation rule. We do not study this 
question for general algebras {H, T, a}, but restrict 
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ourselves to the family of algebras {N, T, a} for which 
the kernel of the duality map is minimal, and its image 
is a central simple Lie algebra. We call such two­
product systems Hamilton algebras. 

Definition: A Hamilton algebra {N, T, a} is a linear 
space H over a field], equipped with two bilinear oper­
ations: a product T and a Lie product a, satisfying the 
following conditions (where f, g, h, ••• E H): 

(1) Lie conditions: 

fag= -gat 

{fag)ah +(gah)af+(haf)ag=O. 

(2) Derivation condition: 

(8) 

(9) 

ja(grh) = (fag)rh + gr( fah). (10) 

(3) Minimality condition: The center ( of the Lie 
algebra {N, a} is minimal, L e., (; =]e if the algebra 
{H, T} has a unit element e, and ( = {O} if {H, T} has no 
unit element. 

(4) Simplicity condition: The Lie algebra H a"" {H, a}/ 
( is central simple. That is, (a) H a is simple, L e., if 
;; is an ideal inHa, then either;; ={O} or Jj =Ha; (b) 
any algebra obtained from H a by extension of the base 
field J is simple. 

This definition of a Hamilton algebra is purely alge­
braic. If H is a topological linear space and {H, a} a 
topological Lie algebra, the corresponding definition of 
a topological Hamilton algebra imposes itself, but we 
do not consider it in this paper. 

If {N, a} is a central simple Lie algebra, the struc­
ture {N,ra, a}, where rE], is a Hamilton algebra. 
Such a Hamilton algebra shall be called degenerate, or 
trivial if r=O. 

Let {N, T, a} be a Hamilton algebra. Since the linear 
operators fa, fEH, are derivations with respect to the 
product T, they are also derivations with respect to the 
opposite product T' defined by the identity gr'h = hTg, 
and hence, by linearity, they are derivations with re­
spect to the symmetric and antisymmetric parts of T 

defined by the relations 

0'=(T+T')/2, 1T=(T-T')/2. 

In other words, if {N, T, a} is a Hamilton algebra, so 
are the structures {H, 0', a} and {N, 1T , a}, which shall be 
called, respectively, symmetric and antisymmetric 
Hamilton algebras. Since an algebra {N, 1T} with 1T anti­
symmetric has no unit, the algebras {N, a} and H a are 
isomorphic in an antisymmetric Hamilton algebra. 

In investigating the association properties of the pro­
duct T we shall need the concept of the associator. The 
associator Lf,g,h] of the product T inH is a linear map 

defined by the identity 

[j,g,h] = (fTg)Th - fT{gTh). 

It "measures" the deviation from associativity of the 
product T. One verifies that if the product T is either 
symmetric, i. e., T = 0', or antisymmetric, T = 1T, the 
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associator is antisymmetric in its exterior variables, 
i. e. , 

[(,g, h) = - [h,g,j]. 

Furthermore, if T = a or T = 1T, the associator satisfies 
the identity 

[(,hag,g] + [h,jag, g] =0. 

For T = a, identity (11) is obtained by expanding each 
term of the identity 

(fak) a(gag) + (gag) a(fah) = 0 

by means of the derivation rule (10). For T= 1T, it is 
obtained in a similar manner from the identity 

(f1Tg) a(g1Th) + (g1Th) a(f1Tg) = O. 

We shall now show that relation (11) leads to the 
following: 

(11) 

Lemma: Let {H, T, a} be a symmetric or antisymmet­
ric Hamilton algebra. Then there exists in H a product 

p: H0H-H 

such that 

jpg= -gpj, 

ja(gph) = (fag)ph + gp(fa h), 

gp(fah) = [j, g, h]. 

(12) 

(13) 

(14) 

Prooj: For any gEH let Rg denote the right multiplica­
tion operator defined by the identity Rgj = jag. Relation 
(11) implies [k,jag,g] =0 for every kEkerRg" Thus, the 
kernel of the linear map A: H - H defined by A 
=[, jag,g] contains KerRg • This guaranties the exis­
tence of a map B:H- H such thatA=BoR", Le., 

[h, (ag,g]=B(hag). 

Since the associator in this relation is linear in the 
variable jag, while the right-hand side is linear in hag, 
one can introduce a new map, M g , defined by the identity 

Mg(hag, jag) = [h, jag,g]. 

It follows from relation (11) that the map 

Mg: (Hag) 0 (Hag)-H 

is antisymmetric. 

We shall now prove that there exists a map M: H 

(15) 

0H -H such that, for every gE H, the map Mg is a 
restriction of the map M. First, we note that, for any 
given gEH, there is an extension of Mg to a map whose 
domain isH0H. Such an extension of Mg shall also be 
denoted by Mg, and hence, from now on, Mg: H 0 H - H. 
In substituting tgfor g, where tE), in relation (15), 
one verifies that the map Mg is the same for all points 
belonging to the same ray through the point g in H, L e. , 
M tg = Mg' By linearity, substitution of tg + k for g in 
relation (15), t being a variable over) and k an arbi­
trary element of H, now yields the equation 

t 2{M./hag, jag) - Mg+k/ t(hag, jag)} + t{[h, jag, k] 

+ [h, jak,g] -Mtg+k(hag,fak) -Mtg+k(hak,Jag)} 

+ {Mk(hak, jak) -Mtg+k(hak, jak)}=O. 
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Since this relation must be satisfied for all values of t, 
the coefficients must vanish. The vanishing of the first 
coefficient implies Mg =Mg+k/ t. Since k is arbitrary and 
does not appear in the arguments of these maps, the 
indices g and g + kit are independently arbitrary pOints 
of H and it follows that Mg does not depend on g. Thus, 
there is indeed only one map M:H0 H-H. The vanish­
ing of the third coefficient yields the same result. The 
vanishing of the second coefficient implies the identity 

[h, jag, k] -M(hak, jag) 

= - [h, jak,g] +M(hag, jak). 

In the anti symmetric case, T= 1T, the product a is onto. 
One can thus write jag = m EH, and conSider m as an 
arbitrary point. The left-hand Side of the above identity 
is then linear in m, while the right-hand side is not a 
function of this variable. This implies the vanishing of 
both Sides, L e. , 

M(hak, m) = [h, m, kJ. 
By writing the antisymmetric bilinear map M in the pro­
duct symbolism one obtains relation (14). In the sym­
metric case, T=a, the product a may be into, and the 
domain of the variable m may be only the complement 
of the a-center C in H. In this case, one can extend the 
domain of the map M from H 0 H"" where H '" = H aH is 
the image space of a, to H 0 H by setting M(h ak, m) = 0 
if m E(. The derivation relation (13) is obtained by 
applying the derivation law (10), with T = a or T = 1T, to 
relation (14) in which the associator is first replaced 
by its definition. This completes the proof of the lemma. 

We next investigate the two cases, T = 1T and T = a, 
separately. 

The antisymmetric case 

Let {H, a} be a central Simple Lie algebra and let IT 
denote the set of all possible products 1T on H for which 
{H, 1T, a} is an antisymmetric Hamilton algebra. Since 
every 1TE IT is a linear map, 1T: H0 H- H, and since the 
derivation rule (10) is linear, the set IT is a linear 
space. The origin of the space IT corresponds to the 
trivial Hamilton algebra {H, 0, a}, while the existence of 
the degenerate algebra {H, a, a} implies a E IT. Further­
more, according to the previous lemma, for every 1TE IT 
there exists an element p E IT defined by relation (14). 

It is easy to see that all maps 1T E IT, except the origin 
1T = 0, are onto. For any 1T E IT, let H. denote its image 
space. Obviously, since H 1TH • ~ H T> the space H. is an 
ideal in the algebra {H, 1T}. The derivation rule (10) 
implies 

HaH.~ HT> 

L e. , H. is an ideal in the algebra {H, a}. Since {H, a} 
is simple, it follows that either H.={O}, L e., 1T is the 
zero map, orH.=H, Le., 1Tisonto. 

Consider now relation (14), which, written full, reads 

(f1Tg)1Th - f1T(g1Th) = gp(fah). (16) 

By subtracting from this identity its two cyclic trans­
forms and using the derivation rule (13), one obtains 
the relation 

2g 1T(h1Tf) =gp(fah) + ga(fph). (17) 
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Let J). be an ideal of the algebra {H, 1T} and let g be 
a point in this ideal. Relation (16) then implies that 
Hpfj.=5) .. Le., 5). is also a p-ideaL With this result, 
relation (17) then implies that 5) • is also an a-ideal. 
Hence, all algebras {H, 1T}, 1T E II and 1T * 0, are simple. 
We can now prove the following: 

Theorem: There are no nondegenerate anti symmetric 
Hamilton algebras. 

Prool: Since a E II (corresponding to the degenerate 
Hamilton algebra {H, a, a}), the linear space II is at 
least one -dimensional. The theorem states that it is 
exactly one-dimensional. We shall prove this by deriv­
ing a contradiction from the assumption dim II > 1. 

ConSider a linear basis in II consisting of the linearly 
independent points a and 1T i , iE I, where I is an index 
set. Every point 1T E II is then of the form 1T = 1T' + sa, 
where s is in] and 1T' E II has no a component, L e. , 
1T' is of the form 

the coefficients ri being in}. Since the map p corre­
sponding to 1T is also in II, as proved earlier, a set of 
coeffiCients, ai=ai(r,s), b=b(r,s), functions of ri, s, 
exists such that 

p=~ a i 1T; +ba. 
i 

By substituting these expressions into relation (17), one 
obtains 

2g1T'(h 1T' I) = gp'(fah) + ga(fp'h) , (18) 

where 

p'=L.(ai +2sri )1Ti +(b +s2)a. 
J 

Since g1T'(h1T'/) is independent of the variable s, p' must 
also be independent of s, which implies 

a1(r, s) =ai(r, 0) - 2sri for all j E I, 

b(r, s) = b(r, 0) _S2. 

Furthermore, since g1T'(h1T'/) is a bilinear function of 
the coefficients ri, identity (18) implies that p' must 
also be such a function, i. e. , 

ai(r, 0) =~ P{krir, 
s, k 

where P{k' Qik are some constant coeffiCients. Thus 

a1(r, s) = L) P{k rirk - 2sri , 
i,k 

ConSider now the following system of quadratic 
equations: 

L) P{k rirk - 2sri = 0, 
i,k 

Since there are as many unknowns r, s, as equations, 
the fundamental theorem of algebra guaranties the 
existence of solutions for ri, s. These solutions are in 
general in the algebraic closure of]. Let rJ, So be a 
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set of solutions, and 1To = L:i r~1Ti +soa the corresponding 
product 1T. The equation L: i riri = 1 prevents the vanish­
ing of all coefficients ri, and hence 1To can not be degen­
erate or trivial. Since ai(ro,so) =0, the product p 
corresponding to 1To is proportional to a, say p = - boa. 
Equation (17) then implies 

(19) 

The coefficient bo cannot vanish, since this would imply 
1To = O. Since gah can be an arbitrary element k of H, 
identity (19) implies that g1Toh is a linear function of 
gah: 

g1Toh =L(gah) (20) 

where L: H - H. The same relation further implies the 
following identity involving L and a only: 

L(ja(Lk») =bofak, (21) 

I and k being arbitrary elements of H. From the deriva­
tion condition, 

ja(g1Toh) = (fag) 1Toh + g 1To(fah) , 

one gets the identity 

ja(Lk) = L(fak) 

which, substituted into relation (21), yields 

L 2(jak) =bojak. 

(22) 

Since the point jak can be chosen arbitrarily, one has 

(23) 

where I is the identity map in H. Relation (23) implies 
that the linear space H is a direct sum of the two eigen­
spaces of the operator L, i. e. , H = H.Ef7 H _. In H., 
L =fbol, and in H _, L = - {bol. Identity (22) implies 
that the pOints k and jak must belong to the same eigen­
space for all j E H, i. e. , H a H. c. H. and H a H _ c. H-. 
Hence, the eigenspaces H. and H _ are ideals in the 
algebra {H, a}. Since the algebra {H, a} is central sim­
pIe, this implies that H. and H _ are either {O} or H. 
Thus, there can be only one eigenspace. In other words, 
the operator L is a multiple of the identity, which im­
plies that 1To is degenerate. This contradicts the pre­
vious conclUSion that it is not. Hence, II is one-dimen­
sional. This completes the proof of the theorem. 

The symmetric case 

Let {H, a, a} be a symmetric Hamilton algebra. 
According to relation (14), the product a satisfies the 
identity 

(fag)ah - la(gah) = gp(fah) , (24) 

where p is an antisymmetric product with respect to 
which the product a is a derivation. One verifies that 
the associator of a symmetric product satisfies the 
identity 

[/,g,h] +[g,h,j] +[h,j,g]=O. 

By substituting into this identity Eq. (24), one obtains 
the relation 

gp(jah) + hp(ga j) + jp(h ag) = 0 

which, with the derivation rule of a with respect to p, 
yields 



                                                                                                                                    

769 E. Grgin and A. Petersen: Observables and generators 

jp(hag) = ja(hpg). 

This relation implies that hpg is a linear function of 
hag, and by arguments similar to those used in proving 
relation (23) one shows that the product p is propor­
tional to a. Hence, relation (24) reads 

[j,g, h] =agot(ja, h) (25) 

where a EJ. We shall call this identity the association 
relation. Using the Jacobi identity, one can also write 
the association relation in the form 

[j,g, h],,=a[j,g, h]a' (26) 

One sees that in a Hamilton algebra {H, a, a} the prop­
erties of the product a depend crucially on whether the 
constant a is zero or different from zero. If a =0, we 
shall say that the Hamilton algebra is classical. In a 
classical Hamilton algebra, the algebra {H, a} is both 
associative and commutative. A symmetric Hamilton 
algebra for which a * ° shall be called a quantum Hamil­
ton algebra. It follows from the association relation that 
in a quantum Hamilton algebra the product a satisfies 
the identity [j2, g,jl = 0. This identity, together with 
the symmetry of a, defines a so-called Jordan algebra. 
A Jordan algebra whose product can !>e expressed as 
the anticommutator of an associative product is called 
a special Jordan algebra. In order to check whether the 
Jordan algebra {H, a} is special, we consider a product 
/3=a +ba, and require [j,g,hJa=O, which implies the 
relation 

(27) 

Comparison of relations (27) and (26) shows that the 
product (:3= a + Fa a is associative. Hence, in a quan­
tum Hamilton algebra {H,a, a}, the algebra {H,a} is a 
special Jordan algebra. Let f)" be an ideal in the algebra 
{H,a}, and letgE/J". The association relation (25), 
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with a * 0, implies that f)" is also an a-ideal. Hence, 
in a quantum Hamilton algebra {H, a, a}, the algebra 
{H, a} is a central simple special Jordan algebra. Since 
a simple special Jordan algebra has a unit element e, 
the center C of the algebra {H, a} in a quantum Hamilton 
algebra {N, a, a} is Je. 

In quantum mechanics, the base field J is the field R 
of real numbers, the linear space H is the space of 
Hermitian operators on a Hilbert space, and the -special 
Jordan algebra {H, a} is the algebra of these operators 
under the Hermitian product. The associative product 
(:3 is the product of operators on the Hilbert space, and 
the product a is the commutator divided by r-rti. Thus, 
the constant a is related to the quantum of action, fi 
E R, by the equation a = (1[/2)2. 
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Continuum bound states (CBS) are known to appear in the spectra of some nonlocal scattering 
equations. We give a simple derivation of the presence of these states consistent with the requirement 
that such states occur for zeros of the Fredholm determinant. Examination of the form of the 
nonlocal potential necessary to the generation of a CBS shows that CBS solutions appear only when 
the potential has the effect of cancelling the Green's function in the kernel of the integral equation. 
Several examples from the literature are cited to demonstrate this characteristic feature of CBS. 

1. INTRODUCTION 

Nonlocal potentials have been the subject of consid­
erable investigation since their introduction into the nu­
clear problem by Yamaguchi. 1 The work of Feshbach2 

and of Perey and Buck3 has been important in extending 
the concept of the nonlocal potential to the nucleon­
nucleus interaction. It was pointed out by Gourdin and 
Martin4,5 that one feature of the separable nonlocal po­
tential is the possibility of wavefunctions at positive 
energy which behave asymptotically like bound states. 
These states have been studied by various authors6-9 
who have labeled them positive energy bound states, 
positive energy degenerate states, spurious bound 
states, or continuum bound states (CBS). In this paper 
we demonstrate the occurrence of CBS solutions in a 
particularly simple manner. We then show that such 
solutions can be generated only by nonlocal potentials 
which have the property of cancelling the effect of the 
Green's function in the scattering equation. 

2. CONTINUUM BOUND STATES 

Consider the integral equation which defines the phys­
ical solutions to the scattering equation 

ZP*(k, r) = sin(kr) + 10""10"" G*(k, r, r')V(r', s)ZP*(k, s) ds dr' 

and the associated homogeneous equation 

X*(k, r) = fa'" 10"" G*(k, r, r')V(r', s)x"(k, s) ds dr', 

where 

G*(k, r, r') = - (11k) exp(±ikr» sin(krd 

for both k2> 0 and k 2 < O. 

(1) 

(2) 

(3) 

It is well known from Fredholm theory that if (2) has 
a solution for some value of k, then the complete solu­
tion to (1) at that value of k will include an arbitrary 
amount of the solution to (2). By using (2) and (3), we 
can find an expression for the asymptotic form of the 
homogeneous solution: 

X"(k r) __ exp(±ikr) 1'" f"'sin(kr')V(r' s)X"(k s)dsdr'. 
'r~"" k 0 Jo " 

(4) 

In general, therefore, we would expect positive energy 
solutions to (2) (i. e., k real) to oscillate at infinity 
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while negative energy solutions (k imaginary) would de­
cay like exp(- (r), where (2= - k2> O. However, we are 
interested in the special condition in which both (1) and 
(2) have solutions for the same real value of k. In this 
case, we can further examine Eq. (4) by extension of a 
procedure used by Martin. 5 

Multiply (1) by X"(k, t)V(r, t) and integrate t and rover 
(0,00). Similarly, multiply (2) by ZP"(k, f) V(t, r) and inte­
grate rand t over (0,00). The results are 

10"" 1o""zp*(k,r)x"(k, t)V(r, t) dtdr 

= fa"" fa"" sin(kr)x"(k, t)V(r, f) dtdr 

+ fa'" 10"" fa'" fo"'G"(k,r,r')V(r', s)ZP"(k,s)X"(k, t) 

x V(r, f)dsdr' dfdr, (5) 

10"" fo"0 X"(k, r)zp*(k, t) V(t, r) drdt 

= 10'" fa"" fa"" fa'" G"(k, r, r')V(r', s)X"(k, s)ZP"(k, f) 

x V(t, r) ds dr' drdt. (6) 

Subtracting (6) from (5) and making use of the assumed 
symmetry of V(r, r') and of G*(k, r, r') leaves 

10'" 10'" sin(kr)x"(k, t)V(r, t) drdt= 0, 

With (7), the asymptotic form in Eq. (4) becomes 

x"(k, r) r:::- O. 

(7) 

(8) 

This means we can have positive energy solutions of (2) 
which vanish at infinity. These are continuum bound 
states (CBS). 

The homogeneous equation (2) will have solutions for 
some real value of k only when the Fredholm determi­
nant of the integral equations (1) and (2) vanishes for 
that value of k. In that case, the solution of the inhomo­
geneous equation (1) contains an arbitrary amount of the 
solutions to (2). We have demonstrated that these solu­
tions to (2) at that value of k will vanish at infinity even 
for k2> 0 and are therefore CBS solutions, 

3. CANCELLATION OF THE GREEN'S FUNCTION 

We wish to examine the form which a potential must 
have in order to produce CBS. Local potentials cannot 
produce CBS10 because the Fredholm determinant for 
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the scattering equation cannot vanish for real values of 
k, except possibly at k = 0; the derivation of the asymp­
totic behavior of CBS which was given in the previous 
section fails for a local potential. However, nonlocality 
in a potential is not sufficient to guarantee CBS solu­
tions. To generate CBS requires that the form of the 
potential be such that Eq. (2) as well as Eq. (1) have a 
solution (or, equivalently, that the Fredholm determi­
nant vanish) at some value of k. In this paper, we show 
that this will occur only if the potential cancels the ef­
fect of the Green's function in the scattering equation. 

An attempt to solve directly the problem of what is 
required of a nonlocal potential to produce CBS could 
be made by writing out the Fredholm determinant, set­
ting it equal to zero, and inverting to find the potential. 
This approach is not fruitful because of the complexity 
of the determinant. Additional insight into the requisite 
form of the potential can be gained, however, by recon­
sidering the asymptotic behavior of the homogeneous 
solutions. The form of the Green's function (3) causes 
the solutions to the homogeneous equation to appear to 
behave at infinity like exp(±ikr), as indicated by Eq. (4). 
But, as we have shown, solutions need not behave in this 
way. For CBS solutions, it is only necessary that they 
vanish at infinite distances. In order for this to happen, 
the effect of the Green's function in the integral equa­
tion must disappear. This can be the case only when the 
Green's function is cancelled by the potential. Let us 
see how this might occur. 

In three dimensions, the Schrodinger equation is 

(V'~ + k2)lJ!(k, r) = J V(r, r')lJ!(k, r') dr'. 

We can formally investigate the possibility of a homo­
geneous solution to this equation by bringing the differ­
ential operator to the right-hand side 

lJ!(k, r) = V'2 ~ k2 J V(r, r')lJ!(k, r') dr'. 
r 

(9) 

Of course, this form is most inconvenient. Since divi­
sion by a differential operator is equivalent to multipli­
cation by an integral operator, Eq. (9) is usually re­
written in integral form with the aid of a Green's func­
tion g which takes account of the boundary conditions 

lJ!(k, r) = J g (k, r, r') J V(r', s)lJ!(k, s) ds dr'. 

The effect under discussion can, however, be more 
clearly seen from Eq. (9). Suppose the potential has 
the separable symmetric form 

V(r, r') = A(V'~ + ~)<l>(r)(V'~, + ~)<l>(r'), (10) 

where K is a constant. Then at that energy where k = K 

the integral equation (9) becomes 

lJ!(K, r)= A<l>(r) J [(V';, + ~)<l>(r')] lJ!(K, r')dr'. (11) 

This is a "pure" integral equation. It no longer contains 
a Green's function, and it can behave asymptotically in 
a manner other than exp(±ikr). The form of the solution 
to (11) is clearly 

lJ!(K, r) =N<l>(r), (12) 
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where N is arbitrary since (9) is homogeneous in lJ!(K, r). 
If a potential can be written in the form (10), then it can 
be seen immediately that there may be a continuum 
bound state E c• m• = 1'!-~/2Jl, and that the form of the CBS 
wavefunction would be <l>(r). 

There is an additional condition which must be met 
by the simple separable potential (10) in order that a 
solution of the form (12) exist. The solution (12) must 
be consistent with Eqo (11). That is, 

lJ!(K, r) = N<I>(r) = A<I>(r) j[ (V';, + K)<I>(r ,) ]lJ!(K, r') dr' . 

Therefore 

N=AJ[(V'~, +K2 )<I>(r')]lJ!(K, r')dr'. 

Substituting (12) into (13), we have 

N = A j[(V'~, + K2 )<I>(r') ]N<I>(r') dr'. 

or 

(13) 

(14) 

Condition (14) is equivalent to the requirement derived 
by Gourdin and Martin4

,5 for the generation of a CBS by 
a single term separable potential although they 
approached the problem from a completely different 
point of view, that of phase shift behavior. 

The concept that cancellation of the Green's function 
is necessary to the generation of CBS is not restricted 
to the Simple separable potential (10). Consider the 
potential 

N 

v(r, r') = A(V; + K2)<I>(r)(V'~, + K2)<l>(r') + 6 Ai Fj(r)Fj(r'). 
i=2 

(15) 

Substitution into (9) yields (at k = K) 

lJ!(K, r)=A<I>(r)J(V'~, +K2 )<I>(r')lJ!(K, r')dr' 

1 N 

+V'2+ 2 ~A;Fj(r)JFj(r')lJ!(K,r')dr'. 
r K t=2 

(16) 

The effect of the Green's function has been cancelled 
from the first term of (16) but not from other terms. At 
positive energy the oscillatory behavior of the wave­
function due to these terms will dominate at infinity. 
Thus, this potential can produce CBS solutions only if 

N 

6 A;F j(r) J Fj(r')lJ!(K, r') dr' = O. 
1=2 

(17) 

If the constraint (14) is also satisfied by the potential 
(15), then a CBS solution will be produced. 

This method of approaching the existence of a CBS is 
consistent with the requirements for a CBS presented 
in Sec. 2. That is, it can be shown by direct calculation 
that a potential of the form (15) with constraints (14) and 
(17) will result in a vanishing Fredholm determinant at 
k=K. 

Ghirardi and Riminill have written a potential which 
generates N chosen wavefunctions I <P i) at N energies E i' 

N 

V(r, r') = -.6 Xjk(r I Wj)(Wk I r'), 
J, k=l 

(18) 

where (r I W) = (E j - T) I <P j) and T is the single particle 
kinetic energy operator. Examination of this potential 
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shows that it is a sum of terms where each term has the 
form of Eq. (10). The method used by Ghirardi and 
Rimini to pick the coefficients X jk is equivalent to re­
quiring the constraint (17). This N term G-R potential, 
therefore, can be used to produce an orthogonal set of 
N CBS solutions at N required energies. 

The concept of cancellation of the Green's function is 
considerably easier to use in k-space since the Green's 
function is the simple function (K2 -k2)-t, where n2K2/2J.l. 
is the center-of-mass energy. Tabakin12 has written a 
single term separable k -space potential 

V(k, k') = :: 211(2 g(k)g(k'), 

where 

(19) 

(20) 

From the foregoing discussion it can be seen immediate­
ly that this potential generates a CBS at E c.m = n2k~/2 J.l.. 
The form of the CBS wavefunction can be seen at once 
by comparing (19) with (10) and (12). The k-space rep­
resentation of this wave function is 

k 2 +d2 1 
cp(k)=N k2+b2 k4 +a4 ' 

where N is a normalization constant. These results are 
the same as those which Tabakin12 has derived from a 
consideration of phase shift behavior. The equation 
which Tabakin derives as a necessary condition for a 
CBS [Eq. (15) of Ref. 12] is equivalent to our constraint 
(14). The example of Tabakin's potential in particular 
demonstrates some of the advantages of considering the 
CBS problem through the cancellation of the Green's 
function. 

4. A MORE GENERAL POTENTIAL 

The potentials given in the previous section explicitly 
contain a term which cancels the Green's function. 
Indeed, for a simple separable potential, the inverse 
Green's function must appear explicitly as there is only 
one way to write a one term potential. For multiterm 
potentials the appearance of this inverse Green's func­
tion need not be explicit. However, any separable 
potential which produces a CBS, although complicated 
in appearance, is such that it can be written in a form 
like (15) with constraints (14) and (17). 

As an example which does not contain an inverse 
Green's function explicitly, but which can have a CBS 
for a proper choice of its parameters, consider the 
following k-space potential: 

V 2 V 2 

V(k, k') = (k2 + a2}(;'2 + a2) - (k2 + b2)(~,2 + b2) (21) 

Mongan13 has shown that potentials of this form fit the 
two nucleon phase shifts over a range of energies. We 
shall show that it is possible to choose parameters in 
(21) (different from those selected by Mongan) such that 
the potential will have a square-integrable solution at 
positive energy. For each such choice of parameters, 
the solution will be the result of the cancellation of the 
Green's function in the integral equation for the 
wavefunction. 
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We obtain the one-dimensional k-space Schrodinger 
equation by Fourier transforming the three-dimensional 
configuration space Schrodinger equation and integrating 
out the angular dependence. The result is 

(_k2 + K2)cp(k) = -{ V(k,k')cp(k')k'2dk', 2 l~ 
n 0 

(22) 

where the energy dependence has been written 

K2 =2J.l.E/n2. 

As before, we formally obtain the homogeneous integral 
equation for cp(k) by substituting (21) into (22) and 
dividing by (- k2 + K2). 

2 J.l. 1 f~ Vlcp(k')k'2 dk' 
cp(k) = fi2 K2 _k2 Jo (k2 +a2)(k,2 +a2) 

(23) 

With the definitions 

(24) 

f
~ cp(k')k,2dk' 

f3= (Jt2 + b2) , 
o 

(25) 

Eq. (23) becomes 

2J.l. viO! 2J.l. V~.e 
cp(k) = fi2 (K2 _ k2)W +a2) - n2 (K2 _ k2)W + b2) . (26) 

Equation (26) represents the most general form for a 
solution to the homogeneous integral equation (23) with 
this potential. 

The constants O! and f3 must satiSfy certain self­
consistency conditions if (26) is to be a solution. Specifi­
cally, we can solve for O! and .e by substituting the wave­
function (26) into Eqs. (24) and (25). This will yield two 
consistency equations involving O! and f3 which must be 
satisfied simultaneously if (26) is to be a solution to 
(23). 

We are looking for solutions to (23) of the CBS type 
which go to zero at infinity. The appearance of the 
Green's function (K2 - k2)-1 in the wavefunction (26) would 
seem to exclude the possibility of CBS solutions because 
this factor, when Fourier transformed back into con­
figuration space, will produce oscillatory functions 
which will dominate the behavior at infinity. However, 
the wavefunction (26) can be a CBS solution if we pick 
the parameters such that the Green's function is can­
celled. We now show how this may be accomplished. 

Let us put the wavefunction (26) over a common 
denominator 

We are looking for a wavefunction of the form 

2J.l. C 
cp(k) = fi2 W + a2)(k2 + b2) , 

(27) 

(28) 

where the Green's function dependence has specifically 
canceled out. The requirement for writing (27) in the 
form (28) is 



                                                                                                                                    

773 T.O. Krause and B. Mulligan: Cancellation of the Green's function 

or 

and 

vlab2 _ V~Jla2 = CK2. 

Eliminating c, we have 

{3 vi b2 +K2 

-;;=v;- a 2 +K2 • 
(29) 

This condition on a and {3 must be met in order to pro­
duce a wavefunction of the form (28) without Green's 
function dependence. Condition (29) is independent of 
the consistency conditions on a and (3 which must be 
satisfied separately in order that the potential produce 
any solution at all. This is analogous to the discussion 
of Sec. 3 in which the consistency condition (14) must 
be met independently of the conditions for cancellation 
of the Green's function. 

In this example we have chosen to cancel the Green's 
function from the wavefunction (26) rather than to put 
the potential (21) into a form in which the cancellation 
would be explicit. This is strictly a matter of conve­
nience. The potential is a function of two variables, the 
wave function only one. It is behavior of the wavefunc­
tion, after all, which is our ultimate interest. 

6. CONCLUSIONS 

The study of scattering involves the inhomogeneous 
wave equation 

>II*(k, r) = >110 + f f q*(k, r, r')V(r', 1)>II*(k, I) dldr'. 

This equation has solutions at all real k for any poten­
tial. For those particular values of k at which the 
Fredholm determinant for this equation vanishes, the 
solutions to this inhomogeneous equation will include 
arbitrary amounts of the solutions to the associated 
homogeneous equation (which has solutions only at these 
values of k). We have shown that these solutions to the 
homogeneous equation are therefore continuum bound 
states. When the Fredholm determinant vanishes, then, 
the complete solution to the inhomogeneous equation 
will include CBS wave functions in addition to the regular 
scattering wave functions. 

The presence of the Green's function would be ex­
pected to force the solutions of the homogeneous equa­
tion to oscillate at infinity. Since CBS solutions do not 
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oscillate at infinity, they can be produced only by poten­
tials which cancel the effect of the Green's function. In 
single term potentials which produce CBS, the inverse 
Green's function which performs the cancellation must 
appear explicitly. If a single term potential contains an 
inverse Green's function and also meets the independent 
consistency condition (14), then the energy of the CBS 
and the form of the CBS wave function can be obtained by 
inspection. 

For potentials of two or more terms, one term with 
an explicit inverse Green's function may appear for each 
CBS produced. If the potential has this form it is again 
possible to determine the CBS energies and wavefunc­
tions by inspection. In this case the sum of all terms 
which do not generate a particular CBS must be orthogo­
nal to that CBS wavefunction. Although terms with ex­
pliCit Green's function dependence may appear in a 
potential which generates CBS, such explicit dependence 
is not necessary. It is possible, however, to rewrite 
in this form any potential which produces CBS. Also, 
regardless of the form of the potential, there exist con­
sistency conditions which must be met independently of 
the cancellation of the Green's function if CBS solutions 
are to be generated. 
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An invariant geometrical description of the world lines of charged particles in arbitrary homogeneous 
electromagnetic fields is presented. This is accomplished through the combined use of the 
Frenet-Serret equations and the Lorentz equation. The results apply to flat as well as Riemannian 
space-time. The intrinsic scalars associated with these curves (i.e., their curvatures and first and 
second torsions) are found to be constants of the motion when they are well defined. Moreover, they 
form simple relationships with the field invariants as well as with the energy and momentum 
densities of the rest frame fields. When they are evaluated in the instantaneous rest frame of the 
particle, the Frenet vectors lend themselves to simple physical interpretation. It is shown that one 
cannot distinguish in an intrinsic geometrical manner between the curves of positive and negative 
charges. The same is true for positive and negative magnetic monopoles if they exist. In such a case, 
however, one would be able to distinguish intrinsically between ordinary and magnetic charges. The 
effect of duality rotations of the field tensor on the Frenet scalars is studied. A physical realization 
of the Frenet frame is obtained by considering the classical description of spin precession. Finally the 
Frenet formalism is applied to timelike Killing trajectories. These are shown to closely resemble the 
world lines of charged particles in homogeneous electromagnetic fields. 

I. INTRODUCTION 

The main purpose of the present work is to investigate 
the intrinsic geometrical features of the world line of a 
charged particle moving under the influence of a homo­
geneous electromagnetic field. Our definition of a ho­
mogeneous field is equivalent to the field tensor being 
covariantly constant. The motion of the particle is then 
governed by the Lorenz equation that incorporates this 
constant electromagnetic field tensor. The conventional 
way of describing the space-time trajectory of the par­
ticle is through a parametric representation taking the 
initial conditions into account. This task can be accom­
plished in principle by integrating the Lorentz equation 
(see the Appendix). Even if this approach may be of 
practical value, it suffers from two drawbacks, namely 
it is not coordinate independent and, moreover, does not 
give direct information about the geometrical character­
istics of the world line. These two shortcomings can at 
once be removed by recourse to the Frenet-Serret for­
malism. 1 Here a curve is associated at every point with 
the orthonormal Frenet-Serret tetrad; the members of 
the tetrad, the first of which is the unit tangent vector to 
the curve, obey the Frenet-Serret equations. Further­
more, the intrinsic geometry of the curve is uniquely 
determined by the Frenet scalars, namely the curvature 
and the first and second torsions defined along the curve. 
We combine the Lorentz equation and the Frenet-Serret 
equations by identifying the curve with the timelike 
world line of the charged particle. The intrinsic geome­
try of the world line is thereby obtained in a manifestly 
direct and elegant manner, which is completely inde­
pendent of coordinates as well as initial conditions. 
While the Frenet-Serret method provides an excellent 
framework for our present study, the phYSical phenom­
enon we have invoked serves, in turn, to illuminate the 
basic mechanism inherent to the formalism itself. This 
is achieved by establishing simple connections between 
the field quantities and the geometrical entities. For 
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instance, the Frenet scalars, which will be shown to be 
constants along the world line, are directly related to 
the Lorentz invariants of the electromagnetic field. In 
addition, the Frenet vectors, when evaluated in the in­
stantaneous rest frame of the particle, find simple in­
terpretation in terms of the electric and magnetic fields, 
and the Poynting vector. Further inSight is achieved in 
this direction, if we assume that the charge has spin and 
magnetic moment with a gyromagnetic ratio of two. We 
shall see that in this case the spin and hence the mag­
netic moment will not precess at all with respect to the 
spatial Frenet triad as it is carried along the world line 
of the charge. Thus along the path of the particle the 
frame which has constant components of the magnetic 
moment is either identical to the Frenet frame or at the 
most differs from it by a rigid rotation, This then pro­
vides for any observer a physical realization of the 
Frenet vectors which would otherwise remain of essen­
tially mathematical significance, 

To summarize, the problem we study in this paper 
helps to describe the motion of charged particles in ho­
mogeneous fields by focussing on the invariant geometri­
cal aspects of their paths, and at the same time clarifies 
the nature of the Frenet-Serret formalism on the basis 
of a simple physical modeL 

The rest of this paper is divided into different parts as 
follows. Section II is devoted mainly to deriving general 
expressions for the geometrical quantities in terms of 
the field tensor. In Sec. ill we specialize to the instanta­
neous rest frame of the particle and obtain simple in­
terpretations for the already derived relations. Section 
IV examines the effect of duality rotations2

,3 of the field 
tensor on the Frenet scalars. We point out in Sec. V the 
formal similarity that exists between the world lines of 
charged particles and timelike Killing trajectories ad­
mitted by Riemannian spaces. Finally in the Appendix we 
present a covariant solution to the Lorentz equation for 
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homogeneous electromagnetic fields in flat space-times. 
This has been included not only for the sake of complete­
ness, but also to contrast this rather cumbersome ap­
proach with the elegant Frenet-8erret method, 

II. GENERAL RELATIONS 

The motion of a charged particle of mass m and 
charge e in an electromagnetic field is governed by the 
Lorentz equation 

where u IL is the 4-velocity of the particle and Ii' IL. is the 
electromagnetic field tensor. In our notation Greek in­
dices range from 0 to 3 and italic indices from 1 to 3. 
The Signature of the metric is (+, -, -, -). A dot over 
any quantity stands for its absolute derivative with re­
spect to the proper time T along the world line of the 
particle, e. g. , 

• DAIL ••.. 
AIL •••• '" ~ ",AIL ••.. uY 

OIa... DT OIa ... ;r' 

the semicolon representing covariant differentiation. It 
is convenient to write the Lorentz equation as 

uIL = F'" .if (1) 

with F IL • = >Jf'ILV and A=e/mc2• 

As was mentioned in the introduction, the intrinsic 
geometrical characteristics of a curve r can most ele­
gantly be described by utilizing the Frenet-Serret equa­
tions. The curve r, which in our case is the world line 
of the particle, is assumed to be sufficiently smooth (at 
least of class C3). Associated with r at every point is 
the Frenet-Serret tetrad consisting of four orthonormal 
vectors eia)' The index within the parenthesis is the 
tetrad index which singles out a particular member of the 
tetrad. In particular, erO) =uIL is the timelike unit tangent 
vector to the curve. The spatial triad e~j) (i = 1, 2, 3) 
consist of the normal, the first and the second binor­
mals, respectively. The orthonormality conditions are 
summarized by eiOl)e (a)IL = 1)OIa' where 1)OIa is the Lorentz 
metric: diag(l, -1, -1, -1). The vectors obey the 
Frenet-Serret equations 

e~O) 0 K 0 0 e~O) (2a) 
'IL K 0 T1 0 erl) (2b) e (1) = 
'IL e(2) o -T1 0 T2 ei2) (2c) 

ei3) 0 0 -T2 0 e~3) (2d) 

The Frenet scalars K, T10 and T 2, which are termed the 
curvature, the first and the second torSions, respective­
ly, completely characterize the intrinsic nature of the 
curve when given as functions of To The assignment of 
the initial configuration of the tetrad would further fix 
the curve uniquely in space-time. The Sign of K and Tl 
is taken to be positive, whereas that of T2 is fixed by the 
requirement that the triad eil) be a right-handed one. We 
shall assume that all the three scalars are well defined 
unless otherwise stated (i.e., K and Tl are both 
nonzero). 

We shall now apply the Frenet-Serret formalism to 
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charged particles in electromagnetic fields obeying the 
condition 

FILV;Y=O. 

In other words, the field tensor F ILV is assumed to be 
covariantly constant, which in the special case of flat 
space-times implies the constancy of electromagnetic 
field both in space and time. All the res?lts we shall de­
rive require only the weaker condition F ,",v = 0, but this 
would impose severe restrictions on the curve followed 
by the particle. We shall therefore assume the stronger, 
but more general, condition that F ,",v is a covariantly 
constant bivectoro We shall refer to this property of F ,",v 

by the equivalent statement that the associated fields are 
homogeneous. We first proceed to prove the following 
theorem. 

Theorem: The Frenet scalars remain constant along 
the world line of a charged particle in a homogeneous 
electromagnetic field. Further each of the Frenet vec­
tors obeys the Lorentz equation. 

Proof: From Eqs. (1) and (2a), we have 

(3) 

Taking the absolute derivative of the above equation with 
respect to T, we obtain 

Again using Eq. (2a) 

Forming the scalar product of both sides of the above· 
equation with e (l) IL' gives immediately 

K=O, 

since 

eil)e(l),", =0, eil) being a unit vector, 

and 

F ,",verl )e(l) = 0 

(4) 

by the antisymmetry of F ,",v' Equation (4) then reduces to 

erl)= F'"'Ve(l) • 

Thus K = const along the world line of the particle and 
erl) in fact obeys the Lorentz equation. By repeatedly 
applying the above procedure to the other Frenet-Serret 
equations, we can show that Tl and T2 are constants and 
that ei2)' er3) also obey the Lorentz equation. To 
summarize, 

and 

e·'"' -F'"' e" (01)- "(01)' (5) 

This completes the proof of the theorem. We wish to 
emphasize that the properties of F ,",v that entered into 
the proof of the theorem were its antisymmetry and its 
constancy along the curve, viz. F,","=O. We shall need 
this fact later when we draw the analogy between the 
present case and that of the Killing trajectories. 

Next we shall evaluate the Frenet vectors and the 
scalars K, T 10 and T 2 in terms of F ,",v and the 4 -velocity 
e~O)' For convenience we denote 
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(F")" v =F" ",F"'a··· Ji"lv ' 

with FYp repeated n times on the right-hand side. Furth­
er, it is easy to show that given an arbitrary vector qlJ. 
if we define p" = (F") "A', then 

p".p1J. = (_1)n(F2n)" vq lJ. qv • (6) 

We have already the relation 

or 

Squaring and using Eq. (6), 

K2= (F2) IJ.ve~O)e(O)' 

(7a) 

(7b) 

In order to obtain 7"1 and er2)' we observe that Eqs. (5), 
(2b), and (7a) together lead to 

that is 

Ke~O) + 7"1e~) = ; (F2)1J. ve(O) • 

The required expression for e~) is obtained directly 
from the above equation, while by squaring the latter 7"1 

can be readily found. So, 

(8a) 

and 

(Bb) 

Similarly e~3) and 7"2 can be obtained by combining Eqs. 
(5), (8a), and (2c): 

Equivalently, we can write 

e~3) = _l_[(F3)" '" + (7"~ - K2)FIJ.Je«)) , 
K7"17"2 

Squaring and using Eq. (6), we find 

2 1 (F6) ~ v 1 (2 2)2 7"2=""""22 "ve(O)e(O)-"2 K -7"1 • 
K 7"1 7"1 

(9a) 

(9b) 

The above expressions can be employed to determine 
the tetrad components and the Frenet scalars whenever 
efo) and F"v are known. However, we can simplify the 
formulas we have already derived and establish some 
interesting interrelations among these quantities which 
throw more light on the geometry of the world line, As 
a preliminary step towards this end we invoke some use­
ful identities involving F IJ.V' First let us define 

and 

J. Math. Phys., Vol. 15, No.6, June 1974 

776 

which are the Lorentz invariants of the electromagnetic 
field with E and H denoting the electric and magnetic 
fields respectively. The tensor F IJ.V' which is the dual of 
F IJ.v' is defined by 

F "v=t r-g EIJ.VOl8 FOIB 

and 

FlJ.v = t(1/.;=g)EIJ.VOl8F ",8' 

where g=det II g "'8" and EOIarB is the completely antisym­
metric Levi-Civita symbol with E0123 = 1 = - E0123 ' Furth­
er, we note P"v = - F"v. Now, two arbitrary bivectors 
A"'8 and B 018 along with their duals (denoted by hats above 
these tensors) defined on a four-dimensional Riemannian 
space satisfy the identity4 

A" B'" -13" A'" = 1.6" (A BO'" a 11 a 11 2 v y6 - ) • 

Identifying AlJ.v=BlJ.v=FlJ.v gives 

(F2)lJ.v _(F2)lJ.v=a61J.v' (lOa) 
A 

whereas making A"v =F IJ.V and B"v =F IJ.V and vice versa 
leads to 

(lOb) 

With the help of these two identities it is a straightfor­
ward process to derive three further identities: 

(F3)lJ.v -aF"v -ifF"v=O, 

(F4) "v -a (F2) " v - (;26" v = 0, 

(F6)lJ.v - (a 2 + (;2) (F2)"v _a(;2 6"v= O. 

(10c) 

(lOd) 

(10e) 

We are now ready to apply the above identities to the al­
ready derived results. Substituting for (F4) " '" from Eq. 
(10d) in Eq. (Bb), we obtain 

(11) 

The curvature K depends on F IJ.V as well as on e~O)' Once 
it has been determined from the rather simple expres­
sion of Eq. (7b), 7"1 can be evaluated at once with the 
help of the invariants a and (; which are free from the 
parameters associated with the curve. This is true in 
the case of the second torsion 7"2 also. A vastly simpli­
fied form for 7"2 results if (F6)" v in Eq. (9b) is substi­
tuted for from the identity (10e). Thus we have 

7"~ =~[(a2 + (;2) (F2) " v +a (;26"v]e(Ot e (0)" - \ (K2 - 7"n
2 

, 
K 7"1 7"1 

The formulas for K2 and (K2 - 7"~) from Eqs. (7b) and (11) 
reduce the above equation to the extremely simple form 

7'~ = (;2/ K2 or K27'~ = (;2 • 

As we pointed out earlier, while K and 7'1 are assumed to 
be positive, the sign of 7'2 is fixed by the demand that efi) 
form a right-handed frame. We shall show in the next 
section that this requirement implies that 

K7"2=-(;' (12) 

Again from Eqs. (11) and (12) we obtain 

(13) 

Equations (12) and (13) relate the Frenet scalars to the 
field invariants. Apart from displaying the connection 
between the geometry of the particle's world line on one 
hand and the electromagnetic field acting on it on the 
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"(3) 

----------~---+----~--~ 

FIG. 1. Rest frame configuration of a positively charged par­
ticle ('Jo,.=e/mc 2 > 0). The spatial Frenet vectors are given by 
e(1)~=EjE, e(2) = P/ P, and e(3) =E xP/EP, where P= (c/47r) 
x (E xH). 

other, the above relations can also serve as a simple 
means of obtaining 7"1 and T2 starting from K, provided of 
course K, 7"1' and T2 are all well defined. 5 Another piece 
of information that elucidates the interplay between the 
geometry and the physics of the situation is provided by 
the energy -momentum tensor, 

T'" v = (1/ 41T)[F'" o!'01 v - t{FOI. rf!B 01.) 6'" v] • 

By using Eqs. (8a) and (13), we arrive at 

T'" ve(O) = (1/ 41T)[ t(K2 + Ti + 7"~)e~O) + KT1 e~)] • (14) 

Clearly, the above equation implies that in the instanta­
neous rest system of the particle the energy density of 
the field is given by € =(1/81T)(K 2 + Ti + T:) and the flux of 
energy density or the Poynting vector is purely in the 
direction of e (2) and has the magnitude KT1• 

Finally, consider Eq. (9a) for e~3)' Replacing (F3)'"v 
through identity (10c) and further employing Eqs. (12) 
and (13), we get 

~ 

-F"ve(O)= T1er3)+7"2erl) =w'". (15) 

Firstly, this equation relates the magnetic field in the 
instantaneous rest frame of the particle to the Frenet 
vectors e~3) and e~l)' Secondly, a Fermi transported 
vector undergoes rotation with respect to the Frenet 
triad with the angular velocity vector - w'" given above. 6 

Or since a Fermi transported frame is the relativistic 
analog of a nonrotating frame in Newtonian physics, 7,8 

the Frenet frame can be considered to rotate with re­
spect to a nonrotating frame at a rate given by w"'; 
evidently the vector - w'" can be identified with the rest 
frame magnetic field. 

Towards the end of the foregoing discussions we have 
alluded to the instantaneous rest frame of the particle. 
We shall present more detailed considerations pertaining 
to this frame in the next section. 

III. SPECIALIZATION TO THE INSTANTANEOUS 
REST FRAME OF THE PARTICLE 

In the instantaneous rest frame of the particle e~O) 
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= 6'"0' Consequently, the members of the triad eri) will 
not have time components, since they are orthogonal to 
e~O)" The electric and magnetic fields, E and H, in the 
rest system are given by the equations 

F '" '"" -E-'" A," eV -H-'" v"'(O)- ,.1' v (0)- • (16) 

In the above equations, F ,"v and F ,"v are of course evalu­
ated in the rest system. It is evidently a simple and 
straightforward procedure to translate all the results 
derived in the last section to their equivalents in the in­
stantaneous rest system of the charged particle. 

Remembering that K and 7"1 have been chosen to be 
positive, we get directly from Eqs. (7), (11), and (8), 

and 

EXH P 
eCl)= ----- =.,.. 

IEXHI P 
(17) 

where P = (c/41T)E XH is the Poynting vector" The fact 
that the Poynting vector is in the direction of e (2) in the 
rest system, with its magnitude equal to KTu had been 
anticipated towards the end of the last section. 

We shall now proceed to examine the sign of T2 • As­
suming that KT2 = - (3, we derived Eq. (15). That equa­
tion, in the rest system, reads 

(18) 

This is indeed consistent with e(l), e(2)' and e(3) forming 
a right-handed system as can be seen by taking the 
cross product of the above equation with AE =Ke(l): 

-A2ExH=-KT1e(2) 

which agrees with Eq. (17). Thus, 

T 2 = -I AlE. H/ E . (19) 

Equation (18) shows that e (3) lies in the plane of E and 
H; the rest system magnetic field in properly chosen 
units (taking into account the coefficient A) has compo­
nents - T2 and - T1 along e (1) and e (3)' respectively. 
Similarly in the same units E has component K along e (1)" 

As was pointed out in the last section - AH coincides 
with the angular velocity vector that measures the rate 
of rotation of the Frenet triad with respect to a Fermi 
transported spatial frame. 

The rest frame configuration of a positively charged 
particle (A = e/mc2 > 0) is shown in Fig. 1. It displays 
the triad 

-A E 
e(l)= mE' 

A EXP 
e(3)=~ EP , 

Since the particle is initially at rest here, it will get its 
first impulse in the E direction, i.e., along e(l)' there­
by acquiring an infinitesimal velocity V 1 along e (1)' The 
second impulse felt by the particle is due to the force 
(e/ c)V1 xiI along e (2). The velocity component thus ac­
quired in the direction of e(2) couples with Ii to impel the 
particle out of the e (1) - e (2) plane. 
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We summarize below the Frenet scalars evaluated in 
the rest system: 

I 1
- I IIEXHI I IEoR 

K = X E, 7"1 = A _ ,7"2 = ~ X ---. 
E E 

(20) 

The formalism we have developed would equally well ap­
ply to magnetic monopoles, if they exist, provided we 
replace F I.W by its dual P 1M and X by ~ = e/ me2 where e 
is the magnetic charge of the monopole. The resulting 
Frenet scalars in the rest system of the monopole would 
be 

.. - - -
I ~I- I~IIEXHI II EoH 

K= XH, 7"1= X _ ,7"2= X -_-. 
H H 

(21) 

Comparing the Eqs. (20) and (21), we notice that in both 
cases the scalars are independent of the sign of the 
charge concerned. This means that we cannot distinguish 
intrinsically between the space-time trajectories of 
positive and negative charges of equal mass. In order to 
differentiate between these charges we must also specify 
some external information namely the direction of the 
arrow of time. However, the motion of a negative charge 
is the same as that of a positive charge moving back­
wards in time. This is a reflection of the fact that the 
Lorentz equation is invariant under the simultaneous re­
versal in sign of the proper time and the charge. Never­
theless, 7"2 changes sign upon passing from an electric 
charge to a magnetic monopole, thereby making the in­
trinsic distinction possible between the twoo Evidently, 
underlying this distinguishability is the tacit assumption 
that one can define positively oriented reference frames; 
in other words, space-time is orientableo 

We shall now establish the relevance of the Frenet 
frame to the phenomenon of spin precessiono Let us as­
sume that the charged particle of mass m and charge e, 
has a spin S and a consequent magnetic moment M = (geo/ 
2me)S, where g is the gyromagnetic ratio of the particle 
and eo is the electronic charge. We shall not go into a 
detailed discussion of the covariant dynamical descrip­
tion of spin precession at this point. 9 It is sufficient for 
our purpose to note that, in the instantaneous rest sys­
tem of the particle, spin precession is described by the 
familiar equation 

dS geo -
-d = -2 2 sxH . (22) 7" me 

At this stage we have made no assumptions about the 
spatial frame to which S is referred, nor about the 
transport of such a frame along the world line 0 ChOOSing 
this frame to be the instantaneous Frenet triad e (j)' we 
can write 

S=SU)e(j) . (23) 

Substituting Eq. (23) in (22), we find 
(.) 

dS ' e . + S(I) dew _ geo SWe (j) XH . 
d7" (d d7" - 2mc2 (24) 

In the space orthogonal to e'"(O) = 0'"0, we have the Frenet 
equations 

(25) 
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Substituting the above in Eq. (24) and defining the modi­
fied gyromagnetic ratio g' = (eo/ e)g, we arrive at the 
equation 

o • dS Ci ) 
S=!lxS, S= ~e(i) (26) 

where !l = - [(g' /2)XR + w] and w = 7"2e (1) + 7"le (3)' 

Assume now that the charged particle is in a homo­
geneous electromagnetic field and that its motion is gov­
erned by the Lorentz equation. We have ignored the fact 
that the spin-electromagnetic field interaction would in 
itself result in a deviation from the Lorentz force. Then, 
as we have seen [Eqo (18)], w = - xii and, consequently, 
!l = (1- g' /2)XR. We see immediately that if g' = 2 then 
n = 0 and hence the spin (consequently, the magnetic mo­
ment) does not precess with respect to the Frenet triad.10 

Its components along the Frenet vectors will remain 
constant. Or, if a frame can be picked that is attached 
to the moving charge and in which the magnetic moment 
has constant components, then such a frame could differ 
from the Frenet frame by at most a constant rotation. 
Thus, as we stated in the introduction, the phenomenon 
of spin precession affords a direct physical realization 
of the Frenet frame up to, of course, a constant rotation 
of the spatial triad. 

We have assumed all along our development of the 
formalism that K, 7"10 and 7"2 are well defined, i. e., at 
least K *0 and 7"1 *0. From the expreSSions for these 
scalars in the rest system [Eq. (20)], it can be seen that 
this stipulation can be satisfied by taking E x H * 0, 
a fact which we shall need in the next section. A detailed 
discussion of the bearing of field configurations on the 
Frenet scalars and hence on the intrinsic geometry of 
the world lines can be found in Ref. 9b. 

IV. DUALITY ROTATIONS 

Duality rotations2
,3 can transform a given electromag­

netic field to new ones that are related to the former by 
simple equalities. In this section we briefly explore the 
effect of such transformations on the geometry of the 
charged particle trajectories. 

Consider electric and magnetic fields, E and H, that 
are solutions to source free Maxwell's equations. If we 
define K = E + iII, duality rotations are represented by 

(27) 

where cP is a real constant. Obviously, both K and K' 
satisfy the source free Maxwell's equations. The Lo­
rentz field invariants E 0 H and (E2 - H2) are not invariant 
under these transformations. Nevertheless two new in­
variants are admitted here, namely 

(28a) 

and 

K'XK'*=KXK* or E'xH'=ExH, (28b) 

where the asterisk indicates complex conjugation. With 
this preamble we establish the following theorem: 

Theorem: Let the initial velocity vo of a charged par­
ticle in an arbitrary homogeneous electromagnetic field 
be such that K, 7"1, and 7"2 are all well defined (i. e., 
K * 0, 7"1 * 0 or equivalently E XH * 0 in the rest frame). 
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If we perform an arbitrary duality rotation on the elec­
tromagnetic field, and if the particle has the same initial 
velocity Vo in the newly generated field, then the new 
scalars K', Tl ', and T2 ' will also be well defined. 

Proof: We note that Lorentz transformations and 
duality rotations acting on fields commute. In what fol­
lows we use the same duality transformation (same "an­
gle" cp) and the same Lorentz transformation (corres­
ponding to a velocity - Vo that produces the instantaneous 
rest frame of the charged particle) acting at the initial 
space-time point of the particle. We first perform the 
duality rotation (E - E', H - H') followed by the Lorentz 
transformation (E'-E', H'-H,). Reversing the order of 
the operations we have, 

(E, H)- (E, ii)- [(E)', (H)']. 

Since the two types of transformations commute we con­
clude E'=(E)' and H' =(H),. On the other hand, since 
E XH is invariant under duality rotations, 

(29) 

Thus, E' xH';< 0 and therefore K', T{, T; are well defined 
at the initial point and consequently all along the curve 
since these scalars are constants. This completes the 
proof. 

Equations (29) and (20) yield the relation 

(3Da) 

Similarly with the help of Eqs. (28a) and (14), we can 
show that 

(3Ob) 

Further relations are obtained by noting that K,2 = e2i
<1J K2 

which, with the help of Eqs. (12) and (13), leads to 

[
K'2 - T{2 - T~2J = [COS2CP - sin2CPJ 

2K'T~ sin2cp cos2cp [
K2 - Ti -T~J 
2KT2 

(30c) 

Equation (3Da) through (30c) can easily be uncoupled so 
that each of the scalars K', T{, T; is expressed in terms 
of K, Tll T 2, and cpo 

V. KILLING TRAJECTORIES 

There exists a striking similarity between the world 
lines of charged particles in homogeneous fields and 
Killing trajectories admitted by four-dimensional 
Riemannian spaces. Consider such a timelike Killing 
vector ~". We can define then the 4-velocity along ~"by 

(31) 

It is easy to show that e" or, equivalently, 1J! is constant 
along the Killing trajectory, i. e., 1J!,,,~" = 0, from the 
Killing equation: 

~,,;v+ ~v;,,=O. (32) 

So 

(33) 
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We can identify e" ~,,; v with an antisymmetric tensor F "V 
by virtue of Eq. (32), 

(34) 

so that Eq. (33) is formally the same as the Lorentz 
equation. Further, since el/ = const along ~", we have 

(35) 

since ~";V;y = R"VYX ~\ where R "wx is the Riemann tensor. 
As we emphasized in Sec. II, the properties F "V = - F V" 
and F = 0 were sufficient to derive all the results of "V . 
that section. Those results, then, are valid in the case 
of the Killing trajectories with suitable changes in in­
terpretation whenever necessary. 

We concentrate attention on some of the significant 
results that emerge. To begin with, the Frenet scalars 
are constants along the Killing trajectories. Equation 
(15) now becomes 

(36) 

where the dual ~,,;v = (l/2r-g)E "V"'6~"';6 as before. 

We define 

w"= ~";v~v=(l/2r-g)E"V"'8~v~"';8' (37) 

In the above equation w" is the rotation vector of the 
Killing congruence. And also e21/~";v~v=(l/2';-g )E"v",8 
Xl.lvU",; 8 the rotation vector associated with the congru­
ence of Killing world lines. In the present context these 
vectors are evaluated along a particular curve belonging 
to the congruence. We have already pointed out in Sec. 
II that w" gives the rotation of the Frenet frame with re­
spect to the Fermi transported frame. In the case of 
Killing trajectories, we have arrived at the interesting 
result that w" is directly proportional to the rotation 
vector of the Killing congruence w". Obviously, in static 
space-times, that are characterized by wI' = 0, the 
Frenet frame is a nonrotating frame defined along the 
Killing line. 

Next consider the Killing analog of Eq. (13) which 
reads 

K2_T12-T~=-(e21//2H,,;v~";v. (38) 

In order to interpret this equation, define the family of 
hypersurfaces, 

1:: ~"~" =const. (39) 

The normal to any of these surfaces is given by 

n" =(~v~), ,,=2~v;,,~v. (40) 

By the antisymmetry of ~"';8 we find n,,~" = O. This shows 
that the Killing trajectories having the same length ~"~" 
(say c l ) lie in the corresponding member of the family 
1: characterized by the constant cl' For the 4-velocities 
along these trajectories, we have 

(41) 

Or, 

(42) 

Further, from Eqs. (36) and (37), 

(43) 
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With the help of Eqs, (42) and (43), Eq. (38) reduces to 

(44) 

This is an equation that has black hole physics as its 
usual habitat. 11 It shows that the surface on which ~I> be­
comes null is a null surface (the horizon or the black 
hole), provided wI> also becomes null. In the case of 
static metrics (wI>::: 0), e. g. Schwarzschild metric, this 
automatically occurs, but not necessarily in stationary 
space-times (wI> '" 0). In the case of Kerr metric, for 
instance, the condition is not satisfied for the global 
time-like ~I> (which is time-like at spatial infinity); 
nevertheless the combination ~"+ c1j", where 1jl> is the 
axial Killing vector and c is a suitably chosen constant 
does satisfy the condition making the Kerr black hole in 
fact a Killing horizon. 12 

Equation (12) translates into 

KT =.!.t 't,,;v 
2 4 ':,p.;IJ~ • (45) 

If T 2 = 0 then the above equation shows that ~,,; v is a sim­
pIe bivector. We may mention that this holds true in the 
case of the combined Killing vector ~"+ C1j" alluded to 
in connection with the Kerr black hole. 

Finally, consider the Lorentz equation for a charged 
particle in flat space -time 

du" F dxv 

1iT= I>V dT • (46) 

If F "V is constant, Eq. (46) can be directly integrated to 
give 

(47) 

Here XV(T) is the parametric form of the charge trajec­
tory with the proper time T as the parameter and a" is 
constant. On the other hand, the most general form of a 
Killing vector in the flat space-time is given by 

(48) 

where {3"v is constant and anti symmetric ({3"v = - (3v,,) and 
Y I> is also constant. Therefore, ~I> /.rrr; can be identi­
fied with u", provided XV=XV(T) in Eq. (48). This shows 
that trajectories of charged particles acted upon by con­
stant electromagnetic fields in flat space-time coincide 
with timelike Killing lines. Probably this is not true in 
the case of arbitrary Riemannian spaces, although at 
present we do not possess any theorems that point one 
way or the other. 

where K=E +iH and 

a 1 ;: A( l}(ll + ReK2/2)l /2, a 2;: A( I K21 - ReK2/2)l /2 • 
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After submitting the present paper for publication we 
have learned that D. M. Eardley has studied space­
times admitting constant bivectors.13 

APPENDIX 

The usual method of describing the motion of a 
charged particle in an electromagnetic field is through 
a parameter representation of the particle's world line. 
The initial conditions give rise to eight constants of in­
tegration, but the side condition 

dx" 
u"u =1 where u"= - /J.=O, ... ,3, 

" dT ' 

reduces this number to seven, It is preferable to have a 
representation that displays these transformation prop­
erties explicitly. Unfortunately, the usual procedure for 
treating the motion of charged particles in electromag­
netic fields is to specialize the fields. 14 Then the trans­
formation properties of the constants of integration are 
effectively masked. In the following we avoid this by 
presenting a general covariant solution to the Lorentz 
equation for homogeneous electromagnetic fields in flat 
space-time. This solution, and alternate solutions giv­
en elsewhere are quite cumbersome. 15 This is in sharp 
contrast with the elegant results that are obtained 
through the Frenet-Serret formalism. 

The formal solution of u = Fu when l' = 0 in flat 
space-time is 

(A1) 

In the above F stands for the matrix F" v' The series 
operator eFT can be Simplified through the recursion 
relation 

F4 _ aF2 - {32[ = 0 

where 

(A2) 

This method, however, is too complicated to use, es­
pecially if both a and {3 are nonzero. 

The simplest approach is to operate on u with both 
sides of (A2). Since du/dT=Fu together with 1'=0 im­
ply that d!'u/ dT" :::F"u for all integral n, it follows that 

(A3) 

This is a simple linear equation whose solution is 

u(O) , 

(M) 
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It follows that 

1 
X(T)=X(O)+ ;>..21[(21 

Various limiting cases in which E • H = 0 or E2 _H2= 0 
or both E • H = E2 - H2 = 0 can be evaluated. In this re­
gard we note that if t3 =;>.. 2E • H = 0, then F obeys 

(A6) 

Note added in proof: We have discovered that J. L. 
Synge, Proc. Roy. Irish Acad. A 65, 27 (1967), has 
considered some geometrical properties of flat space­
time trajectories of charged particles in homogeneous 
electro-magnetic fields. 
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The ~ (5) van der Waerden invariant is given; with its help the general Wigner coefficient in the 
canomcal SU(2)XSU(2) chain is calculated. Some special Wigner coefficients and Gaunt-type 
formulas needed for the construction of the general Wigner coefficient are also presented. 

1. INTRODUCTION 

The group O( 5) has been useful in classifying states in 
several different areas of physics. Perhaps the best 
known is the seniority model which treats the pairing 
force between particles in the same nuclear shell. 1 

SpeCial representations serve to describe nuclear surfon 
states2 and more recently have been used to treat states 
of atomic electrons interacting with vibrations of 
neighboring atoms in a solid (Jahn-Teller effect). 3 In 
its noncompact version 0(3,2) it is related to the 
Coulomb problem. 4 A practical problem in connection 
with any group is the calculation of its Wigner coef­
ficients which couple states of three irreducible rep­
resentations (IR' s) to a scalar or, equivalently, its 
Clebsch-Gordan coefficients which couple states of two 
IR's to a composite state belonging to a third IR. These 
coefficients are needed for coupling states and tensors, 
and perhaps more importantly, in connection with the 
Wigner-Eckart theorem, for calculating matrix ele­
ments of physical quantities. Hecht and Pang5 calculated 
0(5) Clebsch-Gordan coefficients for special cases. 
Wong6 derived those associated with the coupling (p, q) 
X(0,2), involving external multiplicity up to two. The 
most general Wigner coefficient involving no multi­
plicity was given by Alifauskas and JUcys. 7 Holman8 

calculates the general O( 5) coefficient by a factorization 
scheme which involves embedding in a higher group; a 
disadvantage is the presence of redundant labels, so 
that an orthogonalization or some such procedure is 
needed to retain a complete and independent set of 
couplings. 

In Sec. 2 we construct the general van der Waerden 
invariant for 0(5). 

The method of van der Waerden invariants provides a 
complete nonredundant solution of the external labeling 
problem which is symmetric in the three IR's and which 
has the advantage of making no reference to the internal 
basis states to be used. To calculate Wigner coeffi­
cients, one merely expands the van der Waerden in­
variant in products of states of the three IR's using 
whatever baSis states are convenient for the problem at 
hand. In this paper we use states classified according 
to the canonical SU(2)XSU(2) subgroup of 0(5). 

Section 3 is devoted to the calculation of certain Gaunt 
coefficients which arise when a product of two 0(5) 
states in the same variables is expanded in O( 5) states. 

In Sec. 4 we evaluate certain classes of simple 
Wigner coefficients. 
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In Sec. 5 the general 0(5) Wigner coefficient is calcu­
lated explicitly. It takes the form of a sum of products 
of 9j symbols, Gaunt coeffiCients, and the simple 
Wigner coefficients of Sec. 4. It involves 41 internal 
summations. 

2.0(5) VAN DER WAERDEN INVARIANT 

The external labeling problem for a compact group is 
that of specifying all couplings of two IR's to give a third 
or, equivalently, specifying all couplings of three IR's 
to give an invariant. Long ago van der Waerden9 wrote 
down such a general invariant for SU(2) as a product of 
powers of certain elementary scalars; similar solutions 
of the external labeling problem exist for SU(3), 10 

SU(4), 11 and SU(5).12 A general discussion of the method 
is found in Ref. 12; it is an extension to the external 
labeling problem of the method of elementary multiplets 
(elementary permissible diagrams) which has been used 
to solve internal labeling problems. 13,14 

Examination of couplings of low-lying IR's suggests 
the following elementary scalars for 0(5): 

A1 = (00, 10, 10), A 2 =(10, 00, 10), A 3 =(10, 10, 00), 

B1 = (00, 01, 01), B2 = (01, 00, 01), B3 =(01, 01, 00), 

C1 = (01, 10, 10), C2=(10, 01, 10), C3 =(10, 10, 01), 

D1 = (20, 01, 01), D2 = (01, 20, 01), D4 = (01, 01, 20). 

(2.1) 

Explicit expressions for the elementary scalars are 
given in Sec. 4. They are not independent, for C jC j is 
a linear combination of Ak Dk and AjA j Bk; D j D j is a 
linear combination of AiBi B j and Bic~; CiDi is a linear 
combination of A j B k C k and A k B j C j (throughout this 
paper ijk are 123 in any order). Accordingly C i C l' 
DiD i' and C j D i are incompatible pairs for the purpose 
of forming the general van der Waerden invariant. Six 
types of invariant may be distinguished, each char­
acterized by a product of powers of eight elementary 
scalars 

(2.2) 

where i * j are chosen from 123. Since the invariants 
differ only by a relabeling of the three IR's, only one 
will be discussed in detail, namely that with i = 1, j = 2. 
Pin (2.2) is a projection operator which instructs us 
to retain only the part which is stretched in all IR 
labels. Thus 

Copyright © 1974 American Institute of Physics 782 
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P1=a2+a3, P2=a1+a3+c+2d, P3=a1+a2+c, 

ql = b2 + b3 + c + d, q2 = b1 + b2, q3 = b1 + b2 + d. 
(2.3) 

The eight exponents provide the six representation 
labels and two multiplicity labels. It is clear that we 
may use c, d as the multiplicity lables. All couplings 
are obtained by letting the exponents take all nonnegative 
integer values. 

To show that (2.2) solves the external labeling 
problem, we invoke Speiser's theorem16 which makes a 
correspondence between basis states of the first IR 
(PI ql) and couplings involving the first IR and the second 
IR (P2 q2)' 

Basis states of the general IR (P q) of O( 5) can be 
characterized by products of powers of variables which 
are the basis states of the two FIR's (fundamental ir­
reducible representations); the basis states are of de­
gree P in the variables a{3yo of (10) and degree q in the 
variables 1)I1A~1; of (01); the notation for the states of 
the FIR's is that of Ref. 15. The existence of a sym­
metric scalar in the direct product (Ol)X(Ol) and of a 
(10) quartet in the product (10)X(01) occasions the 
proviso that the following pairs of variables are incom­
patible for the purpose of forming states of higher IR's: 
11~, yl1, YA, OA, o~; the states thus eliminated belong to 
IR's lower than their degrees would indicate. Five types 
of internal state may be distinguished, each charac­
terized by a product of powers of six variables; the 
variables are af37J I; together with one of the following 
five sets of two: yo, y~, 011, I1A, A~. The indices of the 
powers of the six variables provide the two representa­
tion and four internal labels. This primitive solution of 
the state labeling problem utilizes no subgroup [apart 
from the U(l) subgroups corresponding to the two 
weights]; it is convenient for our purpose because it 
corresponds to our symmetric solution of the external 
labelling problem. 

In specifying the connection between variables and 
elementary scalars, we ignore AI' 8 1 , By identifying 
weights we are led to the following correspondence: 

A 2 -0!,.A 3 -{3, B 2 -1), B 3 -1;, C1 -A, 

C2 -0, C3 -y, D2-~' D 3 - 11. 

(O! and 1) are regarded as the heaviest states of their 
respective IR's). Dl corresponds to yo; there is no 
double counting since C2 C3 are incompatible. Then 
internal states correspond one-to-one to external 
couplings. Our justification of the solution provided by 
(2. 2) is valid only when P2 q2 are sufficiently large. Its 
correctness in the general case can be proved by the 
method discussed in Ref. 11 or 12. 

3. GAUNT COEFFICIENTS 

In expanding the van der Waerden invariant (2.2) for 
the evaluation of O( 5) Wigner coefficients it is necessary 
to combine 0(5) states in, say, the I-variables arising 
from different factors of the invariant into a sum of 
states in the same variables. The required formulas 
are analogous to the well-known formula of Gaunt by 
which a product of two spherical harmonics in the same 
variables is expanded as a sum of spherical harmonics. 
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Because of the projection operator P in Eq. (2.2), we 
need keep only that part of the expansion which is 
stretched in the 0(5) Cartan labels p, q; terms belonging 
to lower IR's will be denoted by "unwanted." 

First consider a state belonging to the simple IR of 
type (PO). According to (3.2) of Ref. 15 it can be 
written 

(3.1) 

where I ~>, I Dare Wigner monomials, i. e., 5U(2) basis 
states, in the 0!{3 and yo variables, respectively; 5 + T 
= ~p. The 5U(2) Gaunt formula is 

I;;) I~)= \! )(;;1 ~J!) {51;52i5}, (3.2) 

where 5 = 51 + 52 and the 5U(2) Gaunt coefficient is 

{51;52i 5}= [(251 + 252)! /(251)! (252)! ]1/2. (3.3) 

USing (3. 3), we obtain the Gaunt formula 

(3.4) 

wherep=P1 +P2, 5=51 +52, T=T1+T2 , and the 0(5) 
Gaunt coefficient is 

{
PP . P20 iPO} _((251+252)!(2T1+2T2)! )1/2 
51T 1 '52T 2 i 5T - (251 ) !(252)!(2T1)! (2T2) ! . 

(3.5) 

Before deriving the Gaunt coefficient for (Oq) type states 
we cast the (Oq) states in a new form: 

I 0 q ) =N!1)2SA q-2S + unwanted 
55; 5S S 

(3.6a) 

[T=S for (Oq) type states]. Also 

'_( (25+1)(2q+2)! )1/2 
Ns - (q-25)!(q+25+2)!(q+1)!2 Q- 2S . (3.6b) 

. It is evident that the state (3. 6a) is identical with (3.5) 
of Ref. 15 apart from normalization. That the nor­
malization (3. 6b) is correct is verified by taking the 
scalar product of (3. 6a) with (3.5) of Ref. 15. The 
state I sos; M9 is obtained from (3. 6a) by replacing 1)2S 
by 

1)2S - [(S +M)!(S -M) 1(5+N)!(5 -N) !)1/2 

7)M+m l1::rm ~S-M+N-m I;m-N 

X~ (M + m)!(5 -m)!(5 -M +N - m)!(m -N)! 
(3.6c) 

(3.7) 
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X {Oql . Oq2/ Oq} + unwanted 
S1S1 'S2S2 SS ' 

where q= q1 + q2' To determine the Gaunt coefficient, 

We are now in a position to derive the general Gaunt 
formula 

X{P1Q1' P2Q2jpq} +unwanted (3.9) 
S1T 1' S2T2 ST ' 

where P=P1 +P2' Q==-Ql +q2' The general 0(5} state can 
be cast in the form 

i pq ) I pq S' 5") 1ST ;MN = 5T MN A'~~ + unwanted, (3. lOa) 

where [see (4. 7) of Ref. 15] 

A'~~= [As~S' S,,}]-1, (3. lOb) 

j
pq §.' §:') 
STMN 

\ 
pO ) I Oq )/S' S"j S)/T'SH IT) 

= M~' ~'£.' M'N' ~'~' M"N" \M'M" M \N'"N" N ' 

(3.10c) 

M" ==-M -M', N" ==-N -N' (3.10d) 

The justification of (3.10) is similar to that of (3. 6a). 

To evaluate the Gaunt coefficient in (3. 9), take the 
scalar product of both sides with I S~;M"N)' In evaluating 
the scalar product on the left-hand side, use (3.10) for 
the states on the right side of the scalar product, (4.1) 
of Ref. 15 for the state on the left. The result is 

X [(2S' + 1)(2S1 + 1}(2S2+ 1}(2T' + 1}(2Tl + 1}(2T2+ 1}]1/2 
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put M1 =N1 = S1' M2 =N2 = - S2 in (3. 7), substitute from 
(3. 6a) for the states on the left, and take the scalar 
product with I fs ; M"N) in the form (3. 5) of Ref. 15 with 
the replacement (3. 6c). The result is 

(3.8) 

X"'(2S" 1){Oq1 Oq2j Oq} 
~, + ~§.r; ~~ S"S" 

l
S' S' S'll T' T' T'l _1 ~ _1 _2 

X As T(5' , 5"} §:f ~ S" '£.1 n S" • 

51 52 5 T1 T2 T 

(3.11) 

The 9j symbols are stretched in their first and second 
columns and their first rows, and contain one sum 
each. 17 Thus the Gaunt coefficient (3.11) contains three 
sums. 

Special cases of (3. 11) needed later follow: 

{
51 52 S} {T1 T2 T} {pp P20 \ PO} 

X 5' 5_'1' 5: T' _T'l' T' 5' T' , 5 T 5' T' , ____ _1 _1_1 2 2, 

(3.12) 

where p == P1 + P2' 5' = §.~ + 52' (3. 12) involves no sum. 

(3. 13) 

where q == q1 + q2' (3. 13) involves one sum: 

{ PO. Oq I p q} A (S'S") 
S'T' , 5" T" 1sT == ST' 

(3.14) 
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4. SOME SPECIAL WIGNER COEFFICIENTS 

We fix the phase and normalization of the van der 
Waerden invariant (2.2) by writing explicit expressions 
for the elementary scalars: 

Aj = Cljf3k- f3 j Cl k + Y /Jk- OjYk' 

Bj=1)jSk+ {;j1)k- ej~k- ~jek+>../tk' 

C i = (0. jf3 k - f3 jCl k + OjYk - Y jOk)>"; 

+ v'2 (0 jf3k - 13 jO km; 

+ v'2(-Y jf3 k+ f3 jy k)e; + ..f2(-OjClk+ CljokH i 

+ ..f2(Y jCl k - CljY k){;;, 

D;=(1) je k - ej1)k)f3~ 

- (~jek- ej~k+1));k- {;j1)k)Cl;f3; 

+(~j{;k- {;j~k)Cl~+(1)j~k- ~j1)k)O~ 

+(9j{;k-{;j9k)y~ 

- (9j~k- ~j9k +1)j{;k- (;j1)k)Y;Oj 

+ ..f2(1) j>"k - >.. j1)k)f3;O i 

- ..f2(9/tk- >"j9 k)f3,y,- ..f2(~j>"k- >"j~k)Cl,O; 

+ ..f2({;j>"k - >"j{;k)Cl,y;. 

(4.1) 

The van der Waerden invariant may be expanded as a 
linear combination of products of states in the 1-, 2-, 
and 3-variables: 

Sca= 6 
~ S2S 3 

Tl T2 T3 

(4.2) 

The Wigner coefficient is just the coefficient in this 
expansion; by the Wigner-Eckart theorem it factors into 
a product of two SU(2) Wigner coefficients and the re­
duced O( 5) Wigner coefficient 

(
PlQl . P2Q2 . P3Q3) 
SIT l ' S2T 2 ' S3T 3 cd' 

In this section we calculate the special reduced 
Wigner coefficients arising from the special van der 
Waerden invariants Cr, D~, A11A~2A~3, and Bfl B~2 B~3; 
they are needed later as components of the general 0(5) 
Wigner coefficient. These special invariants involve no 
external multiplicity and are readily normalized. The 
Wigner coefficients we derive are the unnormalized 
ones; in each case the normalization constant is given 
separately. The invariant PC f can be written 

1 ( 6 )1/2 
PCf= Nc (c + l)(c + 2)(c + 3) 

(4.3) 

J. Math. Phys., Vol. 15, No.6, June 1974 

785 

where 

I Oc ) 
ISlSl;-Ml,-NI23 

is a composite state formed from two IR's of type (cO) 
in the 2- and 3-variables. N c is the normalization factor 
for the invariant. Such states can be constructed by 
methods similar to those of Ref. 15; the result, in an 
obvious notation, is 

I OC) _( l)f((C-2S)!(C+2S+2)!)1/2 
155;MN 23 - c+ . (2S+1)(2c+2)! 

x (- I)2T3 [(S2 + S3 - S)! (S + S2 + S3 + I)! 

X(T2 + T3 -S)!(S + T2 + T3+ I)!]-1/2. (4.4) 

Substitution of (4.4) into (4.3) gives the special reduced 
Wigner coefficient: 

( 
Oc cO CO) 
SISI' S2S2 ' S3T 3 

=(.., I)2T2 c! (2 C(251 + I){(c+ I)!}3(c - 251)! )1/2 
(2c + 2)! (S2 + S3 - SI)! 

( 
(C+2S1+2)! )1/2 

x (SI +S2 +S3+ I)!(T2 + T3 - T l )!(TI + T2 + T3 + 1)! ' 

and the normalization factor in Eq. (4. 3) 

N c= v'3[c! (c + I)! (c + 2)! (2c + 3)2C- l ]-1/2. 

The invariant P Dg can be written. 

1 ( 3 )1/2 
PDg= Nd (d+ I)(2d+ I)(2d+ 3) 

(4.5) 

(4.6) 

x ~ I 2d . 0 ) I 2d. 0 ) (_l)M2+N2, 
S2M2N2Is2T2,M~2 2 S2 T2,-M2,-N2 31 

(4.7) 

where I ~~2;-M2~-N2>31 is a composite state formed from 
two IR's of type (Od) in the 3- and I-variables. Again 
such states can be constructed by the methods of Ref. 
15 with the result 

12d 0) _( 4(2d+I)(2d+I)! )1/2 
15TMN 31- d!(d+I)!(2S+I)(2T+I) 

I(Od Od) ST) 
x ~ I 5gS3 SISI MN 31 

x (_ 1)d-2Sg ((253 + 1)(251 + 1)(5 + 53 - SI)! 
(53+51 -5)!(S3+,51-T)! 

x (5+51-53)!(S+S3+51+1)! )1/2 
(d - 2S3)! (d + 253 + 2)! (d - 251)! 

x /(T + 51 - 53)! (T + 53 - SI)! (T + S3 + SI + I)! )1/2 
\ (d+ 251 + 2)! 

(4.8) 

Substitution of (4. 8) into (4. 7) gives the special re­
duced Wigner coefficient. 
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( 
Od .2dO Od )_( )25 1 ) 

5 T '5 T . 5 T - - 1 2(2d + 1 1 
1122' SS 

X (251 + 1)(25s + 1)(52 +53 -51)1)1/2 
(53+51-52)!(Ts+T1-T2)! 

x(5a+51-5s)I(51+5a+5s+1)1 
(d - 25s)! (d + 253 + 2)! 

x (Ta+Ts-T1)!(Ta+T1-Ts)!(Tl +T2+Ts+ 1)!)1/2 
(d- 251)!(d+ 251 + 2)1 

and the normalization factor in (4.7) 

Nd=Y6[d! (d+ 1)! (2d+ 3)! ]-l/a. 

(4.9) 

Next consider the invariant A~1A~2A~s. The norm of 
A~l A~2 A:s is (a1 + aa + 1) (a1 + ag + 2) (a1 + ag + 3)/6 times 
the norm of the term containing a;1+a2. That term is 
a;l +"21 as), where I as) = f:l~1 f:l~2 A;3. The norm of I as) is 
found from the equation 

(4.10) 

A; is just As with variables replaced by differentiations. 
The resulting normalization factor for ApA:aA~s is 

Na=Y6[a1! a2! as! (a1 +ag+as +3)1]-1/2. (4.11) 

To expand A~lA~2A~s, break each A into its 5-spin and 
T-spin parts and make a binomial expansion; the 5-fac­
tor and T-factor each form an 5U(2) van der Waerden 
invariant. Expanding these and using (3.2) of Ref. 15, 
we find the special reduced coefficient 

(
PP . P20 . pp ) 
51T1 ' 52T2 ' 5sTs 

X [t(P2 + P3 -PI)]! [t(Ps + PI - Pa)]! [t(Pl + P2 - P3)]!, 
(4. 12) 

where PI = a2 + a3, etc. 

Finally consider the invariant P Bf1 B:2 B:s. Its nor­
malization constant is evaluated by methods similar to 
those used in normalizing A~l A~2 A~3. The result is 

x (2ba +2b.+1)1! )1/2 
(b 1 + b2 + b3 + 2)!(2b1 + 2b2 + 2bs + 3)1! 

(4. 13) 

P B~l B:a B!3 is expanded by first expanding the individual 
factors according to 

bS I" lObs \ I 0 b3 ) ( 1)M-N 
PBs =b"5~NI55;MN~ 55;-M-N 2 - , 

(4. 14) 

and then combining the states with the help of the Gaunt 
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formula (3.7). The special reduced Wigner coefficient 
turns out to be 

= (- 1)51 +52+5• (qa + qs - q1 + 1)! (q. + q1 - q2 + 1)! (q1 

+q2 - qs + 1)! 

X (8(251 + 1)(252 + 1)(25s + 1)q1! q2! qs! 
(2q1 + 1)!(2q2 + 1)! 

X (q1 - 251)! (q2 - 252)! (q. - 25s)!)1/2 
(2q3 + 1)! 

x [(q1 + 251 + 2)!(q2 + 252 + 2)!(q. + 253 + 2)! ]1/2 

xX; (_1)2(Si+52+S:jl 
5

1
52 5; 

x (251 + 1)(252 + 1)(253 + 1) 
[t(qa + qs - ql) - 25iJ ! [t(q3 + q1 - qa) - 252] ! 

(4.15) 

Formula (4. 15) contains four sums. The special 
Wigner coefficients found earlier in this section contain 
no sums. 

5. GENERAL WIGNER COEFFICIENT 
To expand the general van der Waerden invariant 

(2.2), one first expands the separate factors A~lA~2A;', 
B~l B:2 B:3, Cf, ng using the formulas of Sec. 4, then 
combines the different factors involving the 1-, 2-, 3-
variables respectively with the help of the formulas of 
Sec. 3. The order in which the factors are combined 
affects the form but not the numerical value of the final 
result. We first combined A~lA~2A~3 with Cf and 
B~l B:2 B~s with ng, then combined the results to arrive 
at a final formula: 

{
PP . Oc I PI c} {P2 - C - 2d Q cO I P2 - 2d o} 

= L5T 5' T' , 5" T" S T 5' T' , 5" Til 1ST 111111 222222 

X{Oq1-C-d. Od \Oq1- C }{Oq2. 2dO 12dq2} 
5 * T* , 5** T** S T 5* T* ' 5** T** S T 11 11 11 222222 
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(
PI 0 P2 - C - 2d 0 P3 - C 0) ( 0 ceO CO) 

x S'T'; S'T' . S'T' S"T"; S" T" ; S"T" 1122' 33112233 

( 
Od 2dO Od) [(25 + 1)(25 + 1)]1/2 

X 5**T** ; 5**T**; S**T** 1 2 
1 1 2 2 3 3 

X [(253 + 1)(251 + 1)(282 + 1)(253 + 1)(251 + 1) 

X (252 + 1 )(253 + 1)(21\ + 1 )(21' 2 + 1)(21\ + 1) ]1/2 

X [(21\ + 1)(21'2 + 1)(21'3 + 1)(2T1 + 1)(2T2 + 1)(2T3 + 1)]1/2 

-

~'\ r 52 

X 51 52 53 

SI 52 53/ 

"T" T" 

~lr' 
T** Tt'\ JT~ 

2 2 

T' T; Tt T* T* 

(1': 
2 2 a 

T2 Ta 7\ 1:2 '1'3 / 

~ ~l T2 

~'l X ~ Tl T2 Ta 

Tl T2 T3 

(5.1) 

The sum in Eq. (5.1) is over the variables 
S' S" 5- 5' S- 5" S' S" S* S** 1" S* S** S- S* S** -T l' l' l' 2' 3' 2' 3' 3' l' 1 '':>1' 2' 2 , 2' 3' 9 , l' 

'1'2' The other 5's and T's are not independent: 

S'2=S~+S~, Sa=S;+S~, T~=~(az+a3)-S~, 

T~ = sr, T~ = t(a3 + al ) - 5~, T~ = tc - 5~, 

-T -T' + T" T' -l(a +a) 5' T" -lC 5" T 2 - 2 2' 3 - 2 1 2 - 3' 3 - 2 - 3' 3 

=T;+ T~, 

Tt=5t, Tt*=St*, T1 =51> Tt=5t, 

Tt*=d-St*, Tt=5t, Tt*=S:*, 1\=53 , 

There are 18 explicit summations in Eq. (5.1) and 23 
more in the various 9j symbols, Gaunt coefficients, and 
special reduced Wigner coefficients. 

The metric matrix for the unnormalized van der 
Waerden invariant is discussed in an appendix. 

The method of van der Waerden invariants is a power­
ful technique for obtaining expressions for the Wigner 
coefficients or Clebsch-Gordan coefficients of low 
order compact groups commonly utilized in physics. We 
plan to use the van der Waerden invariant of this paper 
to evaluate certain classes of Wigner coefficients for 
the noncanonical chains 0(5):::>5U(2)xU(1) and 
0(5):::>5U(2). 
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APPENDIX 

Two van der Waerden invariants with the same p' s 
and q's but different C jd j are in general not orthogonal. 
We indicate here how the metric matrix (overlaps) may 
be calculated. Isolating the 53T3 multiplet which contains 
the heaviest state of (Paqa), we may write 

SCd= L; 2::: 
S I T I MIN1 

S2 T2 M2N2 

+ contribution of other SaT3 multiplets. Since each of 
the D3 = (Pa + 1)(qa + 1)(P3 + qa + 2)(P3 + 2q3 + 3)/6 states 
of (P3q3) contribute equally to the metric matrix element 
(5 e'd' I Sed)' we may write 

(s IS)- (P3+1)(P3+q3+2)(Pa+2qa+3) 
c'd' cd - 6(P3 + q3 + 1) 

(AI) 

The reduced Wigner coefficients appearing in (AI) 
contain the heaviest ST multiplet of (P3 q3) and hence are 
considerably simpler than the most general ones. 

If orthogonalized couplings are desired, one can, of 
course, use the Schmidt scheme. Alternatives are to 
diagonalize the metric operator (AI) or to use 
eigenstates of the mixed Casimir operators. 18 
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A basis vector treatment of tensor calculus in an N-dimensional (pseudo-) Euclidean space is used to 
obtain new insights into the geometrical properties of curved Riemannian spaces of smaller dimension 
which are globally embedded in the N -space. In particular, it is shown that, in general for a 
globally embedded hypersurface, (i) partial derivatives of internal basis vectors with respect to 
internal coordinates must in general be expressed as a linear combination of external as well as 
internal basis vectors, (ii) there exist two different geometrical expressions, always equal in value, for 
the intrinsic curvature tensor, (iii) the geodesic equation contains more terms than does the usual 
one; the extra terms vanish for Schwarzschild metric embeddings. These points are illustrated by the 
example of a 2-sphere embedded in Euclidean 3-space. 

INTRODUCTION 

Very many advanced physics texts make no mention 
or use of basis vectors in their presentations of tensor 
calculus and general relativity. 1 However, a great many 
authors have made good use of a tetrad formulation in 
the context of general relativity. 2 Orthonormal triads 
of basis vectors in a Euclidean 3-space are very famil­
iar; perhaps not quite so familiar are treatments of 
tensor calculus in N-dimensional spaces which make use 
of covariant basis vectors (tangent to the coordinate 
curves), and their duals, contravariant basis vectors 
(normal to surfaces of constant coordinate). 3 

Our main purpose in this paper is to show that such 
a basis vector formulation of tensor calculus provides 
certain new inSights into the geometrical properties of 
curved Riemannian spaces which are globally embedded 
in larger pseudo-Euclidean spaces. To this end, in 
what follows we develop just enough of the general for­
malism to treat embedding; we omit the bulk of standard 
tensor calculus (transformation properties, covariant 
derivatives, etc.) which could also be derived easily by 
our methods. The most important point of our treatment 
is that the change with location in a hypersurface of the 
basis vectors belonging to the coordinates of the hyper­
surface must in general partake of basis vectors exteri­
or to the hypersurface. This result leads to two differ­
ent geometrical expressions, always equal in value, for 
the conventional curvature tensor in an embedded hyper­
surface. As an example, we evaluate the curvature ten­
sor, using both expressions, for the surface of a sphere 
embedded in Euclidean 3-space; the results agree. 

We also find that the equation for the geodesics in an 
embedded hypersurface in general contains more terms 
than does the usual geodesic equation. For Schwarzs­
child metric embeddings,4 these extra terms vanish, 
so that there is no contradiction of general relativity. 

FORMALISM 

Consider an N-dimensional real coordinate manifold, 
and an associated pseudo-Euclidean linear vector space 
PEN' Then there exist real-valued coordinates X;, i 
= 1, ... , N, such that the position vector x and the vec­
tor separation dx of infiniteSimally near points may be 
written 

x=EiXi, dx=EidXi, (1 ) 

where dx= ° if and only if dXi = 0, all i; the {E i} are 
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stant basis vectors for PEN' The metric may be taken 
as 

Ci/=Ei·Ej=Cji=(O, Uj;±1, i=j). 

This metric is constant, since the E i are. Define 

(2) 

Ei=CijE j, CijCjk=15!=Ei,Ek (3) 

The set {Ei} is also a basis in PEN' Define the gradient 
operator: 

V=Ei~. (4) 
oX' 

Consider a one-one (in general nonlinear) mapping to 
coordinates Xi: 

Xi = /(X1
, ••• ,XN) _ Xi =Fi(X1

, •• • , XN). (5) 

Define 

oXk 

ej=oix = OXi Ek=covariant basis vector, (6) 

. . OXi k ( ) e'=Vx'= oXk E = contravariant basis vector, 7 

associated with the coordinates Xi. We use the notation 
o i = 0/0 Xi. The basis vector e i at a point is tangent at 
that point to the coordinate curve Xk = (const)\ all k"* i, 
which passes through that point. The vector e i at a 
point is normal at that point to the hypersurface Xi 
= const, which contains that point. These interpreta­
tions apply mutatis mutandis in all coordinate systems, 
including the reference pseudo-Euclidean system. 
Define the metric: 

gjj=ei,ej=gji' gii=ei.ej=gii; (8) 

then gij gjk = a! = e i • ek, and gij is a tensor of second 
rank, transforming as a product of basis vectors. 

Coordinate dependence of basis 

Consider 

where the last equality defines r jiQ = r i/' Then 

ek'Ojei=gkQrjiQ=[k, jij; ei'ojek=[i, jkj; 

adding these and manipulating, we find 

Copyright © 1974 American Institute of Physics 
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the Christoffel symbol of the first kind; then r I~ is a 
Christoffel symbol of the second kind, equal to the 
(negative of) the affine connection. 1 In our treatment 
there is no need to consider parallel transport or arbi­
trarily defined affine connections. 

ConSider the second derivatives: 

dkd je 1 = dX~d3:::;XI Em = (d k r j~ + r 17 r k.:!)e., 

djdke j d~;~dXI Em =(d jrk~ +r I: rj.:!)e •. 

These are manifestly equal, so their difference 
vanishes: 

el 
• d [kd Jlel =RI Ikj = 0, 

where 

(11) 

(12) 

(13) 

(14) 

is the curvature tensor; naturally this is zer9 in a flat 
space. We use the notation 

a[1 bJl =alb j -ajb l . (15) 

Note that we do not use the t usually associated with 
index antisymmetrization brackets. 

GLOBAL EMBEDDING 

Consider the M -dimensional space obtained by placing 
(N - M) constraints on the curvilinear coordinates 
XM+l, ••• , x N : Let 

(16) 

define the M-dimensional hyper surface ~M' The remain­
ing coordinates xl', IJ. = 1, ... , M, are coordinates for 
~M' Here and in what follows, Greek indices range and 
sum over 1, ... , M; Latin indices (a, b, c, ... ) from 
the first part of the alphabet range and sum over 
M +1, ... , N; Latin indices (i, j, k, l, ... ) from the 
later part of the alphabet range and sum over 1, ... , N. 
Now notice that 

(17) 

that is, the change of a basis vector with respect to a 
change of internal coordinate partakes not only of the 
basis vectors in ~M' but also of those outside ~M' since 
r v~ * ° in general. 

For the curvature tensor with all interior indices, we 
have from Eq. (14), 

R"'aY6 =0={d[y r 61B" +rB[6ArY1A"}-rB[~r61~' (18) 

where all quantities are evaluated on the hypersurface 
~M' Now 

r 6~ =g" i[i, 15,8] = g"A[A, 15,8] + g"a[a, 15,8] = Mr 6~ + A6~' (19) 

where Mr 6~' A ~ B are defined by the first and second 
terms in the last equality, respectively. The Christoffel 
symbol Mr6~ belongs entirely to the hypersurface ~M' 
From Eqs. (14), (18), (19), we have on the hypersurface 
~M 

(20) 
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where the conventional curvature tensor in the M -space 
is defined by 

(21) 

Equations similar to Eq. (20), and to its three indepen­
dent companions which arise from 

R"'BYd=O, R"'Bcd=O, RabCd=O, 

have been derived by a different method by Szekeres. 5 

If the coordinates are such that (g" a) = ° on ~ M' the 
(A~B)=O on ~M' and Eq. (20) reduces considerably. 

We see that our formalism, with global embedding, 
restricts us to Riemannian curved spaces with symmet­
ric affine connections; but such spaces are the ones 
pertinent to Einstein's theory of graVitation, and to 
successful modifications thereof. Theories with non­
symmetric metric and/or nonsymmetric connections 
have been attempted, but none have been successful 
enough to replace Einstein's theory. 

GEODESICS 

In the curvilinear coordinates Xl in our N-space, a 
curve lying entirely in our embedded M -space is given 
by Xl = ZI(S), i = 1, ... , N, subject to the constraints 
xa=za(s)=ka=(const)a, a=M+l, ... , N. The N-vector 
velocity is z=ejzl=el'zl', since z"=O; the dot means 
d/ds. We take ds to be the (positive) element of arc 
length along the curve, whereby ds2 = ± (dZ • dz); the ± 
signs are taken so as to make ds 2 >0. (We omit discus­
sion of null curves. ) Therefore z· z = ± 1. A (nonnull) 
geodesic in our embedded M -space is a curve of ex­
tremal arc length between any two pOints; its equation 
is the Euler-Lagrange equation 

(22) 

with 

(23) 

where the Aa are Lagrange undetermined multipliers, 
a = M + 1, ... , N. Combining the above equations and 
constraints, we get 

(25) 

where we have used Eq. (19). Equation (24) evaluates 
the Lagrange multipliers. If we had followed the usual 
development in an a priori curved Riemannian M -space, 
then instead of Eq. (25), we would have the usual 
geodesic equation 

(26) 

In general Eqs. (25) and (26) disagree; but for the 
Schwarzschild metric embeddings,4 g"a=o on ~M' imply­
ing that A,,~=O on ~M' Since tests of general relativity 
are really tests of the (exterior) Schwarz schild metric, 
there is no contradiction. [Note that the extra terms in 
Eq. (25) always vanish if g"a=o on ~M' which is the case 
for any ~ M if the Xi are orthogonal coordinates. J 
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SPHERICAL 2·SURFACE 

Consider an example in a background Euclidean 3-
space E 3 , with coordinates Xi, metric G ij = <5 ij' Trans­
form to spherical polar coordinates Xi, (Xl, :r-, r) 
=(0, ¢, r): 

Xl=rsinOcos¢, X 2=rsinOsin¢, ~=rcosO; (27) 

with 0,,; r"; co, 0,,; ¢ <21T, 0,,; O~ 1T. We ignore singular 
pOints. Then 

dXidXi =gij dxidx j = ~(d8)2 +(~ sin28)(d¢)2 + (dr)2, 

so the metric gij is diagonal, with 

gll = r2 = 1/~\ g22 = ~ sin28 = 1/ g22, g33 = 1 =g33. 

(28) 

By using Eq. (10), the only nonzero Christoffel symbols 
are easily found to be 

rl~ = r 3~ = l/r, r 2~ = - sine cose, r 1~ = r 2~ = cote, 

r2~=r3~=1/r, rl~=-r, r2~=-rsin2e. 
(29) 

A sphere of radius a centered at the origin has the equa­
tion r = a = r, so that here (Xl, :r-) = (e, ¢) are interior 
coordinates, and r = r is the exterior coordinate. 

By symmetry, the only independent non-zero com­
ponent of MR

Ct
s,6 is 

MR\12 = c\ r 2~ - a 2r l~ + r 2; r l~ - r 1; r 2~ = 01 r 2~ - r 1~ r 2~ 

= - cote( - sine cos e) + oOe (- sine cos e) = sin28. 

(30) 

Using the right-hand side of Eq. (20), we find the ex­
pected agreement: 

rl~r2~ - r2~rl~= - (-a sin2 0)(I/a) = sin20 =Rl
212 • (31) 

. It is trivial to check the zero-valued components of 
Eq. (20). Notice that 

01el = rlfe; = - ae3 , 

,\e2 = r l~e i = cote e2 = 02ell 

02e2 = r 2~e i = - sinB cos B e1 - a sin20 e3 • 

So, in general, interior derivatives of interior basis 
vectors involve the exterior basis vector e3. 

DISCUSSION 

We should briefly discuss embedded vs conventional 
a priori curved Riemannian spaces, from the point of 
view of our basis vector formalism. 

In the a priori formulation, the set of M coordinates 
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{xCt } is considered to be the whole coordinate manifold. 
In a basis vector treatment, the vector separation of 
infinitesimally near points would not be a perfect differ­
ential. We would write Ix=eCtdx Ct , and we might be 
tempted to write 

(32) 

where the Mr a~ are proportionality factors to be deter­
mined. For a space without torsion, we would then 
arbitrarily take Mf Ct~e = Mf e;. Then the definitions above 
would yield Mf a~ = Mr a~, (intrinsic) Christoffel symbols 
of second kind, as usual. But then we could not take 
OCtOeey=osoae" Since, if we did so, the curvature ten­
sor would vanish, a contradiction. Yet it seems strange 
that these mixed derivatives would have to be unequal, 
since e, is merely a vector-valued function of the 
coordinates. Our embedding formalism provides in­
sight here: For all curved spaces which may be globally 
embedded in a pseudo-Euclidean space of higher dimen­
Sion, the relation (32) above is clearly wrong; it should 
be our Eq. (17), o",ee=ra~8e~+r~eea,whichleadstoa 
nonzero intrinsic curvature tensor even through oaoee, 
= oeoa e,. Since it has been shown that all definite metric 
Riemannian spaces without torSion, 6 and a great many 
interesting indefinite metric ones,4 may be globally 
embedded in larger pseudo-Euclidean spaces, this in­
sight is of some significance. 

It is clear that suitable contractions of Eq. (20) yield 
equations formally identical with Einstein's field equa­
tions, where the stress-energy tensor occurring on 
the right-hand side of the latter is here a purely geo­
metrical object; it is an attractive speculation that 
coordinates "exterior" to space-time may be associated 
with "internal" coordinates of the fundamental parti­
cles. 7 Doubtless it is this possibility of total geometri­
zation which sustains physicists' interest in the embed­
ding problem . 

1For example, R. Adler, M. Bazin, and M. Schiffer, Intro­
duction to General Relativity (McGraw-Hill, New York, 1965). 

2For example, see the article by G. C. Debney, R. P. Kerr, 
and A. Schild, J. Math. Phys. 10, 1842 (1969). 

3For example, A. Lichnerowicz, Tensor Calculus (Methuen, 
London, 1962). 

4C. Fronsdal, Phys. Rev. 116, 778 (1958); J. Rosen, Rev. 
Mod. Phys. 37, 204 (1965). 

sp. Szekeres, Nuovo Cimento 43, 1062 (1966). 
6For reference to the original work on embedding, see the 
papers in Rev. Mod. Phys. 37, 201 (1965), Seminar on the 
Embedding Problem, esp. the paper by A. Friedman, p. 
201. 

7For a discussion of this idea, see the paper by Y. Ne'emann, 
Rev. Mod. Phys. 37, 227 (1965). 
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An old but not well-known formal method is detailed and used to obtain the symmetrized 
stress-energy tensor from Noether's theorem applied to Poincare-covariant Lagrangian field theories. 
A variation in a standard method is presented and used to obtain the corresponding canonical 
stress-energy tensor, valid in arbitrary curvilinear coordinates, in the limit of Lorentz metric. These 
two tensors are shown to be equal, in each case, for scalar, Maxwell. Dirac spinor, coupled 
Maxwell-Dirac, and vector (non-Maxwell) Lagrangian field theories. 

INTRODUCTION 

In the Maxwell theory in Lorentz metric it is well 
known that a straightforward application of Noether's 
theorem, under uniform space-time translation form 
invariance of the Lagrangian, yields an asymmetric 
stress-energy tensor, 1 which may be symmetized either 
by educated guesswork, or by application of a formal 
scheme. 2 The formal procedure may be followed in 
general for all Lagrangian field theories in Lorentz 
metric. 

On the other hand, there is the canonical stress­
energy tensor, 2 manifestly symmetric, with zero di­
vergence in an arbitrary curvilinear (or curved space) 
Riemannian metric. This tensor is believed to always 
reduce to the symmetrized Noether stress-energy ten­
sor in the limit of Lorentz metric. To our knowledge, 
this presumed equality of the canonical tensor with the 
Noether tensor has never been proven in general. We 
have not yet been able to give a general proof. 

In what follows, we detail a formal symmetrization 
method for the Noether tensor, and a formal method for 
obtaining the canonical tensor in the limit of Lorentz 
metric. Then we derive these tensors, and show that 
they are indeed equal, for several Lagrangian field 
theories: scalar, Maxwell, Dirac spinor, coupled Max­
well-Dirac and vector (non-Maxwell). 

NOETHER'S THEOREM 

We work in Lorentz metriC, fI"v=diag(l11 -1), co­
ordinates x" = (x, f), natural units, notation a,,;::; a/ax"; 
summation convention over all indices. 

Consider fields CP.(x) in a Lagrangian field theory with 
Lagrangian density L (CPa' a" CPa)' Here the index a runs 
over different components of, say, a 4-vector field, 
and/or over different fields. If L is a form-invariant 
functional of its arguments under a transformation of 
coordinates and/or fields, then there exists a quantity 
with zero 4-divergence. 3 For example, if L is form­
invariant under uniform space-time translations, then 
o)p,v=O, where 

aL 
tAy =7);..v L - (ilA)a) o(a;"<I>.) (1) 

is identified as the (unsymmetrized) stress-energy (SE) 
tensor. This tensor is asymmetric in general. 

If L is form-invariant under Lorentz rotations, then 
a"irv=O, where i .. AV is the angular momentum tensor: 

(2) 
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(3) 

_ aL ( )" 
s"Av= a(a"cp.) Iv). a ¢b' (4) 

and the (IVA) - (lAY) are matrix representations of the 
generators of Lorentz rotations. Note S"AV = - S "VA' 

L may also be form-invariant under certain gauge 
groups, leading to conserved currents, which do not 
concern us here. 

SYMMETRIZED STRESS-ENERGY TENSOR 

We sketch the development given by Belinfante. 2 

Define 

9~V;::; t~v + il"f,,~v 

such that 

eAv=ev~' f"AV=-i~/J.v; 

the last equality implies il~e~v=O. 

Now 

and 

BAV - BVA = ° = tl.V - tVA + a"(f "XV - i"v» , 

so that we identify 

Simple manipulation leads to 

We shall call BAV the Noether SE tensor. 

CANONICAL STRESS-ENERGY TENSOR 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Given a Lagrangian field theory in curvilinear co­
ordinates with Riemannian metric g"v' symmetrix af­
fine connection. According to Landau and Lifschitz, the 
quantity T l.v satisfies D). T~v = 0, where D).;::; covariant 
derivative, and 

(11) 

with 

g;::;det(g",a)' L =L(<I>., il,,<I>a; g",a, a"g"'B). 

We shall let 

(12) 

and keep terms to first order only in h~V, a" hAY; the se-
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cond equality above is valid to first order, where 

h>'v "'1J>''''1J vB h",s' h",s=hs",. (13) 

Then we get 

(14) 

where the 1J>.v L term comes from a{::g/ag>'v. We shall 
call T >.v the canonical SE tensor. 

SCALAR FI ELD 

Noether SF tensor 

Let 

L.=-P"cP a"cp; 

a mass term is irrelevant; cp(x) is the scalar field. 
Then the motion equations are 

(15) 

(16) 

Under a Lorentz rotation, a scalar field has no com­
ponents to be mixed (no spin part for the induced field 
transformation), so that s~>.v=O. Using Eqs. (1), (16), 
we find 

(17) 

Note that 844 ;' 0; when possible for Boson field we 
choose the over-all sign of the Lagrangian such that, 
with our definition of 8 "V' we find 844 ;' O. 

Canonical SE tensor 

L.(h) = - .p", cp a scp(T)"'s - h"'S). (18) 

Using Eq. (14), we find 

(19) 

where, of course, in the last expression a"cp=1J">.a>.cp. 

For conciseness in what follows, for each field theory 
considered we shall merely list the crucial quantities, 
and the results 8>.v' (T>'V)h=O' 

MAXWELL FIELD 

(I v>.)/ = T) va 6>. b - 6v bT)>.a' 

s:>.v= (1/41T) (f,,>.A v - f,,~>.), 

f: AV = (1/41T)f"AA v' a "!';>.v = - (1/41T)fAv a" A v' 

t;:'v = - (1J>.j161T)f",sf"B + (1/41T)f>." a~", 

(20) 

L m(h) = - (1/161T)f0<8f,6 g"" gS6 = L m + (1/161T)f",sf,6 (T)""hS6 

+ T)S6 hOI'), 

(T;:'V>h=O = 8>.v = - (T)>.j161T)f"sf"S + (1/41T)fA.Jv" (21) 

(Note that the fully covariant f rxs still involves only 

J. Math. Phys., Vol. 15, No.6, June 1974 

793 

ordinary derivatives of A ", because of its antisym­
metry. ) The equality T = 8 is well known for the Maxwell 
theory. 

Dirac spinor field 

We choose a real-valued Lagrangian in metric T)"v: 

(22) 

where the 1''' are 4x4 constant matrices satisfying 
[y",yVL=2T)"v1, yjt=Yj, 1']=-1'4' and for definiteness 

(23) 

We regard (1/J, iF) as independent (four-component) fields; 
then 

6~ =o-y"a,,1/J+m1/J=O, 
61/J 

oL =0- a ;r~,,, -m;;;=O o1/J ,,"'{ "', 

a"f !!>.v = - t<.~'Y>.av 1/J - ~ va>.,» - a V~YA1/J + a>.-;jjy v1/J), 

tPv=t(~y>.av1/J- av~YA 1/J). 

Note that L D = 0 in virtue of the field equations. 

The generally covariant Dirac equation was first 
presented long ago5

; it may be written 

(24) 

(25) 

x"(a" - r)1/J+m1/J=O, (26) 

where X", r" are 4 x 4 coordinate-dependent matrices 
satisfying6 

[X" X vl = 2g" v 1 r = 1.[X /I III ~v>. ,+ 'u 4 ,,.... , 

with [X, iJ.lll = t( a "g>.v + a ~>." - a >.gv,,) = Christoffel symbol 
of first kind, and ~v>.",t[Xv, xAL. The field equations (26) 
are Euler-Lagrange equations of the Lagrangian 
V-i L D(h), where 

L D(h) = - t{ijjx" a" 1/J - a" iFx"w -iF[x", r "Li/!} - m1jj1/J. 

To first order in h rx8 , a" hrx s, we have 

x"=y"-th""'Y"" x"=Y,,+th,,sYs, (27) 

r" = t<.avh>....)a V\ 

[1''', rJ+=i(avh>.,,){[Y", a v>.). + [1'\ aV"jJ=O, (28) 

LD(h) 

'" L D + i h""'(1jj 1'", a" 1/J + 1iiY" a ,,1/J - a ,,1jj 1'", w - a", ?jj I' "w). 

(29) 

Whether we combine Eqs. (5), (24), (25) to get 8fv' or 
Eqs. (14) and (29) to get (TfV>h=O' we find 

(TfJh=O = 8~v 

= K~ Y>.0v1/J + ~ I' va>.w - 0v~ y>.w - o>.~ Yv1/J)· 
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COUPLED MAXWELL-DIRAC FIELDS 

L mD = L m + L D + j "A" , j";: ieiJj y" l/J. 

L D + j "A" = 0 in virtue of field equations, 

o~ =O-y"(o -ieA )l/J+ml];=O, 
ol/J "" 

oL [ -}y-ol]; =0- (o,,+ieA,,>l]; "-ml];=O, 

oL . -- = 0 - 0 fV" = - 47TJ" oA" v , 

but o"f:fv is different than in the free field case. After 
some manipulation, we get 

(J~f = (J;:'v + (Jfv - W~Av + j.,AJ. 

We have for the curvilinear Lagrangian 

L mD(h) = L m(h) + L D(h) + to,.AB + jaAa) (TJaB - haB); 

inserting this in Eq. (14), we get 

VECTOR FIELD 

We use for the Lorentz metric Lagrangian density 

Lv = - t( 0 a cfJB}(O acfJB). 

(30) 

This will provide an example in which the Christoffel 
symbols actually playa role: 

oLv =0-0 OV'/''' =0' 
/) cfJ" v 'I' , 

we take 

o u. cfJ" =0, 

(lv~)ab =TJ va O~b - OvbTJ~a' 

s~~v = (0 u. cfJ~) cfJv - (0" cfJv)cfJA' 

f:~v= o[u.cfJ~JcfJv+ 0ncfJv)cfJ" - o("cfJv)cfJ~, 

where [ ];: anti symmetric part, ( );: symmetric part. 
We have 
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(31) 

The curvilinear Lagrangian is 

Lv(h)=-tDacfJBDycfJa gaYgBa 

with 

DacfJB=oacfJB- r~BcfJA' r~B;:gAa[o, aj3], 

To first order in haB, o"haB, this is 

L v(h) = Lv + t(o ",cfJB)(OycfJa )(-TjaYhBO + 1)BO h"'y) 

+ i< O(ycfJa ) cfJa + 0 (ycfJ a) cfJa )oYhaa 

+ HO(ycfJa) cfJa + 0 (acfJa ) cfJy] 0° hay - t 0 (ycfJa) cfJaoahya • 

Using Eq. (14), we get 

(T~Jh=O= (J~v' 

The Lagrangian L v has been proposed for (massive) 
vector field theories; in addition to its lack of gauge 
invariance, its canonical SE tensor is quite clumsy; and 
(J~ is not manifestly positive semidefinite. 

SUMMARY 

Considering the above evidence that the canonical SE 
tensor is equal to the Noether SE tensor, it would seem 
that we really ought to be able to provide a general 
proof of their identity, perhaps by counting indices in 
some way. To our knowledge, a general proof has never 
been given, and we have not yet found one. 

lL. Landau and L. Lifshitz, The Classical Theory of Fields 
(Addison-Wesley, Reading, MA, 1951). 

2F. J. Belinfante, Physica 6, 887 (1939). 
3For a discussion of Noether's theorem, see, e. g., P. Roman, 
Theory of Elementary Particles (North-Holland, Amsterdam, 
1961), 2nd ed., Chap. IV. 

5V. Fock, Z. Physik 57, 261 (1929); Schouten, J. Math. & 
Phys. 10, 239 (1931); E. Schrodinger, BerI. Ber., 105 
(1932); V. Bargmann, Berl. Ber., 346 (1932). 

6See , e. g. , R. Ingraham, Nuovo Cimento 10, (1953), for a 
discussion of the quantity r ,,' 



                                                                                                                                    

Higher-order diagrams in quantum gravity and the continuous 
dimension method* 
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The following three third-order Feynman diagrams in quantum gravity are treated in the context of 
dimensional regularization: (a) the pure graviton triangle diagram and (b) two massless tadpole 
diagrams. It is shown that the graviton vertex integral is free of ultraviolet and infrared divergences 
as we approach Minkowski space (w=2). It is also shown that the ultraviolet divergences arising 
from two-loop massless tadpole integrals either vanish completely as w-->2, or manifest themselves as 
poles of Weierstrass' gamma function. 

1. INTRODUCTION 

The continuous dimension method1
-

3 has recently been 
employed in the calculation of the graviton self-energy 
and the associated fictitious particle loop. 4 That calcu­
lation, carried out to order J(2 in the gravitational 
coupling constant (J(2 = 327rG), demonstrated (i) that the 
basic graviton loop can indeed be regularized and (ii) 
that the procedure of dimensional regularization is 
gauge invariant in the sense that it respects the 
Slavnov-Ward identities. 

The purpose of this article is to apply the continuous 
dimension method to the following higher-order 
diagrams arising in quantum gravity: (a) to the graviton 
triangle diagram and (b) to two graviton tadpoles, all 
diagrams being of order K3 in the gravitational coupling 
constant. 5 Since for massless propagators the various 
integrals become ill defined when the regulating param­
eter w - 2+, the procedure of Refs. 1-3 is not applicable 
to the massless diagrams considered here. To treat the 
latter, one must introduce6 an analytic function f(w) 
which vanishes as we approach physical 4-space (w = 2). 
[See Eq. (3) and also the Appendix] 

2. PREVIOUS RESULTS 

A detailed discussion of the technique of dimensional 
regularization as applied to massless fields can be 
found in Refs. 4 and 6. The basic idea is to define each 
momentum space integral over a complex 2w-dimen­
sional Euclidean space, to parametrize each propagator 
according to 

1/q2=rdxexp(-xq2), q2>0, (1) 
o 

and then to evaluate the various integrals by means of 
the generalized gaussian formula 

J d 2W q exp( - xq2 + 2b· q) = (7r/x)W exp[W /x) - xf(w)], 

x> 0, (2) 

where the continuity function f(w), such as7 

f(w) = 1 - COS(27rCOS(27rCOS('" (cos 27rw) ••• ))), (3) 

must satisfy specific conditions, in particular analytic­
ity in the complex regulating parameter w (cf. the Ap­
pendix). We also note that the structure of f(w) in (3) 
in terms of nested cosine functions, where n is a 
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finite integer, is superior to that previously chosen, 4.8 

especially with regard to higher-order diagrams. The 
prescription (1)-(2) is not gauge invariant for w*2. 
Since it is possible, however, with our particular f(w), 
to make arbitrarily high-but not all-derivatives of 
f(w) vanish, the technique discussed here can be made 
gauge invariant to any finite order. 

The derivations in the next two sections depend ex­
tensively on results previously obtained with the aid of 
f(w): 

(i) 

(ii) (a) 

(b) 

(iii) 

J d2Wq(q2)"-0 n=O 1 2 ... 
- , "" 

J d 2w q(q2t1 = 7rwr(1- w) (f(w)]w-l, 

t.!~+ J d 2W q(q2t 1=0, 

J d 2W q[q2(q _ p)2]-1 

=7rwr(2 - w) r d~(P2H1-~) + f(W)]W-2. 
o 

Results (i), (ii), and (iii) are discussed in detail in 
Refs. 8, 6, and 4, respectively. 

3. HIGHER-ORDER TADPOLES 

(4a) 

( 4b) 

(4c) 

(4d) 

We now examine the two third-order tadpoles shown 
in Figs. 1 and 2. These diagrams contain only massless 
graviton lines. 

(a) The basic integral connected with Fig. 1 is given 
by 

11 = J J d2Wq1d2Wq2[q~~(q1 - q2)2]-1. (5) 

Applying formulas (1) and (2) or (4d), we can show that 

II =7rwr(2 - w) fal d~ 

k 

FIG. 1. Third-order massless tadpole. 
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p 

k k 

FIG. 2. Third-order massless tadpole. 

x 1 d2Wql(td)"1[qW1- ~) + f(W)]W-2, (6) 

where f(w) was introduced in Eqs. (2), (3). Expansion 
about q~ = 0 yields 

II =1TWr(2 - w) t d~ (1 d2Wql(q~)"1 
x [r-2 + td~(l- n(w - 2)fW-3 

+ ie(1- ~)2 (w - 2)(w - 3)qi r-4 + ... 
+ (l/n!) (1- ~)n ~"(w - 2) 

x ... (w - 1- n)(td)"f W-2-n + ... D. (7) 

According to formula (4a), all terms in (7) vanish ex­
cept the first one. Consequently 

I 1=1T Wr(2-w)fW-21 d 2W ql(td)"1 

= ~Wr(l_ w)r(2 - w)f2W-3, (8) 

which is well behaved for noninteger w. As we approach 
Minkowski space (2w = 4), we find that the basic inte­
gral associated with the massless tadpole in Fig. 1 
vanishes: 

lim.il=O. (9) 
.,..2 

(b) In this section we examine the two-loop tadpole 

integral 

12 = 1 1 d 2Wq d 2Wp[p2(q _ p)2q4]-I, (10) 

associated with Fig. 2. Again all lines are massless 
graviton lines. Proceeding as in (a) and using result 
(4a), in conjunction with the formula 

1 d2Wqq-4=1TWr(2_w)fW-2, 

we obtain 

(11) 

I 2=1TWr(2-w)1 d 2Wqq-4 tdHq2~(1-0+f]w-2 (12) 
o 

12 is well defined for all values of the regulating param­
eter w, except w = 2, 3, "', but contrary to II' this 
tadpole integral does not vanish in (physical) 4-space. 
In fact, as w - 2-, both single and double poles emerge. 
Thus naively normal ordering massless theories (such 
as gravity) probably would not produce gauge invariant 
results in higher orders. 

The question of course is how one should interpret 
the nonzero tadpole contribution 12 , There are two al­
ternatives. 

(a) It is possible that the finite 12 value will be can-
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celled by other terms when all diagrams to order K3 
are added together. Unfortunately, without calculating 
all such diagrams, one cannot be sure that a cancella­
tion does not take place. We are not certain at this 
stage of our programme what the physical implications 
of a non-vanishing tadpole diagram would be. 

(b) If the 12 contribution is not cancelled by similar 
third-order terms, it may still be possible to eliminate 
the associated single and double poles by suitable 
counterterms in the Lagrangian. 

4. THE TRIANGLE DIAGRAM 

We next apply the technique of dimensional regular­
ization to the basic integral associated with the pure 
graviton triangle diagram shown in Fig. 3, The integral 
reads (in Euclidean space): 

13 = 1 d 2Wk[k2(k - P2)2(k + P3)2]-I 

= [' (""1" dad,sdy(exp[- (,sp; +yp~)]) 1 d 2wk o Jo · 0 

xexp[- (a +,s +y)k2 + 2k· (YP2 - ,sp3)]. (14) 

Integrating over k-space with the help of Eq. (2) and 
noting that (P2 + P3 )2 = p~, we obtain 

13 = 1Tw .(da,sdy(a+{3+y)"w 

x exp[ - (a,sp; + ayP~ + y,spD (a + {3 + y)-I 

-(a+{3+y)f(w)]. (15) 

It is convenient now to introduce new variables ~, T, X 
such that 

a=~X, (3=TX, y=X(l-~-T), ( 16) 

the Jacobian of the transformation being I J I = X 2 • Inte­
gration over X yields 

I =1Tw(p2)W-3r(3_w)11d~11-l dr(-r2+ar+b)W-3, 
3 1 0 0 

where 

a = (1- 0 - ~(p~ - p;)/p~, fo(w); f(w)/P~, 

b =fo(w) + ~(1- ~)p~/p~. 

(17) 

(18) 

The r integral in (17) may be written compactly as the 
difference between two hypergeometric functions: 

FIG. 3. Pure graviton triangle diagram. 
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13 = irrW(p~)W-3[r(3 - w)/(w - 2)] fo1 d~(co + c1 ~ + C2~2)-1 /2 

x [zr-2 2F1(W - 2, i;w -1;z1/R2) 

(19) 

where 

R=(CO+C1~+C2~2)1/2, co= t(1+4fo)' 

c1 = - (P2' P3)/pi, c2 = [(P2 ' P3 )2 - p~~]/p1 (20) 

Zo = fo + ~(1 - ~)P~/P~, Zl = fo + ~(1 - ~)p;/p~. 

Again, as long as w remains complex, the right-hand 
side of (19) is a perfectly well-behaved function of w. 
The presence off(w) in (19) moreover ensures the 
absence of real poles in the ~ integrand. In particular 
the conventional end point singularities ~ = 0, 1 are 
absent now. 

Since our primary concern is the behavior of 13 near 
w=2, we shall first write (19) in series form: 

(21) 

Since 

(

ZW-2 _ ZW-2) 
lim 1 0 = log(P2 /p 2

) 
w-2' W - 2 3 2' 

(22) 

we conclude that the vertex integral (14) is indeed free 
of ultraviolet divergences near w = 2. This is in com­
plete agreement with results obtained by more conven­
tional techniques. 

5. SUMMARY AND DISCUSSION 

We have applied the continuous dimension method to 
several third-order Feynman diagrams in quantum 
gravity. It was found that the graviton vertex integral is 
indeed free of both ultraviolet and infrared divergences 
when the regulating parameter w -2+. It was also shown 
that the ultraviolet divergences arising from two-loop 
massless tadpole integrals either vanish completely as 
w - 2+ or they manifest themselves as poles of 
Weierstrass' gamma function. The principal conclusion 
to be drawn here is that higher-order tadpoles do not 
vanish in general (contrary to lowest-order tadpoles). 
Their contributions must therefore be included in any 
satisfactory renormalization program. 

Results (8), (13), and (19) may be utilized in the 
calculation of all graviton-graviton scattering diagrams 
to order K 3

, including the appropriate fictitious particle 
loops. This complete program is rather lengthy, in­
volving well over twenty thousand terms. 

Finally it is essential to realize in connection with 
the two-loop tadpole integral (5) that the same w was 
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employed for both loops. (A similar statement holds 
for [2' ) The prescription differs from that given by 
Ashmore, 2 who suggests a different w for each new loop. 

APPENDIX 

The continuity function 

f( w) = 1 - cos(2rr cos(2rr cos (oo. (cos 2rrw) .. ·)}) (AI) 

was introduced in the extended definition of the gen­
eralized Gaussian integral (2) and satisfies the following 
properties: 

(i) few) is a nonzero analytic function of the complex 
variable w = a + iT; 

(ii)f(w)=Oforw=±:\./2, :\.=0,1,2,,,,; 

(iii) f(l)(w)=O for W= ± :\./2, :\. =0,1,2, ... , and 
1 + 1 < 2", where n denotes the number of nested cosine 
functions in (AI); 1 is the number of derivatives; 

(iv)f(2")(w);eOforw=±;\,/2, :\.=0,1,2, "'; 

(v) Re[j(w)]> ° for any Re(w)HA/2, ;\,=0,1,2, "', 
and some Imw. (A2) 

Although few) is itself analytic, expressions like 
j2w, f2w-3 etc. will clearly not be analytic for general 
w. It is therefore imperative-before using Taylor's 
series expansion and before invoking the principle of 
analytiC continuation-to extract fromf 2"', f 2"'-3, etc. 
appropriate analytic branches. For example, 

[f(W)]2W-3 = exp[(2w - 3)Logf(w)] (A3) 

is such an analytiC branch provided If(w) I > 0 and 
-11< cP < 11, where f(w)= If(w)lexp(icp). Having selected 
an analytic branch of j2W-3, we can then expand f 2"'-3 in 
a Taylor's series about the point w = 2 + € exp(iO!), 
€ > 0 and 0 ~ O! ~ 211, allowing E - ° at the end of the 
calculation. 

*Research supported in part by the National Research Council 
of Canada under Grant No. A8063. 
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We have systematically studied a finite-dimensional version of Feynman perturbation series with 
arbitrary matrices for propagators and arbitrary tensors for interaction couplings. In this formalism 
we obtain many old results in an elegant new manner, and we obtain a completely new fundamental 
integral representation for the Green's functions of boson field theories which rigorously defines these 
functions in our finite-dimensional version and which we hope will enable us to calculate the Green's 
functions in the physically important infinite-dimensional case. 

INTRODUCTION 

From one point of view, the central mathematical 
problem of nonrelativistic quantum mechanics is to sum 
the infinite series: 

R. (X, M):=: 1 + XM + X2M2 + X 3M3 + "', 

where M is a given infinite-dimensional matrix opera­
ting on a Hilbert space and X is an arbitrary complex 
number. All phYSical consequences of the theory are 
easily extracted from R. (X, M) once it has been calcu­
lated. Many years before these problems were studied 
and solved, the corresponding problem for an arbitrary 
finite-dimensional matrix M was solved in closed form 
via the theory of determinants. Furthermore, the 
Fredholm theory, which is the basic theory for the in­
finite-dimensional case is based on this prior solution 
of the finite-dimensional case. 

Now let us consider Feynman perturbation theory. We 
may regard the Feynman propagator as a given infinite­
dimensional matrix and the interaction coupling as a 
given infinite dimensional tensor. The corresponding 
Hilbert space may be regarded as a space of functions 
of Minkowski space-time and a spin or representation 
of SL(2, c). All physical consequences of the theory are 
easily extracted from the Green's functions which are 
the sums of infinite series of Feynman graphs. The 
central problem of Feynman perturbation theory, and 
perhaps of relativistic quantum mechaniCS, is to sum 
these infinite series. Historically, the corresponding 
problem for arbitrary finite-dimensional propagator 
matrices and arbitrary finite-dimensional coupling 
tensors has to my knowledge never been investigated, 
and perhaps this may prove to be as potent an approach 
in Feynman perturbation theory as it has been in the 
theory of linear integral equations. 

Thus our new method for the study of Feynman per­
turbation series consists of writing down the perturba­
tion series for the Green's functions of a given 
Lagrangian field theory and then replacing each propaga­
tor in the theory by an arbitrary finite-dimensional 
matrix and replacing each interaction coupling in the 
theory by an arbitrary finite-dimensional tensor. We 
then sum the infinite series in closed form, and we 
study the behavior of the Green's functions as functions 
of the arbitrary matrices and tensors. 

We wish to emphasize two points. First, what we have 
done is to regard the Feynman perturbation series as 
a functional whose domain is a set of linear spaces of 
tensors (the propagators and interaction couplings of the 
theory) and whose range lies in a set of linear spaces of 
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tensors (the Green's functions of the theory). We study 
the behavior of this functional on the whole domain, not 
just on those particular elements of the domain singled 
out by physical considerations (e. g., the Feyman 
propagators and the local interaction coupling), Second, 
many of the results which in the past have been obtained 
most elegantly by the introduction of arbitrary external 
sources and functional differentiation with respect to 
these sources are obtained more simply in our formula­
tion by functional differentiation with respect to the 
arbitrary coupling tensors and propagator matrices 
without any necessity for the introduction of external 
sources. 

Finally we wish to state our attitude toward renor­
malization theory. Throughout this paper we ignore the 
problems of renormalization. All expressions that ap­
pear are unrenormalized. Our treatment is entirely 
rigorous because for finite-dimensional matrices and 
tensors there are no divergences. Our general approach 
is to first sum the unrenormalized perturbation series 
functionals in closed form on domains where no diver­
gences arise and then to try to extend these sums to 
larger domains which include the physical propagators 
and couplings. The divergences if any which arise in 
this extension of domain will, we hope, be more easily 
manageable and simpler in appearance than the usual 
graph by graph renormalization analysis of perturbation 
theory. A good example of this is the nonrelativistic 
Coulomb problem where the resolvent R. (X, M) is expli­
citly calculable l and involves no divergences while all 
terms of the perturbation expansion after the first are 
divergent, and the renormalization theory is relatively 
complicated. 2 

I. THE BOSON CASE 
A. Formulation of the problem 

We consider explicitly the case of scalar bonsons 
interacting through a local gcp4(X) coupling. Our methods 
may be easily extended to other cases. The perturbation 
series for the n-point Green's function may then be 
succinctly expressed in the form 

G n(xl , .•. , xn) = (0 I a(xl )a(x2) .. • a(xn) 

xexp{ig J d4x[a(x)]4} 

x exp[~ J d4xld4x2a+(xl)a+(x2)Ap(xl - x2)] I 0), 

(1) 

where a+(x) and a(x) are creation and destruction opera­
tors satisfying 
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[a(xI ), a(x2)] = 0, 

[a(xI ), a+(x2)] = 04(XI - x2), 

the state 10) is defined by a(x) 10) = 0 for all x, and A F(X) 

is the Feynman propagator. Equation (1) is derived in 
Appendix A. 

In keeping with our general program we replace the 
continuous index x by a discrete finite index, i= 1, 2, ... , 
N. We then replace 

ig f d 4x[a(x)]4 

by 

and we replace 

t f d 4xl d 4x2 a+(xI ) a+(x2)A F(XI - x2) 

by 

where Mi •.• i is an arbitrary 4-tensor and D!J is an 
arbitrarylmatrix. The a i and aj now satisfy 

[aj) ail = 0 

and 

and 

ai 10)=0 for all i= 1, ... ,N. 

The object we wish to study is the n-point Green's 
function 

Gn(il' ... ,in) = (0 1 ajl a j2 .•• ain e'" e6
1 0). 

G n is a function mapping an arbitrary 4-tensor and 
2-tensor into a symmetric n-tensor. 

B. Only the vacuum graphs need be considered 

We first observe that we need only study the vacuum 
expectation value 

Go=G(M,D)=(OI e"'e6 10), 

since Gn may always be obtained by taking appropriate 
partial derivatives of G with respect to M and D. If n 
is odd, then Gn=O. If n=4s where s is an integer, then 
clearly 

aSG(M,D) 

If n = 4s + 2, let 

tij = exp( - 0) a j exp( + 0) 

= a j + lap 0] + (1/2!) ([a p 0], Ii] ... 

=aj+L;OIJaj, , 
Then we find that 

Gn(iI,.··,i(4S»jl,j2)=(0Ia l ···a l aJ aJ eUe510) 
1 (4.) 1 2 

= (0 I a ••• a· e'" e6 a. a 10) 
11 '(4s) '1 J2 
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= (0 iaji •.. al(4s) elJ. e5(Dili2 

+ L; /JJk f)i &_ a~ a~) 1 0) 
k l~ 1 1 2-. 1-. 

= Olti 2G (4s) (i I ,·· ., i{4s) 

C. Reduction in the number of variables 

799 

Next assume that det(O);.! O. Then as is shown in Ap­
pendix B, (OH/2)ji always exists and is symmetric. Now 
let 

aj - ~ (01 /2)ii aJ = ap 

aj - L: (0 -1/2) .. a
J
" = (a;). 

j IJ t 

Since a; and (afT satisfy the same commutation relations 
as aj and ai, G(M, D) is invariant under this substitution. 
Therefore 

G(M, D) = G(j}J) 

= (0 1 exp C1~ i4 j}J it"· i4 aji 

10), 

... a· ) 
'4 exp (t~(ai)2) 

where 

D. The differential equation for Gum 
Let 

and 

i3=t L 1). ·1)·ka~a+k' ijk 'J • J 

where ~ and 1) are arbitrary tensors except that 
det(1) '* O. Let 

F(~,1)=(OI e"'eBIO). 

Make the substitution 

a j - L;a/lj;' 
i 

aj-~ (TJ-I)jJ a;. 

Then as in Eq. (2) we find that 

F(~, 1) = G(j}J), 

where now 

j}JI1'''j4= L. 1)iljl"''lji4j4~it'''j4 
h'''J4 

Differentiating, we find that 

where now 

a - -6 +6 +" + i = e aje = a j L... 1))'i 1) ·k a .. Jk ). 

(2) 

Commuting the a j ' s through to the right, multiplying 
both sides by rr/J ... 1);1 i' summing over il through i 4 , 

and noting that ~ihce F~~ 1) = G(j}J), we have the relation 
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of 

we find that 

oG 

=(0 I e"e6S Kh)pj1'" Pi4 + WO j1iijli4 + (t)Oj1j20j3i) 

10), 
(3) 

where Pi =L:j1]iia~, and S is the symmetrizing operator, 

S{f(i1"'" i4 )}=L:f(ia(1l' i a(2l> i a (3l> i a(4))' 
u 

where L:u is the sum over all permutations on 4-ele­
ments. We see therefore that oG/O/l1i "'i is a sym-

1 4 
metric tensor. Now let /113,. "'i =S{/I1i "'i }. Using again 

1 4 1 4 
the fact that F(~, 1]) = G(fti), we find that 

(0Ie"'e6PIPi IO)=L; 1]ik ~oF 
k u1] j k 

and 

(0Ie"e6PiPjI\P/IO)=L 1]iP1]kq 0 0;: 
pq 1]jp Iq 

( 1)"" s oG + "2 w /I1Pqik a-/I1 • pq Pqi 1 

These two equations may be used instead of those 
derived in Subsection B to obtain the Green's functions 
from the vacuum expectation value G. They are more 
convenient to use when G is written as a function of /11 
only, though, of course, they are completely equivalent. 

Using these relations, we may rewrite Eq. (3) in the 
final form 

(4) 

and 

We see that G(/I1) which is a single function of N4 vari­
ables satisfies a set of N4 second-order linear partial 
differential equations of the generalized hypergeometric 
type. Furthermore, since by the results of subsection 
B the first and second derivatives of G are just the 
four-point and eight-point Green's functions, Eq. (4) 
is just one integral equation satisfied by the Green's 
functions of cfJ4 theory. 

It is also easy to see that integral equations in the 
usual formulation go over into differential equations in 
our formulation. 
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E. The power series solution 

The Feynman perturbation series for G(M,D)=G(/I1) 
is just a power series expansion of G in powers of 
/I1 i 1''' i4' about the point /I1i 1'''14=0. Instead of the usual 
Feynman graph form in which this power series is 
written, we wish to write it in the equivalent standard 
power series form, 

To determine the power series coefficients A(ni ". i)' 
we start from Eq. (2) with the exponentials expanded in 
power series. Let 

N 

il'~4=1 n il"' i4 =P 

and let 

Clearly A(ni ". i ) is the coefficient of 
1 4 

in the expression 

where r = P and s = 2p. Expanding by the multinomial 
theorem, we find that 

A(ni1"'I)= ("~4=1 (nl1'~'il) (2;)! 

X(O! IT l;(~L(a+)2)(2P)!0) 
;=1 J 1 1 

where 

E(Pi)={~ if Pi is odd, 
if P j is even, 

1 ( n 1 \ IT E(P ) -PL . 
= 4P 

\1"'14=1 (n ll '''1 4)!) i=l i (p/2)! 

Using the relation r(2z) = 22z-17T'1/2r(z)r(z + 1/2) and the 
fact that L: lJ.1 P J = 4p, we find 

Let us now examine the convergence of this power 
series. The series diverges if there exists a ray 
Uil'" i4, such that if we let nil'" 14 = TU1l'" 14' then 
A(nl1'" 14) - "" as T - "". Set Uil'" 14 = 1 for all i 1 ". i4 • 

Then p=N4T , Pj =4N3T, and we have, as T - "", 

(5) 
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Therefore, the Feynman perturbation series diverges 
and is at best an asymptotic series. The interesting 
question is can we find a well-defined function whose 
asymptotic series is the Feynman perturbation series. 
This we shall do in the next subsection. 

F. Integral representations 

The conventional integral representation may be 
derived in our formalism as follows. We start from 
Eq. (2), and using the fact that 

exp (- t ~(ai)' aJ exp (+ t ~ (a;)2) = aJ + a;, 

we find that 

where qj = (a j + aj)/I2. In the orthonormal basis which 
diagonalizes the Hermitian operators qJ' 

so we find 

(6) 

This is just the well-known functional integral for the 
Green's functions, 3 and we wish to point out that it is 
almost useless because over most of the domain of G, 
i. e., for most values of the arbitrary 4-tensor /11 i

1
'" i4' 

the integrand diverges exponentially as the qi go to 
infinity. 

We shall now show that G(/i1) is well defined every­
where on its domain by the integral representation 

r(N/4) f+~ 2 f 
G(/i1) = 2[(N/2h41 7T [(N+1)/2») _~ dpexp[-(p/4) 1 dn 

(7) 

where f dn is the integral over the surface of the unit 
sphere in N-dimensional Euclidean space, L: [':1 U~ = 1, 
and ui is the corresponding real unit vector. This 
multiple integral is equal to G(/i1) in the sense that it 
has an asymptotic expansion about the point /11 i .•. i = 0, 
which is just the power series we found in sUbs

l
ecti'l:>n 

E. In order to completely define G(/i1), it is necessary 
to prescribe how the contour of integration is to be 
deformed in the neighborhood of points such that 

p2,6,... _ 
'1···.4 Ui1 Ui4 li'li 1" '/4 -1, 

so that the corresponding Singularities of the integrand 
may be avoided. We leave this unspecified as all choices 
lead to the same asymptotic power series (i. e., to the 
same Feynman perturbation theory). 

To investigate the behavior in the vicinity of the point 
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/11 il'" i4 = 0, we first interchange the order of integration 
and perform the p integral. Using the fact4 that 

1+~ [_(t)2 (~)(NI4)J 
_~ dpexp 4 \1_p2z 

nN/4 + 1/2) ~(N 1) (3). (-1)) 
= (_Z)(N/4+1/2) >¥\1 4 +'2' '2' 16z ' 

where >¥(a, b;x) is the confluent hypergeometric func­
tion which goes as x-a as x - "", and both (_ z)(NI4+1/2) 

and >¥«(N/4+ 1/2), (3/2);(-1/16z)) are taken to be al­
ways on their principal sheet in the complex z plane cut 
along the positive real axis, we find that 

f dn (~)(NI4+1/2). [(~ +!) (~). (~\l 
G(;Jj) = n 16z >¥ 4 2' 2 ' 16zJJ' 

where n = 27T(N 12) / r(N /2) = the area of the unit sphere 
and where 

When z * 0, the integrand may be evaluated via the 
convergent power series, 

(
-=l)(NI4+1/2) ~(!! 1. (~). (~)Il = 2(NI2-0,[if 
16z >¥~ 4 + 2' 2 ' 16z j r(N /2) 

( 

~ r(N/4 + n) (- 1/16z)(NI4+") 

X L r(1/2 + n) n! 
n=O 

t noV /4 + 1/2 + n) (- 1/16Z)(NI4+1/2+n») 
- n=O r(3/2 + n) n! . 

(8) 

When z = 0, the integrand has an essential singularity. 
However, for all z on the principal sheet, the integrand 
has the well behaved asymptotic expansion, 5 

( ~)(NI4+1/2) r(~ 1.) (~). (~)J 
16z >¥L' 4 + 2 ' 2 • \'16z 

=(_1_) t r(N/2+2n) (4z)"+0(lzl(0+0 
r(N /2) n=O n! 

(9) 

as 1 z 1 - 0, and therefore the integral is well defined 
everywhere. Now let :\. equal the maximum value of 
Izi for all u i on the unit sphere. Then for ;Jji

1
"'i

4 
-0, 

we find that 

G(;Jj) = 27T(;/2) f dn (~ r(N~~+2n) (4z)n+0(:\.Q+l)) 

1 ~ r(N /2 + 2n) 4n f+~ d 
= -:::rN72i L..J lUI ... 

17' n=O n. _010 

x L~ dUN 6 (1- ~ U~Z"+ O(:\. 0+
1
). 

This is just an asymptotic power series in /11 / .. , i 
whose coefficients are given by 1 4 
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where P and Pj are defined as in subsection E. By 
making the substitution u1 - - u j for each i separately, 
we see that 

where E(pj) is defined as in subsection E. Let Xi =U~ 
and, using 

1~ dx "'f~ dx O(l-L: X.) ~ x<'''r1
) 

1 n i' j=I J 
o 

nf=1 r( Ct'j) 

= ro;t:
1

Ct'j) , 

we find 

A(ni1 ••• I ) 

which is just Eq. (5) of subsection E. Thus we have 
succeeded in constructing an explicit function G(/I1), 
well defined everywhere on the domain of arbitrary 4-
tensors /11 1 ••• 1 ' whose asymptotic expansion about 
II} i

1
'" j4 = ° 1s jtst the Feynman perturbation series for 

the boson case. 

We wish to study the analytic structure of G(/I1) as a 
function of /11. Returning to Eq. (8), we see that the only 
singularities of the integrand in the region of integration 
occur at points U i , such that 

at which points the integrand has an essential singular­
ity. By the well-known analysis of Eden, et al. 6 G(/I1) 
will have a singularity at a point/l1, only if there exists 
a unit vector ui such that 

z= :0 u i ••• ui ;1}i "'1 =0 
i 1 ... j4 1 4 1 4 

and 

for all j. /I1s is defined as in subsection D. 

Since the "pinch" occurs at an essential singularity 
of the integrand, G(/I1) has an essential singularity at 
such pOints. Thus G(/I1) is an analytic function of 
/11 i ..• i except at points where the N equations 

1 4 

N 
~ u. u. u. /11~ 1 •. =0, 

•• L...-- -1 'I '2 '3 '1 2'3' '1 12'3-
(10) 

j = 1, 2, ... ,N, and ui real, possess a solution. At such 
points G(/I1) has an essential singularity. Finally we note 
that in the actual local g ¢4(X) field theory case, 

4 
/11' (Xl' X2, x3' x4) = ig j d 4x.n K(xj - X), 

, =1 
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where 

. f d 4p exp(- ipx) 
K(x)=..fi (27T)4 (p2_m2+ie)1/2' 

So, in this case Eq. (10) becomes 

ig J d 4x[v(x»)3K(y-x)=0 for all y, 

where 

v(x) = j d 4y u(y)K(y - x), 

u(y) is a real function of y, and 

J d 4y [U(y)]2= 1. 
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(11) 

Applying the operator ,;::::y (- o~ - m2)1 /2 to both sides 
of Eq. (11), we obtain 

ig[V(y»)3 = 0 for all y, 

which implies (if g*O) 

v(y)=jd 4xK(x-y)u(x)=0 for ally. 

Applying"r:::z (- [I~_m2)1/2 to both sides of this equa­
tion, we find 

u(x)=O for all x, 

which contradicts the requirement 

J d 4x [u(x»)2=1. 

Therefore, when g* 0, local ¢4 field theory corresponds 
to a value of/l1i ... j , where G(/1i) is analytic. As g- 0, 
;1} moves onto a

1
n eJsential singularity of G(/I1), for when 

g=O Eq. (11) is trivially satisfied. 

II. THE FERMION CASE 
A. Formulation of the problem 

Consider explicitly the case of quantum electrody­
namics. The Green's function for n external electron 
lines, n external positron lines, and m external photon 
lines may be succinctly expressed in the form 

Xa (z) ... a (z) 
1J. 1 1 /.£m m 

xexp{+ie~ j d 4xC 1(X)(Y,.)ij bj(x) a,,(x)} 

"" 
xexp{t ~ j d4xld4x2a:(X1)D:v(xl-x2)a~(x2)} 

xexp{-?j j d 4xd 4yb;(x)Sr; (x-y)cj(y)}lo), (12) 

where 

[a,,(xJ, a
V
(x2)]=0, 

[a,,(x1 ), a~(x2)) = 04(X1 - x2)o"v, 

any a or at commutes with any b, b+, c, or c+, 

[b l (X1), b j (x2 )L= [c j (x1 ), c/x2)L = [bi(X1 ), C f (x2)L 
= [b i (X1 ), c;(x2 )L=0, 

[b i (X1 ), bj(x2) 1. = [c I(X1), cj(x2) L = 0ij 04(X1 - x 2 )· 

The vacuum state 10) is defined by 

a,,(x)IO)=bj(x)IO)=cj(x)IO)=o foralli, IJ., andx. 
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SF is the electron propogator 

Sfj (x - y) = (i~x - m)ij 6 F(x - y). 

Equation (12) is derived in Appendix C. In keeping with 
our general program we replace the photon indices 
(IJ., z) by a discrete finite index Cl! = 1, 2, ... ,M, and the 
electron indices (i ,x) by a discrete finite index i 
= 1,2, ... , N. We then replace 

ie:0 f d 4xc i(x)(Y.,)iJ bi x )a,,(x) 
ij J.L 

by 

and 

by 

t6 a~ Daaa~=15 
aa 

and 

by 

where r is an arbitrary 3-tensor and Sand Dare 
arbitrary matrices. Thus we really consider any 
fermion theory with an intermediate boson interaction. 
The commutation relations are the same except that we 
replace 

15 "V 15 4(X, - x2 ) by 15 aB' 

and 

l5 ij I5 4(x,-x2 ) by 15i}' 

Then the object we wish to study is 

=(Olb. • .. b. c. a "'a e'e5 e-UI0) (13) 
11 1 n J n Q1 Q(m ' 

which is a function mapping an arbitrary 3-tensor and 
two arbitrary matrices into a (2n + m )-tensor which is 
antisymmetric in the first n and in the second n indices, 
and is symmetric in the last m indices. 

B. Only the vacuum graphs need be considered 

All Green's functions may be written as partial 
derivatives of the vacuum Green's function with respect 
to r, S, and D. The proof proceeds in the same manner 
as the proof in Sec. IB, only there are more cases to 
consider. We state the three particular results we shall 
use later: 

G ( .. ) - aG 
1,' Z;];Cl! = ari. ' 

)a 

(14a) 

(14b) 

(14c) 

where as in Sec. I, Daa=t(Daa+Daa), and we denote 
Go,o simply by G. 
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C. Reduction in the number of variables 

We start from Eq. (13), 

G( r, S, D) = (0 I e' e5 e-u 10). 
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Inserting factors of e+6 e-6 and using (0 I a+ = 0, we find 

G=(O le;e-UIO), 

where 

Y= e- 5 ye+5 =y + [y, 15] + ;! [[y, 15], 15] + ... 

= y + 2:0 C . r .J bj/J a aBo 
iiaB 'tc;r 0: 

Then using the relation 

exp(A + B) = exp(A)exp{ - lA, Bl!2}exp(B), 

where 

[fA, B],A]= [lA, B], B]=O, 

we find 

where 

and 

Ph j 2 -." r h f) r j2 
i i - L.J i a aB i B· 
'2 aa I 2 

(15) 

Equation (15) for arbitrary 4-tensors p:'~2 is just the 
expression we would have obtained at th~ 20utset if we 
had started with a pure Fermion theory with current­
current interaction. Therefore, our considerations ap­
ply to this case also. 

Now assume that det(Sij).~' 0, and let 

bi--Si}b j , bi-- b j(S-l)ji' 

The commutation relations are invariant under this 
substitution, so that G is invariant under this sub­
stitution, and therefore 

G(r, S,D)= G(/J1) = (0 lexp(. t: 
'112J I J 2 

xexp(~biCi)IO), 
where 

/J1;';2 = 6 p~l~ S k . S._. 
'2 k,1>.! '1'2 ,), ',)2 

= 6 r k
j
1 f) Q r~BSk . Sk .• aak,R2 1" ao '2 ,), 2)2 

(16) 

Since G is a function only of /J1, there exist two relations 
among the three partial derivatives of G with respect 
to r, S, and D. These are 

Using the result~ of subsection B, we find 
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and 

These are just the first two Dyson equations7 which we 
see are a simple consequence of the fact that G( r, S, D) 
= G(/J1) is really only a function of /h. 

D. The differential equation 

We start from Eq. (15), 

G(p, S) = (0 I ePe'"1 0), 

where 

and (J= 6;; b;Sij cj. Differentiating, we find 

where 

Ci = e"cie'a = c i + L:, bjS ji' 
j 

hi = eabj e,a=b i -L: Sij cj. 
J 

Note that G(p, S) = G(/h), where 

/J'lh~2=L pkl"'.l.Sk' S.," 
i 1 '2 k1,,:! i1i2 1J1 ,-.J2 

and therefore 

(17) 

Then, commuting the c's and b's through to the right in 
Eq. (17), multiplying both sides by (S'l)1 J' (S'l)1 J' , and 

1 1 2 2 
summing over j1 and j2' we find 

+ 5 i 1 b i c~ + W b i c; b i c~} I 0), 
11 2 2 1 1 2 2 

where bi =6JbiSJj, and A antisymmetrizes (iI' i2) and 
(11 ,12 ), 

A{f(il1 i2, 11, 12)}=f(i1, i2, 11, 12) + f(i2, iI' 12, 11) 

- f(i 1, i2, 12, 11) - f(i2, iI' 11,12), 

We see that oG/ /J1 ng is anti symmetric in (il' i2) and 
(l1,12)' Let A!h 1112 =A{!J1 1112}. Using the fact that G(p, S) 
= G(/J1), we find' 2 1 2 

and 
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+1. L ~ A/J1i 1i2 
2 kk' 0/1;11/2 k1":!' 

12 lOkI":! 

Using these relations, we find that the differential 
equation for G(/J1) is 

where 

L~1{2=A{(i)Oi j5 i j +(%)Oi j L{2+U6)L{lL{2}, 
12 1122 11 2 1 2 

and 

The remarks at the end of Sec. ID apply here also. 

E. The power series solution 

We start from Eq. (16), 

G(/J1)=(Olexp ( 6 C i C i /J1{1~2bj b j ) 
i 1 i 2 j 1 j 2 1 2 1212 

X exp(t? bi Ci) I 0). 
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Let [N /2] be the greatest integer less than or equal to 
(N/2). Then expanding the exponentials as power series 
we find, 

[N/21 
G(/J1) = L 

n=D 

since the product of any n bi's or n cj's for n>N is 
zero. Commuting the b;' sand C;' s through to the right, 
we find 

[N/21 (_I)n 
G(/J1)= ~ n!(N-2n)! 

where E i 1''' iN is the fully antisymmetric tensor in N 
dimensions and repeated indices are summed over. 
Therefore, G(/J1) is just a finite polynomial in !h and 

(19) 

is therefore convergent everywhere on its domain. 
Equation (19) seems to be a generalization of the 
determinant to the case of 4-tensors. To see the analogy 
more clearly, we note that if M{ is an NXN matrix, then 

d t (l M) 
~ (- 1 )n j ... i 

e - = LJ I (N ) lEI N Ej ... j n=on. -no 1 N 

(20) 

Also we might ask if expressions of the type appearing 
in Eq. (19) appear anywhere else in mathematics. The 
answer is yes! If we let R;1;2 be the Riemann curvature 

1 2 
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tensor of a N-dimensional surface (where N is even), 
and let 

I=E i1"' iN E. . Rhh Ri(N-lliN 
J1"' JN i1i2 ••• i(N_lliN' 

then I is just that invariant, which when integrated over 
the entire surface gives the Euler-Poincare topological 
characteristic of the surface. 8 

Next we would like to point out that one usually calcu­
lates the physical Green's functions by first dividing out 
all the vacuum graphs and then summing the remaining 
graphs. If we let G~.m be the physical Green's function, 
then G~.m=Gn.mxG-\ and the usual procedure cor­
responds to expanding G-1 in an infinite power series in 
/11 multiplying this by Gn • m which is a finite polynomial 
in hi, and obtaining an infinite power series in /11 for 
G~.m' which converges only if the power series of G-1 

converges. Thus we see that, by the usual procedure 
of dividing out the vacuum graphs before summing the 
series, we may destroy the convergence of G~.m even 
though G m and G are finite polynomials in M. Finally 
we wouldn'like to point out that since G(/11) is a gen­
eralization of the determinant, we might expect that 
there would be a corresponding generalization of the 
Fredholm theory of linear integral equations for the 
infinite dimensional case. This theory has already been 
worked out by Caianiello9 whose general formalism is 
similar to our Eq. (19). Unfortunately it applies only to 
sufficiently smooth and rapidly decreasing propagators 
and couplings, and therefore does not apply to the 
physical case. 

F. Integral representati cns 

Let R fa = i 'j, ak r/ s kj( J75 )B"" which implies that /11 ?;2 
=-'j,,,,R;~,,,R;2,,,.letP{='j,~=lR{,,,u,,,, where the u",lah 
M auxiliary variables. Then 

G(/11) = (41T)~M72) f dMuexp(- luI 2 /4)det(I+P), (21) 

where fdMu=f::du1• .. C:duM, and luI2='j,~=lU!. To 
prove this, we expand the determinant by Eq. (20), 
obtaining 

G(Ih) = (41T)L72)j dMuexp(-luI 2/4) 

M 

X I dMu exp( - I u 12 /4)S~1 (ua),a, 

where ra( Cil' ••• , Ci r) = Z ~=1 66",., and Z:=l r B = r. Let n B 

=rs/2 and Z~=lnB=r/2=n. Us'ing 

1:~ dUBexp(-u~/4)(ua)rB=E(rB)2(rB+1) r«(ra+ 1)/2), 

r(na + t) = r( ra + 1) ViT/r(nB + 1)2r8 
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and rearranging terms, we find 

IN/21 1 
G(/11)= Po n!(N-2n) 

IN/ZI 

=6 
n=O 

which is just Eq. (19). QED 

This is just the well-known integral representation 
for the fermion case. 10 

CONCLUSION 

We have completely solved the problem of deter­
mining the exact Green's functions in our finite-dimen­
sional version of relativistic perturbation theory. The 
exact Green's functions are given by simple closed 
expressions which are finite polynomials in the fermion 
case and integrals over the unit sphere in the boson 
case. 

The new integral representation [Eq. (8)] for the 
Green's functions of boson field theories seems very 
promising. It is an absolutely convergent integral over 
a compact space, with an integrand which is bounded 
everywhere in the region of integration. It explicitly 
exhibits the essential singularity at zero coupling con­
stant. All this should make it far more useful for 
studies of the limit N - 00 than the usual integral rep­
resentation [Eq. (6)] has been. 
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APPENDIX A 

We start from the standard expressionll 

G~(X1"" ,Xn)= (1) I T(<P(x1)· .. <P(xn) 

Xexp(ig I d4x[<p(X)]4)) 11», 
where <P(x) is the free field operator and 11» is the free 
field vacuum state. We note that for g= 0 we have for 
even n, n=2m (for odd n, Gn=O), 

G~(X1' .. xn) = (1) I T(<P(x1)· .. <P(xn» 11» 

1 
= 2mm! ~ ~F(Xcr(1l - Xcr(2l)'" 

X ~F(xa(Zm-1 l - xn(Zml)' 

where :0 is the sum over all permutations a(i) of 
n 

i=1,2, ... ,2m, 

= (0 I a(xJ· .. a(xn) 

x Ud4x1d4x2a+(x1)a+(x2)~F(X1-X2)]m 10) 
(2 mm!) 
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= (0 I a(x1) .. • a(xn) 

xexpH f d4x1d4x2a+(x1)a+(x2)~F(X1-X2)}IO). 
Now for all g we have 

~ G~(X1' ... ,xn) 

= if d 4x (~I T(¢(x1) .. • ¢(xn) ¢4(X) 

x exp[ig f d 4x ¢4(X)]) I~) 

= i f d 4x Gfn+4) (Xl' •.• , Xn' X, X, X, X). 

Now consider 

Gn(x1, .•. ,xn) = (0 I a(x1) .. • a(xn) 

xexp{ig f d 4x[a(x)]4} 

Xexp[ t f d4x1d4x2a+(X1)a+(X2)~F(X1-X2)]IO). 
Clearly G n satisfies the same differential equation as 
G~ for all g, and for g=O, Gn=G~. Therefore G~=Gn' 
One may also, of course, simply expand the expo­
nentials in the expression for Gn and use the commuta­
tion relations and the fact that a(x) 10) = 0, to see that 
one obtains the usual sum of Feynman diagrams. 

APPENDIX B 

Consider an arbitrary complex symmetric matrix 
/)u with det(f) * 0. Then from the theory of the Jordan 
canonical form, there exists a similarity transforma­
tion 5, such that 

(

J 1 0) J=S[)sol= .•. 

° J r 

where the J/s are Jordan canonical blocks of the form 

and det([) * ° implies x/ * ° for all i. 
= 5-1 J 1

/
2S, where 

Jl/2= (~0/2 0) 
• J;/2 ' 

Now clearly [) 1/2 

if J/ is an r-dimensional canonical block, then 

Co (C1Xjl) ... (CCr_ll XjCrol» 

Co ... (CCro21XiCro2» 

° 
where Co = 1 and for all n ~ ° 

to C;Ccnoil=g: ::~:!: .... 
The unique solution of these equations is 
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Cn = r (~)/[r(n + 1)r(~ - n)]. 

Further we note that, for [) sufficiently close to the 
identity, 

/) 1/2 = expH log[I + (f) - I) ]}, 
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is a convergent power series in [) which explicitly 
satisfies (f) 1/2)/j = ([) 1/2)Ji and therefore by analytic 
continuation /) 1/2 is a symmetric matrix. Since the in­
verse of a symmetric matrix is symmetric, [)-1/2 is 
also symmetric. 

Finally we note that, for the case of boson field 
theory, 

and therefore 

[)
1/2( )_ "-j d 4p exp[-ip(xl -x2)] 

Xv x2 - YZ (2)4 ' 
11 .Jpa - m2 + ie 

which is just the 0(4, 1) invariant solution of the Klein­
Gordon equation in 4-space and 1 time dimensions, with 
the extra space coordinate set equal to zero. 
Explicitly, 12 

1/2 ) m
3 

IT (.) ( 1:\ 
/) (Xl' X2 = (211)2 (ms)2 exp - zms 1 + (ims); , 

where 

and 

s = + «Xl - X2)2)1/2 

S = - i(- (Xl - X2)2)1/2 

l/s2 = 1/(x2 
- ie), 

1/ S3 = 1/(x2 _ ie)3/2. 

if (Xl - X2)2 > 0, 

if (Xl - X2)2 < 0, 

f)1/2(Xl' x2) is a well defined distribution since (X2 - ieV 
is well defined everywhere except at the pOints X 
= - 2 - k, k = 0, 1, 2, .... 13 Thus [) 1/2(Xl , x2) is actually a 
more elementary function than /) (Xl' x2 ). 

APPENDIXC 

We start from the standard expression14 

G~,m(ilX1' ... , inXn;j1y l ,··· ,jnYn;1J.1Zl ,···, IJ.mz m) 

=(~ IT(1j!i (x1)"'1j!/ (xn)ljjj (y1)· .. ljjj (Y n) 
1 " 1 n 

XA (zl) .. ·A (Z) 
/..1. 1 J.L m m 

Xexp[ie f d 4x ljj(x)4(X)1j!(X)]) I~), 

where 1j! and A are the free fields, '$= 1j!+yo' and I~) is 
the free particle vacuum state. For e = 0, we find (we 
setm=21, since, fore=O, Gn,m=Oifmisodd) 

G~,m(i1xv •.. 'umz m) 

1 
= -2/11 L; D~_Cl)"_C2) (xo(l)-XoC2 »'" . oCm) v v 

X (_1)1n/21 L t(CT)S[j (X1-YoC!)'" 
aC n) 1 oCll 
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XSL ( )(xn- Yo(n») non 
where [n/2] is the greatest integer less than n/2, 
L: o( r) is the sum over all permutations on r elements, 
and t(a)=± 1, when a is an even or odd permutation. It 
is then easy to show that 

G~.m(ilXl' ... , IJ.mzm) 

= (0 I bj(x1 )'" b in(xn)c j (y 1) .. • c j (y n) 
1 n 

Xa (z ) ... a (z) 
lLl 1 I-Lm m 

X exp(i'0 f d 4x 1d
4x2 a~(xl)a~(x2)DFv(xl - x2» 

"V " 
xexp(-~ f d 4xd 4y bi(x) SiJ(x - y) cj(y» I 0). 

'J 

For all e we have 

'dde G~,m(ilxl"'" IJ.mzm)=(-l)n+li~ f d 4x(Y,,)jj 
'J" 

Consider 

Gn,m(ilxl ,··" IJ.mz m ) 

= (0 lb. (Xl)'" a (z) 
'1 um m 

xexp{ie?:- f d 4xc j(x)(Y,,)IJ bJ(x) au(x)} 
'Ju 

xexp{~~ f d4xld4x2a~(Xl)a~(X2)D:v(Xl -x2)} 

xexp{-?1f d 4xd 4y b7(x)Sf;(X - Y)Cj(Y)}O). 
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Clearly G m satisfies the same differential equation as n, _ 

G~,m fo,: all e, and for e=O, G~,m=Gn,m' Therefore 
G~.m=Gn,m· 
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The equivalent Lagrangians for a generalized mechanical system are dermed and the effects of using 
different members of the class of equivalent Lagrangians in classical mechanics and quantum 
mechanics are discussed. The path integration method is applied to quantize the generalized 
mechanical system. 

I. INTRODUCTION 

It is well known that for a mechanical system its 
equation of motion can be obtained from the principle of 
least action. The Lagrangian, which determines the ac­
tion, is not uniquely defined. Thus, there is a class of 
equivalent Lagrangians all of which give the same equa­
tion of motion. Since the only thing which concerns 
classical mechanics is the equation of motion, choosing 
different members of the class of equivalent Lagran­
gians doesn't change anything. For quantum mechanics, 
different members of the class of equivalent Lagrangians 
mean different Hamiltonians and hence different Schro­
dinger equations. It is not obvious that all these equa­
tions represent the same system. After some investiga­
tions, we found that different members of the class of 
equivalent Lagrangians only change the wave functions 
up to a common phase factor. This common phase fac­
tor does not change any important properties of the sys­
tern. That is, all the expectation values of observables 
are the same at all time, if they are the same at one 
time. We also investigated these properties for gener­
alized mechanics (i. e., starting from a Lagrangian that 
depends on higher order time derivatives of the coordi­
nates instead of just first order time derivatives) and 
found that the same properties exist, provided that we 
carefully defined the class of equivalent Lagrangians. 
It is precisely this point that has caused some troubles 
in the quantization of generalized mechanics. 1-5 

In order to prove the properties concerning quantum 
mechanics, we found that is is convenient to use path 
integration method to quantize the generalized mechani­
cal system. The only thing that is not familiar is that the 
wavefunction now depends on x,i,'" up to d!'-Ix/df'-I if 
the Lagrangian contains dnx/df' as the highest time 
derivative of the coordinate x. We will give some ex­
planations to see why the wavefunction should depend on 
higher order time derivatives of the coordinates x. 

II. DEFINITION OF THE CLASS OF EQUIVALENT 
LAGRANGIANS 

In order to define the class of equivalent Lagrangians, 
we first define proper Lagrangian and improper Lagran­
gian. We feel that this step is necessary, although it is 
trivial, since it is precisely this point that causes trou­
bles in the quantization of generalized mechanics. We 
define the proper Lagrangian as the Lagrangian from 
which we can obtain the equation of motion via the vari­
ational principle. If a Lagrangian is not a proper La­
grangian, we call it an improper Lagrangian. 
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Let us give an example. Consider the following 
Lagrangians 

The actions are, respectively, 

SI=Jt2(-ixx)dt, S2= F2(ii2) dt 
tl tl 

and the variations of the actions are 

I5S2 = J t2 - xl5xdt + iil5x I ~2 • 
ti 1 

From Eq. (1) we know that we have to fix x(t I ), X(t2), 
i(tI ), and i(t2) in order to get the equation of motion 

(1 ) 

(2) 

x= O. But in general a second order differential equation 
does not admit four initial conditions. From Eq. (2), we 
only have to fix x{t I) and x{t2) to obtain the equation of 
motion x= O. In general there is a solution. So, in these 
simple cases, we call LI an improper Lagrangian and L2 
a proper Lagrangian. We should exclude improper La­
grangians when we conSider generalized mechanics, 
since they are not logically well defined. If we excluded 
the improper Lagrangian, we no longer have the trou­
bles of Refs. 1-5. 

According to the definition of proper Lagrangians, we 
have the following theorem: 

For a proper Lagrangian if it involves dnx/df' as the 
highest time derivative of the generalized coordinates x, 
then it must contain a term of the form 6 

(
dn-Ix dx ,\(dnx) 2 

A df'-I ""'dt ,x,~ di" 

where 

(
dn-Ix dx ) 

A dtn-I , ••• , dt ,x, t 

is not equal to zero at any time. We are not going to 
give the proof here, because it is obvious. Now we can 
define the class of equivalent Lagrangians. 

Definition: Two proper Lagrangians are equivalent if 
they contain dnx/dtn as the common highest time deriva­
tive of the coordinates x and differ only by a term of the 
form 

d (dn-IX dx ) 
dt f dtn-I , ••• , dt ,x, t 

where f is an arbitrary function of its arguments. 

Copyright © 1974 American Institute of Physics 808 
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'III. DEFINITION OF PATH INTEGRATION FOR 
GENERALIZED MECHANICS 

It was Feynman7 who first introduced the path integra­
tion method into quantum mechanics. For practical pur­
poses, it works as well as canonical quantization. But 
for a general Lagrangian of the form L = tgljqiqi, it 
seems that there is a difference between canonical quan­
tization and path integration. 8 There are many reasons 
to believe the correctness of the path integration 
method. 9 

It is a straightforward generalization to define path 
integration for generalized mechanics, Let us consider 
a proper Lagrangian L: 

(
dnx dx ) 

L = L dtn , ••• , dt ,x, t (3) 

L contains a term 

We closely follow Feynman's original propositions. 
That is, we assume that for infinitesimal time intervals, 
the propagator of the wave function is proportional to 
the exponential of i/n times the classical action, Since 
the classical action is uniquely defined only when we 
fix x(t),i(t), ••• ,dn-lx/dtn-l at two end points, we con­
clude that the propagator depends on x(t)" •• ,dn-lx/ 
dt"-l at the two end points and hence the wavefunction 
depends on x,x,.,. ,dn-lx/dt"-l. This is not the common 
Situation, but it is the most natural generalization from 
ordinary quantum mechanics to generalized quantum 
mechanics, For convenience we will define 

dn-lx d n-2x 
Qn= dtn-l , Qn-l= dtn-2 • .. Ql=X. 

The wavefunction ;P(Q(t2), t2) at time t2 with coordinates 
Q(t2) is connected with the wavefunction ;P(Q(t 1)' t l ) at 
time tl as follows: 

;P(Q(t2) ' t2) = J K(Q (t2), t2;Q(tl ), tl);P(Q(t H tl)g( Q(tl ) )dQ(tl ) , 

(4) 

where Q stands for (Qn' Qn-l>'" ,Ql) and 

dQ(tl )= dQn(t l ) .. • dQl(tl) ' 

g(Q(tl )) = [A(Qn'" • ,Ql)]n /2 

(5) 

(6) 

is the weighting factor to make sure that the measure 
gdQ is invariant under generalized coordinate trans­
formations, Eq, (4) is the definition of the propagator 
K(Q(t2), t2;Q(tl ), tJ. According to our assumption, we 
can write down the expression for K(Q(t2)' t2;Q(tl ), tl)' 
that is, 

K(Q(t2), t2;Q(t 1)' t 1) 

1 J (. m = ~i_~ Am exp ~ k~ SCI(Q(t l +kel,t l +kE; 

Q(tl + (k + 1)E), tl + (k + OE») 

m 
X n g(Q(tl + kE))dQ(t l + kE) , 

kol 
(7) 

where tl + (m + 1)E= t2 and Am is a normalization constant 
which depends on m only. Scl(Q(tk);Q(tk.) is the action 
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along the classical path between Q(tk) and Q(tk•l ) in the 
time interval E, that is 

SCI (Q(tk);Q (tk•l» 
J 

tl+(hl)' = stationary value of L(t' Wt' • 
t 1 ok. 

In order to get acquainted with the definition of the 
path integration method, we consider the simplest ex­
ample of a generalized mechanical system, 

L = t(X)2 • (8) 

We shall first find the Schrodinger equation and then 
calculate the propagator for this Lagrangian. For in­
finitesimal time intervals, Eqs. (4) and (7) give 

;P(Q2(t + E), Ql(t + E), t + E) 

= i f exp(iSCI(Q2(t+E),Ql(t+e»;Q2(t),Ql(t~ 
X ;P(Q2(t) , Ql(t),t)dQl(t)dQ2(t) (9) 

where 

S - (t'31.(" )2dt' (10) 
cl- J

t 
2 Xo , 

xo(t') satisfies the equation of motion 

'x~(t') = 0 (11) 

and the boundary conditions 

xo(t')it'=t = Ql(t), xo(t') i t'=t = Q2(t) , 

xo(t')it'=t+e=Ql(t+E), XO(t')it'"t+e=Q2(t+E) , (12) 

It is easy to obtain SCI: 

SCI = ~ [ 3( 7 -Q2(t + er + 3(7 -Q2(t+ E»),i + ,i2J 

where 

~= Ql(t + E) - Ql(t) , 

,i = Q2(t + e) - Q2(t). 

We can expand ;P(Q(t), t) around Q(t + e) and obtain 

;P(Q(t+e},t)+E iJ;P(Q(~:E),t) + ... 

(13) 

(14) 

1 f (i \ [ 'iJ;P 'iJ;P 
=:: A expWscV X ;P(Q(t+E),t)-~ iJQ2 -~ iJQl 

1 ('2iJ 2 ;P • iJ2;p 2iJ2;p )J 
+ 2! ~ iJQ~ +2~~ iJQ liJQ2 +~ iJQ~ + ... 

XdQl(t)dQ2(t). (15) 

After a rather lengthy but straightforward calculation, 
we get 

iJ;P 1 [irrnE2 irrnE2 ill (iJ 2;p iJ;P ) ] 
;p+e at + ... = A fi ;P+e fi "2 iJQ; -Q2 iJQl + ... , 

that is, we get 

A=irrne2/fi 
and the equation for ;P(Q(t), t) 

(16) 

(17) 
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. a<p 1f2 a2<p . a<p 
t1i at = - 2" ~ - iJiQ2 aQ1 • (18) 

The propagator K(Q2(t2), Q1 (t2), t2;Q2(t1), Q1 (t1), t1) can be 
obtained from the definition, that is, from Eq. (7). 
Since L is a quadratic in the variable x, we have other 
methods to calculate the propagator K. We symbolize 
Eq. (7) as 

K(Q(t2) , t2;Q(t1), t1) 

(19) 

where 1Tdx(t) means that we sum over all paths satisfy­
t 

ing the conditions 

Set 

x(t)lt=t1=Q1(t1), x(t)!t=t1=Q2(t1), 

x(t) I t=t2 == Q1 (t2)' x(t) I t.t2 = Q2(t2) • 

(20) 

where xo(t) satisfies the equation X'o(t) = 0 and the bound­
ary conditions 

X O(t1)= Q1(t1), X O(t2 )= Q1(t2) ' 

XO(t1)= Q2(t1), XO(t2)= Q2(t2)· 

We substitute Eq. (20) into Eq. (19) and get 

K(Q(t2)' t2;Q(t1)' t1) 

USing the following condition 

lim K(Q(t2), t2;Q(tl)' t1)= 0 (Q(t2) - Q(t1». 
t2~tl 

We get 

IV. EFFECTS OF USING EQUIVALENT LAGRANGIANS 
TO GENERALIZED CLASSICAL MECHANICS AND 
QUANTUM MECHANICS 

According to the definition of equivalent Lagrangians, 
one can generate the whole class of equivalent Lagran­
gians by adding a term of the form 

:tf(~~~ , ••• ,x,t) 

to a particular Lagrangian 

(
dnX ) 

Lo=Lo dt" , ••• ,x,t • 

The action becomes 
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f t2 ( df ) S= Lo+ dt dt=So+ f(t2)-f(t1)· 

t 1 

Classical mechanics is concerned with the problem of 
finding the path x(t) which makes S stationary with x(t), 
x(t), • •• and d n- 1x/dt"-1 at time t= t1 and t= t2 fixed. 
Since f(tl) and f(t2) depend on fixed quantities only, we 
have 

Thus the equation of motion is the same for all members 
of the class of equivalent Lagrangians. 

For quantum mechanics, let us set <Po and <p to repre­
sent the wave functions corresponding to the Lagran­
gians Lo and Lo + df/ dt. If if!o and <p have the same expec­
tation values for all observables h(a/aQp Qp t) at a 
time t1 , that is 

f <Pt(Q(t) , t1)h( i~~ I ,Q I' t) <Po (Q(t1) , (1) g(Q(t1»dQ(t1) 

= f <P* (Q(t1), t1)h(i~~i - a~1 ,QI' t)<p(Q(t1) , t1) 

x g(Q(t1»dQ(t1 ) • (23) 

Then we are going to prove that they have the same ex­
pectation value at all time. The two systems are equiv­
alent. We write down <Po and <p at time t as 

<Po (Q(t) , t) = J Ko(Q(t) , t;Q(t1 ), t1)<PO(Q(t) , t1)g(Q(t1»dQ(t1) , 

(24) 

<p(Q(t) , t) = J K(Q(t) , t;Q(t1), t)<p(Q (t1)t1)g(Q (t1»dQ (t) , (25) 

where 

K(Q(t) , t;Q(t1), t1) 

=Ko«Q(t), t;Q(t1), t) exp( 1r [f{Q(t)} - f{Q(t1m) 

(26) 

according to Eq. (7). 

From Eq. (23), we are forced to conclude that 

<p(Q(t1) , t1) = <Po (Q(t1) ,t1) exp (+ 1r f{Q(t1) , t1) ) . (27) 

Using Eqs. (24), (25), (26), and (27), we get 

<p(Q(t) , t) = <Po (Q(t) , t) exp(1r f(Q(t) , t») (28) 

thus 

f 1jJ~(Q(t),t)h(¥ O~i ,Qi't)ljJo(Q(t) ,t)g(Q(t»dQ(t) 

= f cJ!*(Q(t),t)h(f O~/ - ~,Qpt)IjJ(Q(t),t)g(Q(t»dQ(t). 
(29) 

Note that the changes from (1i/i)(iJ/iJQ/) in the Ihs of Eqs. 
(23) and (29) to 

(" a iJf ) i iJQ/ - iJQ/ 
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in the rhs of Eqs. (23) and (29) are due to the changes of 
canonical conjugate variables. For example, p", the 
canonical conjugate variable corresponding to Q" are, 
respectively, 

P = ilLo =A d"x in Lo 
"ilQ" dt" 

and 

P - ~-A d"x + J.L . L 
"- ilQ" - dt" ilQ" In • 

From Eq. (29) we conclude that the two systems Lo and 
Lo + df/ dt are equivalent. 

ACKNOWLEDGMENT 

The author would like to thank Professor C. N. Yang 

J. Math. Phys., Vol. 15, No.6, June 1974 

for his constant encouragement and delightful 
discussions. 

811 

*Work supported in part by National Science Foundation Grant 
No. GP-32998X. 

IC. F. Hayes and J. M. Jankowski, Nuovo Cimento B 58, 494 
(1968). 

2C.F. Hayes, J. Math. Phys. 10, 1555 (1969). 
3C. Ryan, J. Math. Phys. 13, 283 (1972). 
4H. Tesser, J. Math. Phys. 13, 796 (1972). 
5D. Anderson, J. Math. Phys. 14, 934 (1973). 
6We restrict to the form A (d"x/ dtn)2 because it is simple. We 
can have A (d"x/ dt")m with m '" 1. 

7R. P. Feynman, Rev. Mod. Phys. 20, 327 (1948). 
BK. S. Cheng, J. Math. Phys. 13, 1733 (1972). 
9K.S. Cheng, J. Math. Phys. 14, 980 (1973). 



                                                                                                                                    

Hamiltonian cosmology: Death and transfiguration * 
Michael P. Ryan Jr. 

Center Jar Relativity Theory, The University oj Texas at Austin, Austin, Texas 78712 
(Received 26 April 1973) 

Following work of MacCallum and Taub, we show that for Bianchi-type universes of 
Ellis-MacCallum class B (Bianchi types II, III, IV, V, VI"*_I' Vllh~o) Hamiltonian cosmology 
breaks down. We construct a quasi-Hamiltonian theory for these models. 

I. INTRODUCTION 

A. Death 

Hamiltonian cosmology is dead. The application of 
Hamiltonian techniques to the study of homogeneous 
cosmologies has been found to be invalid. Ehlersl 

questioned whether simply inserting a homogeneous 
metric into an action functional for general relativity 
led to an action for the Einstein equations of that met­
ric. For the most part Hamiltonian techniques were ap­
plied to Bianchi-type universes2 and it is now certain 
that for some of these Bianchi types Ehlers' worry was 
justified. Ellis and MacCallum3 have divided the nine 
Bianchi-type models into two groups, Class A (types 
I, II, VI_l, VIla, VIII, IX), and Class B (types II, III, 
IV, V, Vlh"_l' VIIh"a), and Hamiltonian cosmology fails 
for universes of Class B. It is relieving to note that the 
models most closely studied in Hamiltonian cosmology 
(types I and IX) are in Class A. It is also important to 

. know that type V models face problems, because if the 
present value for the cosmic luminous-matter denSity 
is any reasonable fraction of the total denSity, the real 
universe is type V. 

The failure of Hamiltonian cosmology was first noted 
by MacCallum and Taub4 in a HamiltOnian formulation 
of their own. Most of the work on Hamiltonian cosmol­
ogy has been based on the techniques of Arnowitt, 
Deser, and Misner5 (ADM), so we must investigate 
ADM Hamiltonian cosmology for the various Bianchi 
types. In this paper we show that the ADM method ap­
plied in a straightforward fashion is valid for Class A 
vacuum cosmologies but, like the MacCallum-Taub 
Hamiltonian method, fails for Class B models. We also 
show that this failure may be a symptom of a very gen­
eral problem with the Einstein6 variational principle in 
noncoordinate frames. 

B. Transfiguration 

It is possible to retrieve something of the ADM ap­
proach in Class B universes. In fact, the evolution 
equations of these models can be reduced to an almost­
Hamiltonian form, and this is done below. A by-product 
of this reduction is that the "potential" terms in the 
Hamiltonians of Class A and the "quasi-Hamiltonians" 
of Class B can be written out explicitly for all Bianchi 
types. This is done in Appendix A. 

Hamiltonian cosmology has often led to quantum cos­
mology, quantized models based on the Hamiltonians 
which appear. The fact that the evolution equations of 
Class B models are not Hamiltonian leads to difficulties 
in quantizing these models. This is discussed briefly 
in the final section of the paper. 
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II. THE APPLICATION OF THE ADM METHOD 
TO HOMOGENEOUS METRICS 

A. The ADM method and homogenization 

ADM5 write the action for general relativity in the ab­
sence of matter as (i, j = 1, 2, 3) 

1= J £d 4x= J [-gjJBT7T fJ + Ngl/2{3R +g-1(t7T2 _7T fJ 7Tjj)} 

+ 2Nj 7T iJ
Ij 

_ 2(7TlJ NJ - t7TNI + Nllfg) ,1]drd 3x. (2.1) 

We use the superscript4 to label four-dimensional quan­
tities and3 to label quantities on r= constant hypersur­
faces. We define 

gIJ=4gIJ, N=(_4g aa)"1/2, 

NI = 4g01 , 7TiJ = (_ 4g)1/2(4r~q _ gl>/r~ .• ,!(') g II> giq. 

The matrix gil is the reciprocal of glJ and henceforth 
all i, j indices will be raised and lowered by means of 
glJ and glJ unless we specifically say otherwise. In the 
action (2. 1) r is whatever coordinate we take to be 
"time", I means covariant differentiation on a r= con­
stant surface, and 3 R is the curvature scalar formed 
from the spatial metric glJ' Finally, 7T= 7T\. The vari­
ational equations for this action (varying with respect 
to 7TlJ, glJ' N, and N I) are 

BTgjJ = 2Ng"1/2( 7TlJ - tgIJ7T) + N IIJ + N J II, (2.2a) 

BT7TIJ = - N.Jge R IJ - tglJ3 R) + Ng-l 12gIJ(7Tmn7Tmn_ t~) 

_ 2Ng"1 12(7Tlm7T~ _ 7T7TIJ) +.Jg(N IIJ _ g/J NI m lm ) 

+ (7TIJ~) 1m - N~ m7TmJ - N1m7Tml, (2.2b) 

3R + g"1(7T2 _ 7T IJ7T IJ) = 0, (2.2c) 

7T iJ
IJ = 0. (2. 2d) 

ADM5 show that these are equivalent to Einstein's 
equations in vacuum. 

In the next section we attempt to apply the action 
(2.1) and Eqs. (2.2) to homogeneous, Bianchi-type cos­
mological metrics. In anticipation of this we study the 
"homogenization" of (2.1) and (2.2) and do this in a non­
coordinate frame. Again antiCipating we shall take the 
frame to be (dr, 0-1), where the 0-

1= ~;(xk)dxJ, i,j, k 
= 1, 2, 3. By "homogenization" we mean that for the 
components of any geometric quantity A (metric compo­
nents, symbols, Riemann tensor components) in the 
frame (dr, 0'1), A,I =XIA= 0, where the XI are vectors 
dual to the 0-1• Finally we shall let NI = 0, a coordinate 
condition which is usual in cosmology. Because 7T IJ is 
a density and not a tensor, we must be careful in trans_­
forming from one frame to another, but one can see 
that Eqs. (2. 2) with NI = 0 transform easily because on­
ly time derivatives of 7TiJ appear and the frame we are 
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transforming to has (J0= dT. Equation (2. 2d) is also eas­
ily transformed because the covariant derivative of a 
density is well-defined. 

The homogenized action and the homogenization of 
(2.2) are 

[= J [- gli 8Trr iJ + Ngi/Zf R + g'"i(t~ - rrlirrlJ} 

+2Nl rr ii
lJ

] dTA(JiA~/'-dl, (2.3a) 

8TgIJ = 2Ng'1/Z(rrI J - tgjjrr), (2.3b) 

OTrriJ = - NfgeR ii - tg lJ3 R) + tNg'l/ZglJ(rrmnrrmn - t~) 

_ 2Ng i IZ(rr lm rr1m _ hrrli), 

3R + g'i(t~ -rrlJ rrli) =0, 

rriJI} = O. 

(2.3c) 

(2. 3d) 

(2.3e) 

Notice that the choice N j = 0 has enabled us unambigu:­
ously to discard the total-divergence term in (2.1). We 
must now ask if Eqs. (2.3b-e) result from varying 
(2.3a). Because the variations for Eqs. (2. 3b, d) involve 
no space derivatives [and because NIIJ =0, also (2. 3e)] 
these equations are obtained from (2. 3a). The same is 
true for the term on the left-hand side of (2. 3c) and the 
last two terms on the right-hand side. It is in the first 
term on the right-hand side of (2. 3c) that the variational 
principle breaks down. This may seem strange as it 
comes from the variation of the term Ngl/23R in (2. 3a) 
and is a reflection of the three-dimensional analog of 
the Einstein variational principle for general relativity. 

This variational equation is not necessarily straight­
forward in noncoordinate frames, as we shall see in 
the next subsection. 

What happens in the specific homogeneous case we are 
considering? For a homogeneous three-space we have7 

3 R = _ C~jC kJgiJ _ tC~jC:~rsgk~IJ + c!"gmlc~. 

3 RIJ = _ tC~sC!~igti _ tq.C:tglkg.,gSlgtJ 

+ tgStgPTC~pC~,g.~b,gmignJ 

+ iC:,gTt(C~~pn + C~,gPm)gmlgnJ, 

(2.4a) 

(2.4b) 

where C}k is, as usual r~ - rjk' From these two ex­
pressions it is easy to see that 

o(.f?R) = (- 3 R IJ + tgiJ3 R)VgOgli 

+ UC:,gTt(c:~ml + Ci,gnJ) 

- C!Tq~rlglJ)vgogIJ' 

We shall see in the next section how this affects the 
Hamiltonian formulation of Bianchi-type models. 

B. The Einstein variational principle in 
non-coordinate frames 

The usual Einstein variational principle6 for a 
Riemannian or a pseudo-Riemannian space is 

(2.5) 

oJ R';±gdV= J (_R IJ + tgiJR)f±goglJdV. (2.6) 

The usual proof of this relation begins by writing 

oJ gIJRjjf±gdV= J - Rlif±goglJ + tglJRf±gogljdV 

+ J glJoRIJf±gdV (2.7) 
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and using Gauss' theorem, the integral of giJORfjr±g 
over volume can be transformed into an integral of WI 
over a hypersurface surrounding the volume. Since the 
variations of the field are zero at the integration limits, 
WI = 0 there and the term in ORiJ drops out. 

Let us examine this proof in a nohcoordinate frame. 
One might already be suspicious, as the vector w I in­
volves the rJk which are !lOt f!:~me-independent quan­
tities. Let us write gjl' R iJ , r;k for the metric, Ricci 
tensor, and Christoffel symbols in a noncoordinate 
frame {(Ji, u2, ... , u"}. As before we have (where dV 
:= (Ji/,- u2A ... A (In): 

oJ Riiglif±gdV= - J RlJogljf±gdV+ t JgliRr±logiJdV 

+ J gllORijf±gdV. (2.8) 

- -k -k -I -k -I-k 
In a gzneral frame RIJ = r ii,k - r l! J + rlJr I. - r I.r IJ 

- ckJr11' Once one notices that or}. is a tensor as it is 
in a coordinate frame it is not difficult to show that 

(2.9) 

where w I is a vector whose components are the ana­
logues of those in the coordinate frame with each quan­
tity in the expression replaced by the same quantity with 
a tilde. By means of the generalized stokes' theorem9 

JMdW= JaMW we can show that JW(If±gdV=O as in a 
coordinate frame. The second term on the right-hand 
side of (2.9) is not the divergence of a vector. 

This result means that one must be careful in apply­
ing the Einstein variational principle in noncoordinate 
frames. The exception to this caveat (to borrow from 
Ellis and MacCallum's terminology describing Bianchi· 
type models) are spaces of class A for which C!m= 0 
and frames in which cZm can be made to vanish. 

GOWdyiO has constructed a correct variational princi­
ple for the density VgR in which the objects which are 
varied are not the metric components in the frame. 
Even this variational principle is not free from prob­
lems of boundary conditions which arise because or";l 
which appears in WI contains derivatives of the metric, 
so that we may say roughly that not only the ogli' but 
(Oglj),h must be held zero on the boundary of the inte­
gration region. MacCallum and Taub4 feel that these 
boundary problems preclude finding any valid variation­
al prinCiple for Class B models, but whether the illness 
that they found is related to the problem we have dis­
cussed in the ADM case or is actually of this more bas­
ic type needs further study. 11 

In the previous subsection we saw that choosing one 
of the forms defining the frame we used to be dT made 
the only modification of the four-dimensional variation­
al principle appear as a modification of the variation 
of Vg 3R. 
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III. THE ADM METHOD AND BIANCHI-TYPE 
UNIVERSES 

A. The Bianchi-type models and the Ellis- MacCallum 
classification scheme 

We write the metric of any Bianchi-type model as 

dsz=_dt2+e-a()(t)~~(I)crlcr1, (3.1) 

where O(t) is a scalar and j3W is a 3 x 3 traceless ma­
trix. Wherever O(t) is a monotonic function of t it makes 
sense to make the coordinate transformation t - O(t) 
and the metric becomes (with the definitions of Sec. II) 

dsa= (-If' + NINI)doZ + 2Nldfl,cr i + e-a()e~«()crlcr1. (3.2) 

Because NI = 0 in (3. 1) and 0 = O(t), Ni = 0 in (3.2), and 
we will discard them from here on. 

It is useful to parametrize {3iJ by means of a par'l.me­
trization due to Ryan2 and Misner12 where we write 

{3u = Ri~(j3dh,R Ii' 
where RiJ is an Euler rotation matrix and j3d is a diag­
onal traceless matrix parametrized by {3d = diag({3, 
+ ,{3j3_, {3, - ,(3{3_, - 2{3.). We parametrize a generic ro­
tation matrix by R = exp(1/!Ks) exp(6Ka) exp(cpKs), where 

K3 = [~ ~ ~J and Ka=[~ ~~. 
[000 0-1~J 

For a general Bianchi-type model a solution of the Ein­
stein equations gives the five quantities 13" {3_, cp, 1/!, 6 
as functions of O. The procedure of Misner then gives 
these quantities as functions of cosmic time t. 

For any Bianchi-type model the cr l obey 

dcrl = C ;kcri 1\ crk, (3. 3) 

where the CJk are constant. Ellis and MacCallum3 have 
used the symmetries of the C:k to write 

C:k= €Jklm II + o~ar o}a", (3.4) 

where m Ii is a 3 x3 symmetric matrix of constants and 
al is a triple of constants. Various choices of m and a 
give the various Bianchi types. For example m = 0, 
a=O (Type I); a=O, miJ=o~ (Type IX); m=O, 

a l =- o~(Type V); a l =- ~o:, m=~r~ ~ ~l(Type IV). 
Lo 0 ~J 

B. The application of the ADM method to Bianchi­
type universes 

Since the Bianchi-type universes are homogeneous 
in the sense of Sec. II we need only insert giJ 
= e-aoe~~ into (2.3) and replace 7" by O. We can achieve 
an explicit Hamiltonian form for (2.3) by parametrizing 
7Tli by 

7TiJ= e-S[(p/J/27T) +to lJ7T]e- S, (3.5) 

letting 7T '" H/27T and parametrizing P Ii by 

6PIJ=R"1{alP, + aaP_ + as Sinh~~raj3) 
+ 3(Ptp sin1/! - P. cosO sin1/! +P8 cos1/! sinO 
~ sinO sinh(3(3, +V3(3.) 
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+ a 3(P8Sin1/!SinO-p"coS1/!+PoCOS1/!COS6}R 
5 sinO sinh(3j3, - ,(3j3J ' 

(3.6) 

where 

al = diag(l, 1, - 2), aa = diag(V3, - V3, 0), 

a3= r~ ~ ~l, a4= ~ ~ ~l, crs= ~ ~~. 
~ 0 ~J G 0 ~J ~ 1 ~J 

With these definitions (2. 3a) becomes 

1= J [p,d(3, +p_d{3_ +pq11/! +P/(Jdcp +P8dO- HdO] (3.7) 

(assuming the spatial constraint equations are solved). 
Solving the constraint (2. 3d) for H we find 

Ha=6Tr[(p)a]_247Tag sR. (3.8) 

The space constraints may be easily computed (see Ap­
pendix B). The potential term gSR is given for all 
Bianchi types in Appendix A. The combination of (3.7) 
and (3.8) make up a well-defined Hamiltonian system, 
but because of the failure of the variational principle 
we must examine Equations (2. 3b) and (2. 3c) carefully. 
Inserting our parametrization for 7TIJ and (3li into (2. 3b) 
we quickly find that 

ql= ;:, (3.9) 

where a dot means d/ dO and we have let ({3, - ql' (3_ - qa, 
1/!-qs, 6-q4, CP-q5) andp+-Pl' etc. 

Inserting our parametrizations into (2. 3c) we find, 
after an unconscionable amount of algebra (in which the 
beauty of mathematics is shown by the most likely col­
lections of terms combining to give exactly what is need­
ed) we find two sets of equations 

(3.10) 

(3. 11) 

The Vi are 

~i = 144~{ - AaM13 e-as,-aJ"3s_ + A1M
a3 e-as,-a .l!"B_ 

_ (Al)ae-aB,-a ./3B- _ (Aa)ae-aB+,a..'3B- + 2(As)ae4B,}, 

(3. 12a) 

'1'2= 1447Ta{tA1M23e-as+-a"3- - tAaM13e-ZB+'Z"3B-

- V3(Al)ae-aB,-a"3B- _ v3(Aa)ae-as++a"3B-}, (3. 12b) 

'Y'3 = 1447Ta{tA3Maae4B,-a"3B- - tA1M
a3 e-2B+ + tA1M13e-aB, 

+ tA3Mlle4B+'v38- _ A1A ae-aB,+a"3B-

- A1Aae-aB.-a"3B_} sinh(2f3{3.), 

14 = 1447Ta{sin1/! sinO sinh(3j3+ + f3(3J[tAsMsae2B+-z./38-

_ tAaM33e-5B++,I3"B- _ tA1M12eB+-v1"B-

+ tAaMlleB++3 ,13"8 __ A1A3e4B+ _ A1A3e-as,-a"3a.] 

- cos1/! sinO sinh(3(3, - 13(3)[ tA1M33 e"58+-"3a. 

_ t AsM13eB++"'3B- + tAaMlaeB++"38-

_ tAl~ae-38,-Sv1"B- _ AaA3 e4B, 

_ AaA3e-2B"anB- ]}, 
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Ys = 1447T2{cos1/! sinh(3/3+ + 13/3J[tAaM32e2B+-2.'!"B­

_ tA3M33e-5B++~B- _ tA1M
I2 eB+-v'S"B-

_ tA2MlleB+ +"38 __ A1A2e4B+ 

_ A1A2e-2B+-2~B- ] 

+ sin1/! sinh(3/3+ - 13/3_)[ tAl~3 e-5B +- ~B_ 

_ tA3MI3eB++./3"B- + tA2M12eB++~B­

_ tA1M22e-3B+-3 ./3"B __ A2Aae4B+ 

_ AzA3e-2B++2~B- ]}, 

where MIJ=RlkmkIRj} and AI=RlJaj • Notice that all the 
terms in each of the '1/1 are proportional to one of the 
AI so that the YI are all zero if the C:i O!Rj}A j are zero. 

Classically, the fact that Equation (3.11) are not ex­
actly Hamiltonian is not too important, since they are 
close enough for calculations to be carried out. In fact, 
the terms in Yl will be negligible for large n except in 
certain small portions of f3., /3, cp, 1/1, 0 space .. In the "wall" 
picture of Misner12 these terms would add "quasiwalls" 
where the universe point would change direction, and the 
non-Hamiltonian form would only make the computation 
of bounce laws from these quasiwalls more difficult. 
When we try to study the quantization of Class B uni­
verses, we find ourselves in more difficulty. This will 
be discussed below. 

We have neglected the space constraints (2. 3e). These 
are given in Appendix B for all Bianchi-type models. 
In diagonal type V models a helpful cancellation occurs. 

't/2 becomes zero and the space constraint (see Appendix 
B) implies f3+ = const. This allows one to write the evo­
lution equations in Hamiltonian form. For other Class 
B models the space constraints are not helpful. 

While reducing the Einstein equations to the forms 
(3.9), (3.10), (3.11) is helpful, it is necessary to at­
tempt to find a true Hamiltonian formulation based on 
a correct variational prinCiple. 
IV. QUANTIZATION 

There is very little that can be said about quantizing 
Class B models in the context of the ADM method as it 
was applied above. It is impossible to reconcile the 
commutation relations [p I q I] = iff with the equation of 
motion (3. 11). Notice that it is possible to quantize the 
equations far from the quasiwalls where the non­
Hamiltonian terms become important, so we could con­
struct wavepackets in these regions, but we could not 
connect these solutions with any kind of bounce law. In 
order to quantize these models properly, we would need 
a theory based on a correct variational principle freed 
from problems of boundary conditions. 

APPENDIX A: MISCELLANY 
For Class B universes we have 

Bianchi Type ml! al 

III tas -to~ 
IV diag(l, 0, 0) -o~ 
V 0 -o~ 
VIh -t(l-h)~ -(1 + h)oi 
VIII h diag(O, - 1, 0) + as -hOi 
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Here as is the same matrix as in the expression (3.6). 

The potential terms in the "Hamiltonian" in (30 8) are 
24~.tR. In terms of f3 d, R, MIJ, and AI we find that 
(for any Bianchi type) 

247T2g 3 R = e-40{ej~d(adjMIJ - MIJMkle~~dend - 6A IA Jejr"}, 

where adjM is the classical adjoint of M. 

The triplet A. is not difficult to write out for any 
Class B model, in fact, 

A.=E(sin1/!sin8, cos1/! sinO, cosO), 

where E is the factor miltiplying oJ in the table above. 
The matrix M is quite complicated even in the Simplest 
cases. The diligent can convince themselves of this by 
computing M for type IV. 

APPENDIX B: THE SPACE CONSTRAINTS 

If we let O!IJ =6Rj!PkIRIJ' then the space constraints 
(2.3e) become 

ei~d€'fr~~O!ITe!:MdW + 3ej~dAtei~dO!.b= O. 

For a type V model as an example these three equations 
read 
A (p +13p )e-2(B.+~B_) + 3A e-2B+ PI/! 
_1. - 2 Sinh(213f3J 

+3A eB+-"3B_ (p" sin1/!-p~cosOsin1/! +P8 cos1/! sin8) ==0 
. 3 sinO sinh(3/3+ + 13f3J ' 

(B1) 

3A e-2B+ PTa + A (P - 13p )e-2(s.-~B.l + 3A eB++./3"B-
1 sinh(2 3/3J 2 + - 3 

x (P8 sin1/! Sin8-prp cOS1/l+P.coS1/!cos8) 0 (B2) 
sinO sinh(3i3+ -13/3J 

3A eB+-~B-{P'P Sin1/! - p~cosO sin1/! +P8 cos1/! sin8) + 3A eB++~B-
1 sin8 sinh(3/3+ + f3/3J 2 

(P8sin1/!sin8-p'Pcos1/!+P.cOSlPCOsO) 2A 48 -0 
x sin8sinh(3i3+-I3/3J - se +P+- • 

(B3) 
Notice that for diagonal type-V models these equations 
reduce to P + == O. 
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All spherically symmetric static space-times for which a nonredundant stationary Killing tensor of 
rank two exists are found and discussed. The results include explicit forms for the line elements, the 
Killing tensors, and the corresponding quadratic constants of geodesic motion. Included as special 
cases are relativistic analogs of the Lenz vector and of the quadratic constant of the motion 
peculiar to the spatial harmonic oscillator. 

1. INTRODUCTION 

Any symmetric tensor K ",a which satisfies the con­
dition 

(1) 

is called a Killing tensorl of the second rank. K",a will 
be called redundant if it is equal to some linear com­
bination with constant coefficients of the metric tensor 
g",a and of terms of the form A(",Ba) where A", and Ba are 
Killing vectors. Our objective is to find all spherically 
symmetric static space-times for which a nonredundant 
stationary2 Killing tensor of rank two exists. 

This objective is a limited part of a more general 
program of determining space-times which admit non­
redundant Killing tensors in addition to some given 
group of isometries. The program is still in its infancy 
with regard to techniques of calculation. There is the 
well-known technique3 of handling a symmetric tensor 
by choosing an orthonormal tetrad relative to which the 
tensor has a Jordan canonical form. However, as dis­
cussed in Sec. 5, this method is not appropriate when 
there is a given group of isometries. A subsidiary pur­
pose of this paper is to explore methods of handling 
Killing tensors when working in a coordinate system 
adapted to the given isometries. 

With few exceptions, 4, 5 previous work6- 9 on space­
times or other Riemannian spaces which admit Killing 
tensors did not impose specific isometry constraints 
such as ours. Nor was the problem of redundancy con­
sidered in any detail. 

Even apart from problems of redundancy, little has 
been done on Killing tensors in general relativity. A 
noteworthy exception is the work of V. I. Golikov7 and of 
C. F. MartinS who independently found all space-times 
which admit geodesic correspondences. Each geodesic 
correspondence uniquely determines a Killing tensor 
which typifies the correspondence. Further details 
pertinent to our own work are given in the discussion of 
results in Sec. 5. 

It is worthwhile reviewing the principal motivations 
for studying such hidden symmetry conditions as the 
existence of nonredundant Killing tensors. We recall 
that Eq. (1) is equivalent to the statement that, for any 
geodesic motion of a test particle with a world velocity 
pI', the scalar Ku.pupv is a constant of the motion. 
Therefore, our particular problem is one of finding all 
spherically symmetric static space-times which admit 
stationary quadratic first integrals of geodesic motion 
subject to the proviso that these first integrals be func-
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tionally independent of gu.pupv and of all linear first 
integrals of geodesic motion. This is an extension of the 
classical problem of determining those central force 
fields in which a nonrelativistic particle has a constant 
of the motion which is a second degree polynomial in the 
momentum components and which is functionally inde­
pendent of the Hamiltonian and the angular momentum. 
There are exactly two central potentials, viz. r- 1 and 
-r, which satisfy these criteria. 

The above classical example illustrates how hidden 
symmetry criteria can select dynamically interesting 
fields. This example and its analogues in particle phys­
ics are the principal motivations for searching for 
space-times which admit nonredundant Killing tensors. 

The Kerr metric furnishes additional support for such 
a program in general relativity. Here, we have in mind 
the quadratic first integral of geodesic motion which 
Carter5 has found as a byproduct of his work demon­
strating that the Hamilton-Jacobi and Klein-Gordon 
equations are separable for the Kerr metric. 

Carter lO has also derived a broad class of line ele­
ments which include the Kerr metric as a special case 
and which satisfy certain separability criteria in addi­
tion to having the two Killing vectors characteristic of 
axially symmetric stationary space-times. The general 
relationll between separability criteria and hidden sym­
metry criteria is still an open question and deserves 
further investigation. However, Carter's separability 
conditions have no direct bearing on the present paper, 
because all spherically symmetriC static space-times 
satisfy these conditions. 

The present paper contains perhaps the first calcu­
lation of Killing tensors in which the nonredundant ones 
are completely sifted out from the others. We are able 
to do this easily, because we are working with a class 
of spaces whose Killing vectors are all explicitly 
known. 4 These Killing vectors and the corresponding 
first integrals of geodesic motion are given in Sec. 2. 

The key steps in our calculation of the Killing tensors 
and the corresponding line elements are outlined in 
Sec. 3. Almost all calculational details are omitted, 
since the calculations are long, though straightforwa,rd 
in our opinion. Schwarz schild coordinates 0, <p, r, t 
were found convenient for the calculations of Sec. 3, but 
the key results are simplest when expressed in terms of 
coordinates 0, <p, S, t for which the line element has 
the form 

(2) 
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TABLE I. Constants of geodesic motion Vi and Wi peculiar to 
the Minkowski, Einstein static model, and de Sitter spaces. 
i:l,2,3. The line elements are all of the form <f!~r2(d82 
+ sin28dcp2) + (expll.)dr2 - (expv)dt 2. 

Name of Space expll. expv Vi Wi 

Minkowski 1 1 xi tXi + P4xi 

Einstein static ~ -(liYY 1 
0 

model ui 

de Sitter [l-(liyr l-(liY vi Wi 

where r and v depend only on s. The results for the 
metric tensor, the constants of the motion, and the 
Cartan components of the matter tensor are all given in 
terms of these coordinates in Sec. 4. 

The results and perspectives for further work are 
discussed in the fifth section. The results do not include 
the Schwarzschild line element. Nor do they include the 
Einstein and de Sitter static models of the universe, but 
several of our line elements have the Einstein and de 
Sitter line elements as limiting cases, and the corre­
sponding Killing tensors have redundant limits corre­
sponding to the special isometries of these models. 

The fifth section also includes a discussion of the 
singularities of the matter tensor and the sign of the 
energy density. Only the limiting cases of the Einstein 
and de Sitter static models have perfect fluid matter 
tensors. The new line elements obtained by us cannot be 
attributed to any obviously interesting single source. 

We now review the well-known3 Killing vectors of 
spherically symmetriC static space-times. In addition 
to the generators of infinitesimal rotations and time 
translations, there are the Killing vectors which are 
peculiar to the Einstein and de Sitter static models of 
the universe. These Killing vectors will be needed in 
later calculations for the purpose of identifying 
redundant Killing tensors. 

2. THE KI LUNG VECTORS 

Greek small letter scripts will have the values 1, 2, 
3, 4. Latin small scripts will have the values 1, 2, 3. 
Schwarz schild coordinates, 

~l=e, e=q;" e=r, ~4=t 

are used. Our line element is 

q, =gC/Bd~C/d~8 

= r2(d/f + sin2edq;,2) + (expA) dr2 - (expv) df, (3) 

where A and v depend on r alone. The summation con­
vention will apply to all small letter scripts. 

The metric components from Eq. (3) are inserted into 
the defining equation, K(C/ ;8) = 0, for a Killing vector KC/. 
Ten distinct differential equations for the Killing vector 
components are thereby obtained. The solution of these 
equations is given below in a form which covers all pos­
sible choices of A(r) and v(r): 

oXj 8 a 
KC/=EgC/4+ WijXi o~'" +p", a~8(eajxj+5bjx), (4) 

J. Math. Phys., Vol. 15. No.6, June 1974 

E, wij=- Wji' a j , and bj are arbitrary real parameters, 
and 

Xl = r sine cosq;" x2 = r sinB sinq;" X3 = r cose; (5) 

pi=p~=exp(-tA), p~=exp(tA), 

p!=-exp(tv); p!=O, (u{3. (6) 

e and 5 depend at most on t and are both zero except for 
the Minkowski space, the Einstein static model, and the 
de Sitter model. For the Minkowski space, 

e=l, 5=t; 

for the Einstein static model, 

e = 1, 5=0; 

for the de Sitter model, 

e = cosh(tjR), 5 = sinh(t/R), 

(7a) 

(7b) 

(7c) 

where R is a constant. expA and expv for these spaces 
are given in Table I. 

The Killing vector of Eq. (4) yields the following con­
stant of geodesic motion: 

(8) 

where k'" = d~'" / dT, and T is an arbitrarily chosen affine 
parameter. The constants of geodesic motion P4 and Iij 

are given by the equations 

P4 = - (expv)t, (9) 

The constants of geodesic motion Vi and Wi are both 
zero except for the Minkowski space, the Einstein static 
model, and the de Sitter model. For these spaces, they 
are given in Table I in terms of dynamical variables 
which have broader application than the present context 
and which will now be dfined. 

The dynamical variable u j is defined for all spherical­
ly symmetric static space-times by the equation 

u i = [(exptA)rOij - s-lIij] (x/r). (10) 

The variable s in Eq. (10) is the same one used in Eq. 
(2) and is defined apart from a sign and a constant of 
integration by the equation 

(11) 

s will be chosen positive for all A( r). In the special 
cases of the Minkowski, Einstein static model, and de 
Sitter spaces, the constant of integration is chosen so 
that integration of Eq. (11) yields 

s=(exptA)r. (12) 

Note that u i = Xi for the Minkowski space. 

The dynamical variables viand Wi which appear in 
Table I are defined for all spherically symmetric static 
space-times for which 

exp( - v) = ao + bos2
, 

where ao and bo are constants. They are defined as 
follows: 

Vi = u i cosh( v"b;, t) + S i P4 Ybo sinh (fbo t), 

Wi =U i sinh (Ybo t) + SiP4 Ybocosh(Ybot), 

(13) 

( 14) 
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where 

Si = (s/r)x i • (15) 

In the special case of the de Sitter model, expll 
=exp(- x), and fbo= I/R. 

The variables P4' Iii' Ui , Vi' and Wi as defined above 
by Eqs. (9), (10), and (14) will also appear later in our 
Killing tensor calculations. The procedure for com­
puting the nonredundant Killing tensors is considered 
next. 

3. THE KILLING TENSORS 

Corresponding to all possible values of the scripts 
(aJ3y) in Eq. (1), there are twenty distinct differential 
equations which are to be used to determine the Killing 
tensor components. We work with the contravariant 
components, since the equations are then a little simpler 
in our particular problem. The form of the metric given 
in Eq. (3) will be used from the outset of the calcula­
tions; also, only those solutions of Eq. (1) which are in­
dependent of t are considered. 2 

Those seven of the differential equations which corre­
spond to the script values (ij4) and (444) involve only the 
components Ki4 and are identical with the differential 
equations which define any time independent Killing vec­
tor K a whose fourth component is zero. Since none of 
the other equations contain K i4 , the solution of Eq. (1) is 
completely reducible to the sum, 

K a8 =A (aB8) + C a8, 

where 

Ki4=AiB4, Kii=C1i, ~4=C44, 

Aa is the Killing vector given by Eq. (4) with t=O and 
dC/dt=dS/dt=O, and B a is the Killing vector given by 
Eq. (4) with wji=O and C=S=O. 

Since J(i4 is redundant, only the thirteen equations in­
volving Kli and K44 are of further interest to us. The 
following radial functions playa key role in the analysis 
of these equations: 

RI = f dr(e)./2/r 2) , R2 = f dr(fiIe)./2/r 2), 

R 3=e-)'/2/r , R 4=r-2-R l R 3, Rs=1. (16) 

Out of the thirteen equations, the seven corresponding 
to the script values (333), (443), (332), (331), (123), 
(113), and (223) can be integrated in succession to fur­
nish us with the radial dependences of the Killing tensor 
components. The integrations are straightforward and 
yield 

K33 = e-).j33, K44 = j44 _ e-v j33, 

K11 =j11 + 1..j23 _ 2R ajSl + R a2~33 
r2 I ae 2 a ' 
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(17) 

Above, j ii and j44 depend only on e and cp and are still 
to be determined. (The dependence on cp will clearly in­
volve only the terms 1, coscp, sincp, cos2cp, and sin2cp). 

We have exhausted all but six of the equations (1). 
Those four of the remaining equations which correspond 
to the script values (112), (221), (111), and (222) are 
now used to determine jii. The four equations all have 
the following structure after substituting the expres­
sions (17) into them and grouping terms: 

(18) 

The radial functions RA, are defined by Eqs. (16). The 
spherical functions F AB are linear homogeneous expres­
sions injii. We do not list these expressions since they 
are rather long and do not illuminate the key steps in 
the calculations. 

Before solving Eqs. (18) for the spherical functions 
jii, it is expedient to classify the various cases of linear 
interdependence of the radial functions RA' Let the num­
ber of functions in any maximal linearly independent 
subset of the set {R l , R 2, R 3, R 4, R 5} be called its rank. 
Since RI, R 2 , and Rs are linearly independent for any 
X(r), the rank is always 3, 4, or 5. The cases of rank 
3 and 4 have, in turn, a variety of subcases depending 
on the particular linear relations which hold between 
these radial functions. 

The number of subcases is Significantly lessened by 
appropriate choices of the constants of integration in the 
definitions (16) of R1 and R 2 • By such choices, the linear 
structure of the functions R A corresponding to any given 
X(r) can be reduced to one of the following types: 

1. R3 = - J3RI' R4 = 4J3R2' rank = 3; 

II. R 3=a, R 4=-3aR l , rank=3; 

III. R3 = aR2, rank = 4; 

IV. R 4=yR 1 + Ii, rank=4; 

V. R 4=4J3R2+yR1 , rank = 4; 

VI. rank = 5. 

Above, a and J3 are nonzero constants, whereas y and Ii 
are constants which may be zero. 

For each of the above X( r) types I to VI, specific lin­
ear relations are obtained between the expressions FAB 

in Eqs. (18). These relations are then solved for jii. 
For all X( r) except those corresponding to type I with 
J3= 1, t, or 4 and type V with y=O and J3= lor t, the 
solution is as follows: 

jll = all cos2cp + bll sin2cp + ell, (19a) 

j12 = a I2 coscp + J3I2 sincp + cote (- all sin2cp + bll cos2cp), 

(19b) 
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f22= 2cotO(- a 12 sincp + f312 cosCP) 

_ cot2 0 (all cos2 cp + bll sin2 CP) + ell csc2 0 + C22 , 

f33=C33 , 

f31=f23=0. 

(19c) 

(19d) 

(1ge) 

Above and in the sequel, aU, bii , C ii , aii, f3 ii , and yot8 

are arbitrary constants. Eqs. (19d) or (1ge) are the only 
ones which are changed in the exceptional cases. 

In the exceptional cases, whether type I or type V, 
when X( r) is such that 

R4=4n2Rz, n= 1, t (20) 

Eq. (19d) is replaced by 

f33 = [(2n - 1) (a33 cos2cp + b33 sin2cp) + C33 ] (cos2nO - 1) 

+ (a33 coscp + f333 sincp) sin2nO 

(21) 

In the exceptional case, type I, where X(r) is such that 
both 

R4=4nzRz' and Rs=-n2R1' n=1,2, (22) 

Eqs. (1ge) are replaced by 

f31 = (a31 cos2 cp + b31 sin2 cp + C31 ) sin nO 

+ (a31 coscp + (331 sincp) cosnO, 

f23 = [n(a31 sin2cp - b31 cos2cp) + (2 - n)c23 ] cos nO 

+ [(n - 1) (- a Sl sincp + f331 coscp) (23) 

+ (2 - n) (a 23 coscp+ f323 sincp)]sinnO 

+ cotO[2( - a3l sin2 cp + b31 cos2CP) sin nO 

+ (- a 31 sincp + f331 coscp) cosnO], (n = 1, 2). 

Equations (20) to (23) cover all exceptions to Eqs. (19). 
We stress that Eq. (21) holds if Eq. (20) holds regard­
less of whether the rank is three or four. However, Eqs. 
(23) hold only in that rank three case specified by Eqs. 
(22). 

There remain only the following two differential equa­
tions corresponding to the script values (441) and (442) 
in Eq. (1): 

~ [f44 +(~ de-
v 

_ e-V)f33J+ S2 de-
v 

f31 = ° 
00 2 ds ds' 

(24) 

a~ [f44+(~d;~V -e-V)f33J+s2 d;~v (sin20)f23 = 0. 

The radial coordinate s was defined by Eq. (11). Note, 
from Eqs. (16), thatR1 =-I/s. 

Upon applying the condition of integratability to the 
above equations (24), we obtain 

(25) 

which provides a possible constraint on f31 and f23 in 
the event that II(S) is not a constant. By examining Eqs. 
(1ge) and (23), we see that this integrability condition is 
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automatically satisfied except when 

R 4=4R2, R3=-Rl' dll(s)/ds*O. (26) 

In this case, Eq. (25) imposes constraints on Eqs. (23) 
such that 

f31 = (a31 coscp + f331 sincp) cosO + C31 sine, 

f 23 =(_ a31sincp+f331coscp)csco. (27) 

There are no further changes in the preceding expres­
sions for f ii. 

We now use Eqs. (24) to find j44. We examine these 
equations for each of the possiblef li given by Eqs. (19) 
to (23) and by Eq. (27). 

First, suppose Eqs. (19d) and (1ge) hold. Then Eqs. 
(24) have the following solution for arbitrary II(S): 

We may now show that the Killing tensor obtained by 
substituting Eqs. (19) and (28) into Eqs. (17) has the 
form 

K Cl 8=y33 got 8 + t(A"'B6 +A6Ba), 

(28) 

where A Cl is the Killing vector (4) with C = S = 0, and B Cl 

is the same except for different real parameters. 
Therefore, Eqs. (19) yield a redundant Killing tensor, 
viz. the one which is characteristic of all spherically 
symmetric static space-times. 

Next, suppose that f31 = f23 = 0, but that f33 is not a 
constant and is given by Eq. (21). Then Eqs. (24) are 
satisfied if and only if 

exp(- II)=ao+bos2, 

f44 = ao (f33 _ y33) + y44, 

(29) 

(30) 

where ao and bo are constants. Such is necessarily the 
case if the rank of the radial functions R A is four and 
Eq. (20) holds. Also, such can be the case if Eqs. (22) 
hold, with n= 1. 

Next, suppose thatf33 is constant and thatf 31 andf23 
are not both zero and are given by Eqs. (23). Then 

(31) 

(32) 

where ao and m are constants. Such is necessarily the 
case if Eqs. (22) hold with n:: 2. Also, such can be the 
case if Eqs. (22) hold withn= 1. 

Next, suppose that f33 is not a constant and, also, f31 
and F3 are not both equal to zero. Such can be the case 
only if Eqs. (22) hold with n = 1. From the linear in­
dependence of f33 and f31 (or f23), we can show that this 
occurs if and only if (with the usual choice of the scale 
of the coordinate t) 

(33) 

This case turns out to be the Einstein static model and 
yields only a redundant Killing tensor, which will be 
given in the next section. 

We have now exhausted all cases. There remain the 
computation of exp( - x) from Eqs. (20) and (22) and of 
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the relation between sand r from Eq. (11). We skip 
further calculational details and will now summarize 
the results for the line elements and for the corre­
sponding constants of geodesic motion KOIBpOIPB• 

4. RESULTS 
For all line elements which have the forms specified 

by Eqs. (2) or (3) and which yield nonredundant station­
ary Killing tensors, expv is given by Eqs. (29) or (31), 
and 

exp( - X) = (n2 _ trs4)2 (r/ S)2, 

(s/r)2 = n2 + bs2 + K2S4; n = 1, t 2. 

(34) 

(35) 

Above, b and I( are constants; I( is arbitrary if Eq. (29) 
holds and is zero if Eq. (31) holds. We choose I( ~ 0 
without loss of generality. The arbitrary sign in s has 
been chosen so that s> O. 

Equation (35) can be solved for r as a function of s, 
. or vice versa. When I( = 0 and b> 0, note that r is a 
monotonic increasing function of s defined over the 
intervals, 

o <r< 1/Yb, 0 < s < 00. 

When I( = 0 and b < 0, again r is a monotonic increasing 
function of s, but this time over the intervals, 

0< r < 00 , 0 < S < n/ r::b. 

When I( > 0, the coordinates e, cp, s cover a larger 
portion of space-time than the coordinates e, cp, r. 
For example, if K> 0 and b> - 2nl( than the metric ten­
sor components r, r sin2 e, and (r / S)4 in the line ele­
ment (2) are rational functions of S2 over the domain 
0< S2 < 00. On the other hand, exp( - X) as a function of 
r has two distinct branches obtained by replacing S2 in 
Eq. (34) by the two roots s2=(21(2)"1 {r-2_b±[(r-2_b)2 
- 4n2K2]1/2}, derived from Eq. (35). In one branch, r is 
a monotonic increasing function of S2 over the intervals, 

0< S2 <n/K, 0< r< (b + 2nl()"1/2. 

In the other branch, r decreases monotonically with s 
over the intervals 

n/K<s2<00, (b+2nK}"1/2>r>0. 

All line elements which yield nonredundant Killing 
tensors are given in Table II, together with the corre­
sponding quadratic constants of geodesic motion. The 
dynamical variables P4 ' li;' U i , vi' and Wi which appear 
in the table are defined by Eqs. (9), (10), and (14) re­
spectively; l2 is the square of the angular momentum: 

(36) 

The constants of geodesic motion Hi; and Hi are derived 
from Eqs. (17), (21), and (30); Ai and Au are derived 
from Eqs. (17) and (23). (Actually, we obtained the 
constants of geodesic motion in the forms tijHij' tiHi • 

trAi' and tijAi; where tij=t;i and ti are arbitrary real 
parameters; these parameters are omitted in Table II). 
It is interesting to note that the traces of Hi; and Ai; 
are redundant as can easily be verified. 

Table II covers all spherically symmetric static 
space-times which yield nonredundant stationary Killing 
tensors. There are two and only two line elements 
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which are special cases of those listed in Table II and 
which yield only redundant Killing tensors. One of these 
is the Einstein static model line element which corre­
sponds to the following values of the parameters used 
in the table: 

n=1, K=bo=O, ao=1. 

For these values, the two n = 1 line elements of Table II 
become identical in form, and the corresponding con­
stants of geodesic motion reduce to 

which are redundant as can be seen by referring to 
Table 1. 

The other redundant Killing tensor corresponds to the 
values n = 1, I( = 0, and 

exp(- v) = expX = 1 + bs2
• 

This is the de Sitter line element. From Table II we ob­
tain 

(37) 

whose redundancy can be seen from Table 1. It is inter­
esting to note here how a stationary Killing tensor is 
constructed from the nonstationary Killing vectors 
peculiar to the de Sitter line element. 

We next consider the Cartan components of the 
Einstein tensor relative to the orthonormal tetrad forms 

e8 = rde, eq, = rsinedcp, 
(38) 

es =(r/s)2ds, e t =- (expi v)dt. 

The Einstein tensor is related to the matter tensor and 
to a cosmological constant A by the equation 

GOIB = - kT OIB + AgOlB • (39) 

Those Cartan components of kT OIB - A g OIB which are not 
identically zero are given below in forms which are 
readily applicable to any of our line elements of Table 
II: 

kT88 - A = kT q,q, - A = - 21(4S6 _ 3bK2S4 _ 6n21(2s2 

_ n2 b _ (n2 + bs2 + trs4) (n2 + 2bs2 + 31(2S4) 

(
eV de-V) 

X 2s ds ' 

TABLE II. Non-redundant quadratic constants of geodesic mo­
tion J(OIlPrxPB = K B~a iB. The line elements are all of the form 
ds2 = r2(dIJ2 + sin~lJd<t>2) + (r/ s)4ds2 - (expv)dt2 where (s/r)2 = K2 S4 
+bs2 +n2 • 

exp(-v) n K 

ao + bos2 1 arbitrary 
constant 

ao + bos2 1 arbitrary :3 
constant 

ao+2ms-1 1 0 

ao+2ms-1 2 0 

Hi' = U·U·+ (K
2Z2 

- boP~ )Si~ 
J '3 2 2 

= ViV; - WiWJ+ K Z SiSJ 

Hi =( Hii -bOii)( ~) 
Ai = ZiiuJ - mpa (x;lr) 

Aij= (uiZj,,+UjZi,,)(x~/r) 

+ (2;2 -mpy(~) 
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(40a) 

(40b) 

kT + A= 3K4S 6 + 6bK2S 4 + (1 + 14n2)K2s2 + (1 + 2n2)b 
It 

+ n2(1_ n2 )s-2. (40c) I 

The Weyl conform tensor was also computed and we 
found that conformal flatness is obtained for the for­
lowing three sets of parameter values corresponding to 
n = i-, 1, and 2 respectively: n = i, ao = 0; n = 1, b~ - aobob 
+ a~~=O, ao*O, b2 > 4K2; n= 2, a~+ m 2b =0. The n= 1 
set of conformally flat space-times specializes to the 
de Sitter or Einstein static model space-times when 
K=O. 

We now initiate our discussion of results with a sum­
mary of the main features of the matter tensor given by 
Eqs. (40). 

5. DISCUSSION 

Some features of the above matter tensor are evident 
by inspection. For example, each Cartan component is 
a rational function of s. Also, there is no difficulty 
about satisfying the condition T t t :;" 0 if n = 1 or i. If 
n=2, however, then the condition is violated in some 
neighborhood of zero s. 

As regards singularities, each Cartan component has 
poles at s = 00 if and only if K * O. When K * 0 and we 
transform to Schwarzschild coordinates in a neighbor­
hood of infinite s, then s = 00 maps into r= 0, and the 
dominant term near this origin is proportional to r-6 • 

Except when n= 1, exp(- 1I)=ao=bos2
, and ao*O, there 

are singularities at s = 0 in one or more of the Cartan 
components of the matter tensor. If noll, there are 
poles of order two in the energy density and in the radial 
stress. If exp( - II) = ao + 2ms- 1 (m * 0) or exp( - II) = bos2, 
there are poles of order two in both stress components. 
All of these second order poles are aphysical in the 
sense that their strengths are independent of the nonzero 
values assigned to the parameters in the metric tensor. 

We next consider the various types of matter which 
might conceivably fit Eqs. (40). If the matter tensor is 
due only to a perfect fluid or to a vacuum, then T rr - T 88 

must vanish identically. As expected, this perfect fluid 
condition is satisfied if and only if n == 1, K = 0, and 
either 

exp(- 1I)=ao 

or 

exp(-II)=ao(1+bs2), bolO. 

The first of the above alternatives is the Minkowski 
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space or the Einstein static model depending on whether 
b is zero or not zero. The second alternative is the de 
Sitter space. As we have already noted in the preceding 
section, the Killing tensors corresponding to these 
models are redundant. 

Our nonredundant Killing tensors do not correspond to 
any simple physical source as far as we can tell. We 
are referring here to a perfect fluid taken alone or to 
any classical vector or scalar field taken one at a time. 

We have aiso tried some combinations of pairs of 
sources without great success. For some of our line 
elements, the matter tensor is consistent over a limited 
range of s with an admixture of a perfect fluid with a 
single classical field such as an electrostatic or a sca­
lar field. By "consistency", we mean that the conditions 
of positive definiteness for the pressure p, the proper 
mass denSity p, and even pc2 

- 3p can be satisfied. 
However, it appears to us that such combinations di­
vorced as they are from any likely physical model are 
too eclectic to deserve more than passing mention. 

It seems worthwhile to describe some features of the 
matter tensor of those special metrics for which n= 1, 
K == 0, ao> 0, and bo' m, and b are nonnegative. With 
the usual choice of the time scale, ao = 1, and 

(41) 

or 

(42) 

These selected metrics include the Einstein and de 
Sitter models as special cases. They each correspond to 
a uniform energy density T tt= k-1(3b - A). There are no 
Singularities except for the second order pole at the 
origin corresponding to the metric in Eq. (42). As re­
gards the perfect fluid condition, T rr - T 88 = 0, the met­
ric (41) satisfies it at s = 0, and the metric (42) satisfies 
it on the sphere s =(R/2m) {R2 + [R2 + (2m)2W/ 2, where 
R = b-1 /2. If any of our line elements are candidates for 
some application, we would bet on Eqs. (41) and (42). 
However, we have found nothing as yet. 

It appears as if the physical pertinence of the new line 
elements which we have obtained does not derive from 
any coincidence between them and some solution corre­
sponding to an obvious interesting physical model. How­
ever, like many of the central potentials which were 
studied in the heyday of Newtonian mechanics, our line 
elements may serve didactic purposes. For example, 
the geodesic orbits have interesting properties analo­
gous to Kepler's laws. This is illustrated by the orbital 
equation for the metric given by Eq. (42). To obtain this 
orbital equation, choose the angle e so that the orbit 
lies in the plane e=t1T; then compute xjAJr where Ai is 
the generalized Lenz vector which is defined in Table n. 
Another illustration, this time reminiscent of harmonic 
oscillator orbits, is derived from the quadratic constant 
of the motion H i ;- Note the absence of precession for 
both illustrations. 

Apart from such didactic purposes, there are the 
techniques which we have used and which can serve as 
a guide for further investigations, especially in connec-
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tion with axially symmetric problems. Useful results 
may be found as suggested by the Carter5 work on the 
Kerr metric. 

With respect to this last remark, it is pertinent to 
note the way some of the Killing tensors which we found 
become redundant when we specialize the line elements 
to those of the Einstein and de Sitter models. Analo­
gously, we expect some of the axially symmetric sta­
tionary space-times to have Killing tensors which re­
duce to the redundant cases of Eqs. (19) and (28) in the 
special case of spherical symmetry. The quadratic 
constant of the motion5 peculiar to the Kerr metric il­
lustrates this kind of reduction to redundancy. 

The methods which we have used in this paper differ 
markedly from those used in most previous investiga­
tions3 ,B,9 of quadratic first integrals of geodesic motion. 
The starting point of these previous calculations has 
been to choose an orthonormal ennuple relative to which 
the matrix {K!} has a Jordan canonical form. However, 
the coordinate systems appropriate to these ennuples 
may well differ from those which display some given 
group of isometries to advantage. So, if we are inter­
ested in space-times which are spherically symmetric 
or which are axially symmetric and stationary, it seems 
more appropriate to us to choose a coordinate system in 
which the given isometries are manifest. This should 
facilitate both the calculations and the later checks for 
redundancy. 

In this paper, we have drawn a distinction only be­
tween those Killing tensors which are redundant and 
those which are not redundant. There are other ways of 
characterizing Killing tensors. For example, we may 
consider those symmetric tensors Ka8 which satisfy 
conditions of the form 

(43) 

It is easy to show that Eq. (43) implies that Ka8 is a 
Killing tensor. In particular, if Aa8=Ka8 and if Ka8 is 
non singular and has the same signature as g,,8' then Eq. 
(43) is equivalent to the statement that the space-time 
admits a geodesic correspondence6

,B onto another 
space-time whose metric is 

(44) 

where g and K are the determinants of ga8 and K"8 
respectively. On the other hand, if A a8 = g ,,8' and K ,,8 

has the structure 

then Eq. (43) is equivalent to the statement that the 
infinitesimal mapping x" - x'" + K a liE is a projective 
collineation. 6 ,B 

(45) 

As regards the vector field By in Eq. (43), if A,,8 is 
nonSingular, then By is uniquely determined by K,,8 and 
A",s' For a geodesic correspondence, 

B y = - (1/6K)K,y; (46) 

for a projective collineation, 

By = i(K" ;0) ,yo (47) 
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Note, therefore, that the defining equations for a geo­
desic correspondence and a projective collineation are 
inherently nonlinear. 

If the Killing tensors of a given space-time have all 
been worked out as is true in our case, then a residual 
problem is to discover which of these Killing tensors 
are characteristic of geodesic correspondences or pro­
jective collineations. Preliminary calculations have 
turned up negative results so far for all except redun,. 
dant Killing tensors, but the work remains to be com­
pleted before definitive statments can be made. The 
test for a geodesic correspondence or a projective col­
lineation cannot be done on one Killing tensor at a time. 
Instead, it is necessary to construct a linear combina­
tion of all Killing tensors of the given line element as 
follows: 

Then this linear combination is to be inserted into Eq. 
(43) and the values of the coefficients C1, ••• , C N are to 
be determined. The final result must be checked to see 
if it is nonsingular and has the same Signature as g",8' 

As we mentioned in the introduction, V.!. Golikov7 

and C. F. MartinB have found all space-times which 
admit geodesic correspondences. 12 Martin8 has also 
specialized some of these space-times to ones admit­
ting projective collineations. Their results deserve 
further investigation. In particular, some of them may 
contain interesting axially symmetric stationary line 
elements as special cases. 

The authors are currently working on the problem of 
axially symmetric stationary line elements which admit 
nontrivial quadratic first integrals of geodesic motion. 
This Killing tensor criterion is an alternative to that of 
separation of variables. 10 It is still not clear whether it 
can function as an independent and useful constraint on 
solutions corresponding to interesting matter tensors. 
In fact, the whole problem of hidden symmetries in 
general relativity can still bear a lot of investigation. 
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We give a model-independent and Lorentz invariant prescription for the manner in which a nonlocalizable 
quantum field extends outside the light cone, in particular specifying the order of this extension. We show 
how our definition applies to several examples, including the nonlocalizable free field and certain 
functions of the massive free field; nonlocalizable functions of the massless free field presents a 
difficulty which has not yet been resolved. 

1. INTRODUCTION 

There has been much recent discussion of nonpoly­
nomial functions of the free field, both with respect to 
mathematical problems arising in setting up such a 
functional calculus! and also with respect to the applica­
tion of such a calculus to nonpolynomial chiral and grav­
itational theories. 2 One of the most important questions 
involved in such problems is that of the properties that 
such nonpolynomial functions possess, especially cau­
sality and positive-definiteness of the metric in the 
state space. 3 In this paper we attempt an analysis of 
causality, in particular investigating the manner in 
which it is broken by nonlocalizable functions of the free 
field. 

These nonlocalizable functions have physical interest 
since they can arise when particular field coordinates 
are chosen in either the chiral or gravitational inter­
actions. A class of these functions has been investigated 
elsewhere and shown4 to possess various useful prop­
erties, such as the existence of a peT operator and of 
a scattering theory, as the vestiges of local commuta­
tivity. However, such nonlocalizable fields cannot satis­
fy strict causality, and a description of the extension of 
the commutator bracket outside the light cone has been 
given for the zero mass case. 5 We wish here to give a 
general discussion of this extension of the commutator 
bracket of a nonlocalizable field outside the light cone, 
both from a mathematical and a physical point of view. 
This necessitates the introduction of a new class of test 
functions which can suitably probe the behavior of the 
commutator bracket both outside and inside the light 
cone. This allows us to indicate, in a Lorentz invariant 
fashion, both the rate of decrease of the commutator 
outside the light cone as well as the range of the exten­
sion. In other words, we specify the degree of noncau­
sality in an invariant fashion, and expect the range de­
fined in this way to have physical interest and so deter­
mine the energy at which violations of causality can 
appear. 

The detailed plan of the paper is as follows. In the 
next section we give a general discussion of the way the 
extension of the commutator bracket can be described 
in a Lorentz invariant and mathematically precise fash­
ion. We give a definition which classifies the degree of 
nonlocalizability of nonlocalizable fields. In Sec. 3 we 
show how functions of the zero mass free field nearly 
satisfy conditions for this definition to apply, and con­
sider a special class of nonzero mass fields in the sub­
sequent section for which our definition can be used. A 
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more complete discussion of the nonzero mass case is 
given in Sec. 5. The physical significance of the dis­
cussion is considered in the final section. 

2. NON LOCALIZABLE FIELDS 

In this section we wish to formulate the properties of 
nonlocalizable fields in a manner independent of the fact 
that the most interesting applications are to functions of 
a free field. We will consider only one neutral scalar 
field ¢(x), the extension to complex spin fields present­
ing no conceptual difficulty. We suppose that the field 
¢(x) is an operator-valued generalized function over a 
suitable test function space C of functionsj(x), so that 
¢(j)= f¢(x)j(x)dx is an operator for which the usual 
Wightman axioms, 6 except that of local commutativity, 
apply. Thus there are a sequence of Wightman functions 
Wn(XU '" ,xn), defined by 

from which the fields may be reconstructed. 

The usual tempered field theory results if C is the 
space S of indefinitely differentiable functions decreas­
ing at infinity faster than any polynomial; the localizable 
case occurs if C contains a dense subset of functions of 
compact support. The nonlocalizable situation in which 
we are interested in here corresponds to C being com­
prised of analytic functions due to their rapid decrease 
in momentum space. This fall-off is required in order 
that the rapid high energy increase of the Fourier trans­
forms tv n of the Wightman functions can be satisfactorily 
taken account of by the Fourier transforms of the func­
tions of C, which we denote by AI. If tv n inc reases like 
exp[ Ip I"'], for a < 1, a satisfactory choice for vi{ is any 
space Sa, for {3 < a of Gelfand and Shilov, 7 being the set 
of indefinitely differentiable functions, which together 
with all derivations, are bounded at infinity by 
exp[_blpll/a] for some positive b (which depends on the 
function considered). A more precise specification8 is 
given by the indicatrix function g(p2) which is an entire 
function satisfying 

(1 ) 

The related function space, which we denote C' in mo­
mentum space or C, in coordinate space, is composed 
of momentum space functions ¢(p) which, together with 
all derivatives, are bounded by g-1(Ap2) for some con­
stant A. If (1) is not satisfied the space C, is composed 
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of analytic functions, so again corresponds to the non­
localizable case. 

We suppose, then, that each Wightman function Wn 
belongs to the dual of one of the above spaces C(R4

(n-
1» 

in 4(n -1) variables. As usual we denote this by 

(2) 

It is not possible, in the nonlocalizable case, even to 
formulate local commutativity. Analysis of speCial 
cases 5 has shown that there may still be a trace of local 
commutativity in that commutator brackets of the field 
operators at two pOints, whilst not zero for space like 
separations, can decrease fast as the spacelike separa­
tion increases. In fact, we will be led to consider an 
exponential fall-off. If we denote by cpCx) the nonlocaliz­
able field of interest, then we expect5 for large space­
like values of (x - y), that 

I<O\[cp(x),cp(y)LIO>1 <:;exp[_al(x_y)2I r /2 (3) 

for some positive constant a and ')I, wtih y< 1. We note 
that (3) does not contradict the result of Pohlmeyer and 
Borchers9 that such a fast fall-off implies strict local 
commutativity, since this result was obtained on the 
basis of analyticity of Wightman functions in space­
time; such properties no longer persist in the nonlocal­
izable case. 

We will now discuss how we may formulate (3) in a 
general fashion. The idea behind our approach is to de­
termine how far outside C we may extend the commuta­
tor bracket (3). If it is to test functions which actually 
increase for large spacelike values like the inverse of 
the rhs of (3) then we can conclude that the decrease of 
the commutator is roughly given by the rhs of (3). This 
extension has to be investigated in detail for each par­
ticular field being considered, but we will attempt in 
this section to give a general formulation of it which is 
model independent. To do that let us take the case when 
C is required to be an S'" space, with 0' < 1. We consider 
the commutator brackets 

C (x '" x ) = W(x ... x x ... x ) - Wi .. • ,. x X'" x ) n,J 1 rr 1 }'} +1 " \A 1 } +1 J n 

(4) 

If cp were local then causality would indicate that each 
CJ vanishes for ~}=xJ -xJ +1 spacelike, but would be non­
zero for time like separations. Thus we have to choose 
test functions which are in S'" for timelike values; we 
denote this space of test functions by Sf. Since the set 
X={~;e?O} is a closed set we have to define Sf by a 
suitable limiting procedure. It may be possible to use 
the closed set X directly, without using the following 
construction, but there are various points which need 
to be resolved before that can be done. We will not con­
sider that further here but use the better known induc­
tive limit approach. 

Let S",B(O,.> be the set of functions cp of the 4-vector 
x which are defined on the set 0" = {x;~ > - 1L2}, and 
satisfy there 

Ixtcp(O) (x) I <:; CtBI olqo'" , 

where 

xlt- 114 Xk; 
- I' 

iol 
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(5) 

and B, Ct are given constants. In order to take account 
of the constant a on the rhs of (3), we should take B to 
be independent of cp in (5). However, that does not give 
a Lorentz covariant space, but initially we allow only 
the constants Ct to vary with cp. We now define 

sa= 
" ,,>0 

B:zl,2, .' •• 

Each space SOIB(O,,) is a complete, countably normed 
perfect space with the norms 

Ifcplft,p," == sup Ixtcp1ol(x) I /[(B + p)lolqoa], 
SEOJ,l 

o 

(6) 

for k = 0,1,2, ... ,p = 1 , t, ... , being a standard S",B 
space but on the open set 0".10 Since saB1(0,,)~ S",B2 (Ov) 
for 1L?1I and B2 ?B1 with topological'inclusion, then we 
may take the topology on S: as the inductive limit as IL 
tends to zero and B to infinity of these topologies on the 
S"'B(O,.> , so that a sequence {CPn} converges to zero in 
S: if all the functions cp" belong to some space saB(O) 
for some IL and B, and converge to zero in its topology. 
We note that if 0' > 1 the space saB(O,,) is not complete, 
and the quantity Ifcplfk,p,,, is not a true norm but only a 
prenorm. However, we do not wish to apply our con­
struction of saB(O,,) and S: to the localizable case. 

We construct the space of test functions appropriate 
to the commutator Cn.! as 

T
rr
.!(a)=sa(R4 (n-2»®S:, (7) 

where the functions cp(~v' .. '~n-1) in TnjO') are in 
S"'(R4

(n-
2 » with respect to the variables ~i(=Xi -XI +1) 

for i = 1,2, ... ,j -1 ,j + 1, ... ,n -1 and are in S: in ~J" 
At this stage it is not evident how this space Tn,J(O') is 
relevant to the exponential decrease given by the rhs of 
(3). This will become apparent from the following 
lemma. 

Lemma 1: Any function cp E S: has an analytic continua­
tion to the whole of R4 + iR4 = C4 , and increases at infin­
ity at most like exp4(B II x II )1/(1+01) where IIx II 
= SUP1Ei"4Ixl I , for some constant B. 

Proof: To prove this we note that cp E saB(o,,), for 
some B and IL. Thus by (5) 

Icp(o)(O)I<:;CoBlolqo"'. (8) 

Thus the series 

1/J(x) =6 xocp(o) (O)/q I' 
o 0 

where 

has infinite radius of convergence and is bounded at in­
finity, by (8), by 

Co~ B10lqO'" Ixl % ' <:; Coexp[4Bllxll 1/(1-a)], 
c 

where 

Ixl o= h IxII
OI

. 
1=1 

(9) 

Since 1/J coincides with the analytic function cp in 0", then 
the lemma is proved. We see that if we can extend Cn,} 

from S"'(R4<n-1» to T n• i ({3) then we obtain the decrease 
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FIG. 1. The integration contour C in the complex Xo plane 
over which the massless commutator (C2 , tfJ) of Eq. (16) is 
evaluated. 

like the rhs of (3) with y= 1- f3 and a= 4(B)1/(1-B). Thus 
we define the degree of extension of the commutator 
bracket outside the light cone as follows. 

Definition 1: If for each n and each j we may extend 
C",J from SCl(R,<n-1» to T",J(f3), where {3 may be chosen 
independently of nand j, then the largest such values 
of y= 1 - (3 will be called the order of extension of the 
commutator bracket outside the light cone. 

We note that this definition is obviously Lorentz in­
variant, the space S: evidently being so. 

We extend this definition to the finer specific.ation 
given by an indicatrix function g(p2). Let 

,., 
g(pa) = E car par . 

roO 

Then the space CB'(R4
) is defined as 

We modify this space to C'(O,,) as before, and define 

C:= U CB,(O,,). 
Il>O 
B<'" 

(10) 

Similarly we define the space T",J(g) = C'(R4 (,,-a» ® C~, 
and extend the Definition 1 to 

Definition 2: If for each n and j we may extend C",J 
from C'(R4<n-1l) to T",J(g), where g may be chosen in­
dependently of nand j, then the smallest g which may 
be chosen defines the nature of decrease of the extension 
of the commutator outside the light cone. 

To see this nature of decrease in detail, we extend 
Lemma 1 to 

Lemma 2: Any function cf> E C~ has an analytic contin­
uation to the whole of C4 and increases at infinity at 
most like IIt1 G(B I x j I), when 

G(X) = E c~"[(Bx)" In I] 
" .. 0 

has an infinite radius of convergence, and B depends 
on cf>. 

The proof of this lemma follows that of Lemma 1 al­
most identically, where we assume that g does not satis­
fy (1), so we are dealing with the nonlocalizable situa­
tion. It need not be the case that any cf>(x) E C: has an 
analytic continuation to all C4 in general, since cf> need 
at most be quasianalytic in 0" for some j.J.. That is why 
we need to impose the condition on the infinite radius 
of convergence of the series G(x). However, Definition 
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2 may be used even if it is only quasianalytic but the 
extension process can only be performed infinitesimally 
outside the light cone. It does not seem possible to 
specify the rate of decrease of the commutator in this 
more general situation. As examples we note that if 
c,,=n-CI we return to the sa spaces, whilst if c.=n-110gn 
it has an infinite radius of convergence. However, if 
c" = n-1 (lognr1 the function G(x) has zero radius of con­
vergence, so that analytiC continuation of any cf> E C! 
need not be possible to arbitrary spacelike points. 

We can enlarge the above approach to include the 
range of decrease of the commutator bracket outside the. 
light cone if we consider the various Wightman functions 
in terms of their invariant variables; the discussion is 
so similar to the above, except for replacement of 4-
vector variables by invariants, that we need not give 
that discussion here. 

3. FUNCTIONS OF THE MASSLESS FREE 
FIELD 

Let us turn now to speCific examples to indicate how 
the above formulation of noncausality actually applies. 
We consider in this section an infinite series in normal­
ordered powers of the free massless scalar field 

cf>(x) = E (d.ln!): cf>~(x):, 
".0 

where: : denotes the normal ordering and the d" are 
real coefficients. Then in the notation of Sec. 4 of 
Ref. 5, 

(11) 

C ( ) ~ II
r 

d T R
, rk,k+1(R'/r 1)-1 ",k xl> ... , x" = LJ Rj • k,k+1 

riJoD 101 
j~k,k.l 

r (r -ll 
x2'JTi E(X) E dR"dR l!+l- 1) k,

h1
1i k,hl (~~) (12) 

o rk,k.l.o r",k+l! (rk,k.l -1)! (47ftk
,k+l 

where 

II 
1~j ~J'" 

(f.J)~(k,k+1) 

We see from (12) in this case that if 

d~ = X'r(1 + no), 

(13) 

(14) 

then C',k would appear to be in T.,k({3) provided {3< 2 - 0; 
the nonlocalizable situation corresponds to 0> 1 so the 
(3 can be chosen less than one to satisfy this. However, 
there is a difficulty in this approach which we will clari­
fy for the particular case of the 2-point, n= 2. For then, 
using (14), 

Ca(Xl> xa)= E (~/n!)[.:l.(x1 -xa)" -.:ljXl -xa)"], 
... 0 

= I; .fo"'W·a e- t )/nl]dt[.:l+(x1 -xa)' -.:l_(X1 -xa)"], 
• .. 0 

= 1'" dte- t {exp[t".:l.(X1- Xa)] -exp[tCl.:l_(Xl -Xa)]}· 
o 

We may form (Ca, cf», for cf> analytiC, by using that 

.:l,.(x) = lim [(xo'f i E)a - rZ]-l, 
0-0 

with x = (xo, r) so that 

(15) 
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+ I.E.I o 
FIG. 2. The final contour in the Xo plane to which C of Fig. 1 
may be shrunk after taking account of the Singularities in 
<C2 , </». 

(16) 

'where C. is a contour in the complex Xo plane composed 
of two parts, as shown in Fig. l. 

Thus 

(C2, <1»= lim 1''' dte- t Jc.dxoJ d3r L) (t""'/n!)[(ry']-l. <1> (x) 
.~o 0 "~o 

For I rl '" 0 the poles of (x2r" are at Xo= ± I rl, and the 
contour C. may be shrunk to that of Fig. 2. 

Thus we have 

(C "') r~ -t'>' 2 . t"'" J d
3
r 

2,'1-' =)0 dte t.; 1T~(n!)2 IrJii 

X - +(-1)"-(~<1> I ~<1>I) 
ax~ xo.lrl a~ xo.lrl . 

Provided that for all r E R3 

then 

I r I k I arr<1>/a~ Ix -slrl .:; Cfll"B(B)". 
o 

I (C2, <1» I .:; constx 10" dt e-t ~ B"[t"'" /n,,<2-B)] < co 

if 01 + (3 < 2. 

(17) 

(18) 

This is the same condition which arose above, but now 
we see the defect arising from both of these approaches. 
This is that the space integral in (17) is divergent for 
n> 2, owing to the factor I r 1-". Thus the condition (18) 
or the stronger condition <1> E S~ does not lead to a defi­
nite value for (C2, <1». Thus our discussion of functions 
of the free massless field is defiCient at this point. 
Whilst this is unsatisfactory we will see that a similar 
situation does not arise in the massive case, so we 
turn to that now. 

4. THE MASSIVE CASE 

In this section we will consider two very simple exam­
pIes of nonlocalizable fields which have been discussed 
already in the localizable case. The first of these is the 
generalized free field <1>(x) for which the commutator 
bracket is 

(19) 

where 1.\ (x, K2) is the invariant propagator for mass K. 
The function p(0) is allowed to increase for large K with 
order of growth at most one for localizability. We can 
see this by considering the rhs of (19) when applied to a 
test function <1>, by means of Fourier transforms, for 
it takes the value 
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([A (x) , A(O)L, <1» = J:S dK2p(K2) J d4x1.\(x, K2)<1>(X) , 

= J~dK2p(K2)1.\~(K2), 
rno 

where the functions 1.\.p of K2 is defined by 

1.\.p(0) = J d4x<1>(x)1.\(x, K2), 

= j d4p¢(P)6(P2_ K2)E:(PO) , 

(20) 

(21) 

where <1> is the Fourier transform of <1>. We now prove 

Lemma 3: If <1>ESaB then 11.\.p(K2)I':;e-(BK)1/",. (const). 

Proof: If 

<1> ESaB =* 1) E SaB=* I 1)(P) I.:; e-(BIII>II)l/"', 

where lip II is any norm on R4 consistent with the usual 
Euclidean topology. Let us take II p Wla = I pili a + I pollia. 
Then 

1.\.p(K2) = j (d3p/2Ip 1)[ ¢«(P2 + K2)1/2, p) _ 1)(_ (p2 + K2)1 12, p)]' 

so 

(22) 

11.\.p(K2)1':; j(d3p/2Ipl)e-(BIII>II)1/a_[B(p2+ K)1/2j1/a 

.:; (const) x e-(BK)l/a 

as required. Thus the integral on the rhs of (20) is finite 
at infinity for all <1> ES'" ,B +, and E: > 0, provided that 

(23) 

To take account of possible singularities in p we have to 
discuss the differentiability properties of 1.\.p(K2). 

Lemma 4: If <1> E sa,B(R4) then 1.\.p(K2) E S""BUO, 00)], the 
Gelfand-Shilov Sa ,B-space, but defined on the open in­
terval (0, 00). 

Proof: This follows directly from (22), using the dif­
ferentiability properties of <1>: 

so that 1.\.p(K2) E C~«O, co», the set of indefinitely differ­
entiable functions on the open interval (0,00). Including 
the results of Lemma 3 proves the lemma. 

We have proved that if p E S"'B(O, 00) then the commuta­
tor brackets (as well as all the Wightman functions, as 
can easily be seen) are all in the appropriate S"'B' spac­
es of the relevant 4-vector variables. 

When we turn to the extension problem, with Q! < 1, 
we see that the previous discussion using Fourier trans­
forms can no longer be given, since the test functions of 
S: or S~ may increase too rapidly outside the light cone 
for their Fourier transforms even to be defined. Thus 
we need to rephrase the preceding discussion purely in 
terms of coordinate space. We do that in the following 
lemma. 

Lemma 5: If <1> E sB&'(n,.) for some Band /1, then 
1.\.p(0) E SB-lg(O, 00) = [<1> : I x" <1> (q)(x) .:; cqli' (Ck)"k, x E (0, 00)]. 

Proof: Let us consider 1.\.p(K2) of (21), and form 
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-I.E.I 

FIG. 3. The integration contour C in the complex Xo plane 
over which the massive commutator (C2 • ¢) of Eq. (34) is 
evaluated. 

~A0(~) = J d4x/(2nA(x, ~)I/>(X) = J ~x(D2)nA(x, ~)I/>(x), 
= J a4xA(x, ~)(o2)nl/>(x) • (24) 

Using the standard representation for A(x, ~), 
a 

A(x, /(2) = (41Tr)"1 ar ([€(xo)Jo(KV'x2)]8(x2)}, 

we obtain 

rc2nA4> (~) 

= i.:" dxo€(xo) lolrol r2dr :r[ r"l~n(XO' r)] ·Jo(KV'~ - re) , 

where 

¢n(XO, r) = f dO(r)(D2)nl/>, 
Ir 1=1' 

dO(r) being the measure of the spherical surface 1 r 1= r. 
In terms of the variables X-=,J ~ - r2 and r, we have 

~nA0(~)= 10" x.aX-~" r2dr(r2+ x-
2r 1

/
2 :r [r-l¢~+>(X-, r) 

_ r-l¢~->(X-, r)]Jo(/(X-) , (25) 

where ¢~(X-, r) = ¢n(± ,JX-2 + ra, r). From (10) we have 

r-1 1 ¢,,'(X-, r) _ ¢~(\ r) I",; (X-2 + r2 + l)"N B2n(C2n)"2n (26) 

for a suitable positive integer N, so 

I /(2nA4>(~) I",; (const)B2n(c2n)"2n . 

The derivative ~nA~o>(~) can be handled exactly as 
above, with 

K2nA (O>(K2) = r" ax.x-o+1 J" r2dr(X-2 + r2)-1/2(a/ ar)r-1 
4> J 0 0 

x [¢~(X-, r) - ¢~(X-, r)]Jo(q >(X-K) • 

The bound (26) with N ~ q + 2 will thus prove 

I K2nA~ >(/(2) I ",; Co B2n(C2n)-2n • 

(27) 

Thus A0(K2) E SB-1,-«0, 00)). We may thus extend 
[A(x),A(O)L as a generalized function-valued operator 
to the space S~ if pES; (since n BSB-1, = S;). We may 
specify the increase of p(K2) in this case straightfor­
wardly from (27), since then 

I AiK2) ",; sUP Co[B2n(c2n)-2n/ K2n] = Co?;(K2/ B) j (28) 
n .. O 

so the increase of p for larger K2 must be slower than 
G(/(2)-1. In the case of cn = n-" we obtain the familiar val­
ue G(K2t 1 =expK 1/2". We have thus proved 

Theorem 1: The generalized free field (19) has an ex­
tension whose order of decrease outside the light cone 
is specified by the smallest possible g for which pES;. 
The bound on p for large K2 is essentially G(K2>-1, where 
G(K2) is given by (28). 
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Let us now turn to another Simple example of a non­
localizable field, for the case 

B(x) = g(D2)A(x) , (29) 

where A(x) is a tempered field (though A could be local­
izable) and g is a suitable function. To consider this 
case we note that the Wightman functions for Bare 
trivially related to those for A: 

Wn(B >(xl1 ••• ,xn) = ft g(D~) W~ >(xu • •• ,xn) • 
1=1 

Let us consider specifically the 2-point function 

W~B>(Xl1X2) =g2(O!rx2)W~(Xl1X2)' 

We may write W: by means of a Lehmann representation 

W?· >(x) = J~ dK2p (A >(K2)A (+ >(x, /(2) , (30) 

so that W2(B> also has such a representation, though now 
with weight function p (B >(K2 = g2(K2)p (A >(K2). Thus if g is 
an entire function with exponential growth of order (~a) 
and p <A > is a measure then p (B >(K2) E S~. By the discus­
'sion for the generalized free field the commutator 

C~ > (x) = f; dK2p (A >(K2)A(x, K2) 
"'0 

can be extended to some space S:. For the general 
commutator 

Cn<B](Xl!' •• ,xn)= IT g(D~ )C~~(Xl" •• ,xn) (31) 
• i=l j , 

the tempered distribution C~> vanishes outside the light 
cone in the variable ~J=xJ" •• ,xJ+1' The generalized 
function g(D~ )Cn~>(~j) will have an extension outside the 
light cone wI1ich can be determined immediately, since 

(fi g(O~)CnJ' I/> ) = (Cnj, IT g(D~)I/» • (32) 
1=1 i=1 

The details of the extension are given by 

Lemma 6: If g is an entire function order of growth 
~a, then 

for any (3 < a. Here 

Sx (R4 (n-1» = U 5(R4 tn-2 »0 5(0 ) 
nJ ,,>0 " , 

where 5(0,,) is in the variable ~J' The first part of this 
lemma follows immediately by Fourier transformation, 

FIG. 4. The final contour in the Xo plane to which C of Fig. 2 
may be shrunk after taking account of the singularities in 
(C2' ¢). 
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whilst both it and the second part can be derived by di­
rect computation by using the defining properties of the 
spaces S" and S. Since the support of Cn , is the interior 
of the light cone in ~,then the right-hand side of (32) is 
defined for cP E Tn ,({3) for any (3 < a. We have thus proved 

Theorem 2: The massive field (29) has an extension of 
order of decrease a. It is evidently possible to obtain 
further results on this extension, such as its range or 
its order, in the case of sr spaces, but we will not do 
that here, because the results are not of essential in­
terest. This is especially so for both of these examples 
in that the first, the generalized free field, has the 
trivial unit S matrix whilst the example (29) has the 
same S matrix elements as the field A(x), as can easily 
be seen in momentum space. We leave these cases, 
then, and turn to functions of the free massive field. 
These also have trivial S matrix, but have a great deal 
more complexity. 

5. FUNCTIONS OF THE FREE MASSIVE FIELD 

As before we consider functions of the form 

B(x) = ~ (din!) :A(x)n: , 
"",0 

(33) 

where A(x) is a free scalar field of mass m. We will 
only investigate the 2-point function here for simplicity, 
especially because this situation is already quite compli­
cated. We have, for the massless field, and taking (14), 
that 

(C2,CP)= J,"'dte-tlimJ dxo ! d3xexp[t"~(x,m2)]cp(x). 
o .~O c. 

(34) 

We have that ~(x, m2) =m(_x2)-1/2Kl[m(_x2)1/2], so that 
for I rl * 0 the contour C. is to be taken as in Fig. 3. We 
can express the most singular part of ~ as 

~(x, m2) = - (X2)-1 - tm log~m ,j- X2) + log( - X2)O(X2) • 

Thus 

exp[t"'~(x, m2)] 

= exp[ - t"'l X2](t2,j_ X2 )-m/2exp[t"'log( _X2)O(X2) • 
(35) 

The integration contour C. may be modified so as to in­
clude two small circles, one round I r I, the other round 
-I r I, together with the remainder, so giving the con­
tours of Fig. 4. The contribution from the circles may 
be evaluated as for the massless case in Sec. 3 by ex­
pansion of the first factor in (35). Except for rather 
special values of m this will give no contribution at all, 
neglecting the third factor on the rhs of (25) very near 
x=O. So the main contribution to (34) is completely dif­
ferent in the massive case from the massless situation; 
only the contribution from the contours outside ± I r I in 
Fig. 4 are to be considered. 

To obtain the extension of (34) we expand the exponen­
tial in (34) and use an integral representationll for pow­
ers of ~(x, m 2

): 

(C2, CP)=2 J'" dte- t ! d4xCP(x) ~ (t""'ln!) 1'" 2dK2~ 
. 0 n .. O (nm) 
X (x, K2)n~m)(K2) , (36) 

where n~m)(K2) is the phase space for n particles of mass 
m and total squared center of mass energy K2. We use 
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the result of Lemma 5, so that if cP E S:, with (3 < 1, then 
~4>(K2)E SSB(R.), for some B. USing the boundll 

I n~")(K2) I,.; (const) • [K (n-3) 12(K - nm) (3n-.) 12/r(2n)] 

(37) 

to within a function of slow increase in n and K, which 
we can neglect without error, 

I(C2,CP)I,.;(const)x!"'dte-t~ t"~ J'" 2dK2 
o n"O n. (nm) 

X K (n-3) 12(K _ nm) (3n-.) 12exp[ _ ({3K)ll B I [r(2n)] • 

(38) 

We may evaluate the K2 integral on the rhs of (38) by the 
change of variable K = nmx to give 

(nm)2n-2 h" dx x(n-l) 12(X -1) (3n-.) 12exp[ - (bnmx)l/B] • 

(39) 

Denoting by g(X)X-3/2 the integrand of (39), we may put a 
bound on (39) by finding the positive of the maximum of 
g, which is at the solution of 

,( )=(n+2 + (3n-s) _ (bnm)l/B I/B-~g{ )-0 
g x 2x 2x _ 1 {3 x -; x - • 

The solution of this for large n is very close to x::: 1 (in 
the range l,.;x,.;oo), and has value x=l+e, e-(3n-s) 
x {3/2(bnm)11 B, which is as small as we please for n large 
enough. Then (39) is bounded for all n by 

(nm )2n-2(1 +E) <n+2) 12e(3n-.) 12exp[ _ (bm)ll B(n(l +E) ]11 B 

xl'" dxlx3/2 
1 ' 

with crucial contribution proportional to 

n2n[(3n _ s){312] (3n-.) 12n-K3n-.) 12) I Bexp[ _ (bnm )l/B] , 

or 

n (3n) 12 (1-1/ B)+2nexp[ _ (bm )1/ Bn11 B • 

Thus we have the bound on (38) given by 

I ( C2, CP) I ,.; J '" dte-t ~ (In", In !)n (3n) 12 (1-1/ B) 
o nllO 

xexp[-(bmn)l/2 (40) 
and this is finite if (3 < 1, since then the summation in 
(40) gives a function increasing at infinity slower than 
exp(t). Thus we need to choose any {3 < 1 for the exten­
sion of (C2 , CP) from S'" to S~ to be possible. We have 
thus proved 

Theorem 3: The 2-point commutator bracket of the 
function (33) of the massive free field has an extension of 
order {3 for any {3 < 1, where a is defined by (14) and 
a>1. 

We note that the massless case does not give the 
same limitation if the above method is used here, but 
only the condition a < 1; this approach only works in that 
case for a localizable theory. We see that the above 
method could be extended to the indicatrix spaces, and 
also to higher point functions, though we will not do the 
latter of those here since no further inSight into the 
situation is expected to be gained. However, we can 
sharpen the results of Theorem 3 so as to relate to the 
discussion of Rieckers.12 If we assume, with Rieckers, 
that for large n, 
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tflj n ! - exp(n1 / "') , (41) 

then we have to replace the expression (36) by 

so 

Using the previous method we obtain 

1< C2, ct> > I '" L) exp[an1 / ",.Cbmn )1/Bn Cn/ 2H1-3/B) • (42) 
n 

This is convergent for any f3 < a < 1 (agreeing with 
Rieckers'12 results for the Wightman functions), so 
proving 

Theorem 4: The 2-point commutator bracket of the 
function (33) with coefficients dn satisfying (41) has a 
decrease outside the light cone of order a, and is 
damped like exp( - I x211/2 "') as x2 ...... - 00. 

6. DISCUSSION 

We have obtained a prescription for describing how 
the commutator bracket of a nonlocalizable field extends 
outside the light cone, and shown that is is applicable to 
various models. There are two difficulties associated 
with this. The first is that we have not been able to show 
that our prescription does actually work for the case of 
functions of a massless free field. This is rather Sur­
prising since we expect that case to be simpler than the 
massive one. This problem is associated with that of 
defining SCn)(x2) for n> 2, and of Course related to the 
fact that in the massless case all the higher particle 
thresholds coalesce onto the single particle one. We do 
not at present see any way of satisfactorily treating this 
question, though feel it rather pressing especially be­
cause of all the work involved in applications of non­
polynomial Lagrangians which use the massless case. 2 

The second difficulty is that we have not been able to 
present a realistic model of a truly nonlocalizable field, 
that is, one for which the S matrix is not the same as 
that ariSing from some localizable one. Only if that can 
be done can we expect that there is any possible physical 
trace of noncausality. Indeed, we have discussed13 re­
cently the manner in which the notion of Borcher's 
equivalence classes of fields14 can be extended to include 
nonlocalizable ones. What is needed is a proof that any 
nonlocalizable field is equivalent in this extended sense 
to some localizable field. This can, indeed, be done if 
indefinite metric localizable fields are allowed, but it Is 
not known if such a theorem is true for positive metric 
fields. 
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Even if it is not possible to say whether or not non­
localizable fields actually appear as such in nature can 
we say anything about the expected sizes of the range 
and order of the extenSion, if it exists? A natural range 
would be that determined by the radius of an interaction. 
There is far greater difficulty about a natural value for 
the order of the extension, it being a dimensionless 
quantity. However, the dimensionless quantities of in­
terest are the coupling constants of the various interac­
tions. But present evidence indicates that the order of 
the nonlocalizability depends heavily on the nature of the 
interaction; it may well be that among all equivalent in­
teractions the least order of decrease is determined by 
the dimensionless strength. 

We must realize, of course, that noncausality need not 
destroy many of the usual results which follow from 
causality, such as analyticity14 and even polynomial 
boundedness of S-matrix elements may still be valid. 
There may be observable effects of nonpolynomiality in 
the behavior of form factors, as discussed in the local­
izable case by Jaffe. 15 We hope to discuss this and re­
lated questions in more detail elsewhere. 
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Scattering of a plane longitudinal elastic wave by a 
large convex rigid obiect with a statistically corrugated 
surface. I. Perturbation solutions 
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The scattering of time-harmonic plane longitudinal elastic wave by a large convex rigid object with 
statistical surface irregularities is considered. The maximum deviation of the corrugated surface from 
the smooth one is assumed to be small, and hence the boundary-perturbation technique is utilized 
in this study. First, the scattering of longitudinal wave by a large rigid sphere with statistical surface 
irregularities is treated as a canonical problem in the general discussion. It is found that the higher­
order solutions can be obtained from the zeroth-order solution in a straightforward manner. Due to 
the complexity of the problem, only the first-order solution and its asymptotic expansion are ex­
plicitly computed and carried out. A general recipe based on the zeroth-order solution is given for 
the treatment of the general problem. The asymptotic expressions of mean values of the scattered 
wave function and the scattered intensity are also given for the general problem. 

1. INTRODUCTION 

In recent years, an increasing amount of attention has 
been devoted to the study of the effect of statistical sur­
face irregularities on propagation and scattering of 
various types of waves. Although the general problem 
of scattering waves from statistical corrugated sur­
faces appears to be difficult, a number of investigators 
have been able to make progress by applying either 
probability theory or perturbation theory to the problem 
of scattering of waves by statistically corrugated sur­
faces under a few suitable assumptions. For a system­
atic classification of existing theories developed for ran­
dom irregular plane surfaces and a rather complete 
bibliography, readers are referred to an excellent text 
by Beckmann and Spizzichino. 1 Recently, upon using a 
boundary perturbation teChnique, Chen and Kim,2 Chen,3 
and Chen and Fan4 have studied the effects on the 
scattering of scalar waves by convex objects with statis­
tical surface irregularities. 

The effects of the deterministic surface irregularities 
of an infinite plane surface on the propagation of elastic 
waves have been studied by Dunkin and Eringen,5 
Handelman,6 and Abubakar. 7.8 In the present paper, the 
problem of the scattering of time harmonic plane long­
itudinal elastic wave by a large convex rigid object with 
statistical surface irregularities is investigated. The 
problem permits scalarization such that the method 
used in the scalar cases (3) and (4) applies. Here the 
ratio of the maximum deviation of the corrugated surface 
from the unperturbed one to the local radius of the 
scatterer is assumed to be small. Hence the scattered 
wave can be determined by the boUndary-perturbation 
technique,9 which is based on the Taylor expansion of 
boundary conditions at the perturbed boundary and the 
representation of the field as a power series in the 
aforementioned ratio. 

First, we shall treat the scattering of plane longitudinal 
elastic wave by a rigid sphere with a statistically 
corrugated surface as a canonical problem in our gen­
eral discussion.l 0 This has the advantage of illustrating 
the method without introducing extraneous geometrical 
details; it is also a case for which we can obtain the 
exact perturbation solution, assuming that the perturba­
tion series converges. It is found that the higher-order 
perturbation solutions can be systematically obtained 
from the zeroth-order perturbation in a rather straight-
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forward manner. The exact perturbation solution can be 
then asymptotically expanded for large kia (i = 1,2). 
However, due to the complexity of the problem, only the 
first-order perturbation solution and its asymptotic 
representation are explicitly computed. Its expression 
contains the spherical surface integration over all con­
tributions generated by the equivalent source 81 , arising 
from the interaction of the zeroth-order solution with 
surface irregularities. 

Next, as for the case of scalar waves,3 a general recipe 
based on the zeroth-order solution can be constructed 
from the geometrical theory of diffraction.10,1l,12 And 
this recipe is given in the case of scattering by a large 
convex rigid object with a statistically corrugated sur­
face. Finally, the formulas of the asymptotic representa­
tion of mean values of the scattered wave function and 
the scattered intensity are given for the general problem. 
It is found that if the surface is statistically homo­
geneous, the mean value of the surface fluctuation is 
zero, Le., (<1» = 0, and then the mean value of the first­
order perturbation is zero. In this case, the explicit 
computation of the second-order perturbation solution is 
needed. However, as long as the surface is not statisti­
cally homogeneous, the effect of the random rough sur­
face on the scattering of elastic waves can be sufficient­
ly explained by knowing the first-order perturbation 
solution explicitly. 

In a sequel to this paper, the aforementioned surface 
integral of the first-order perturbation solution contain­
ing 81 will be evaluated asymptotically for the field 
point far away from the scatterer. Then the effective 
reflection and diffraction coefficients will be deduced 
from it. Finally, the effective scattering cross section 
will be given. 

2. GENERAL FORMULATION 

The propagation of waves in an homogeneous isotropic 
elastic medium is governed by the equation 

a2w 
(~+ 2/l)V(V'w) -/lV x V x w = p-, at2 

(2.1) 

where w is the displacement vector, p is the denSity of 
the medium, ~ is the Lame's parameter, /l is the shear 
modulus of the medium and ~ + i", is its compression 
modulus of the isotropic elastic medium. 

Copyright © 1974 by the American Institute of Physics 831 
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By assuming that w = u(r)e iws , Eq. (2.1) can be re­
written as 

a 2V(v·u)- (32V x V x u + w 2u = 0 (2.2) 

where a = (x + 2/l/p)1!2 and {3 = (/l/p)1!2 are the velo­
cities of compressional and shear waves respectively in 
the medium. 

Here the scatterer is assumed to be rigid and infinitely 
dense. Hence u satisfies the boundary condition 

u=o (2.3) 

on the surface of the scatterer and a certain radiation 
condition for r --? OCI to insure the uniqueness of u. 

Let 4> and >J! be two scalar functions which satisfy 
equations 

and 
V2>J! + K~>J! = 0, 

where 

K 1 =w/a and K 2 =w/{3 

Then the three independent solutions of (2.2) in the 
spherical coordinate system are 

1 = V4>, 

m =V x a>J!, 

n = 1/K2V x m, 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where a is any constant unit vector. From Stratton, 13 

one obtainS the following set of characteristic wave 
functions 

INCIDENT 
WAVE -

z 

y 

\ 
\ 

FIG. 1. The geometry of a statistically corrugated sphere is shown. 
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m . 
me (r) = 'F -.- Zn(k2r)P::, (cos e)sm mcp16 

omn SIn e cos 

- Zn(k2r)~p::,(cos e)C~S mcpl'1" ae sm 

n(n + 1) 
ne (r) = Zn(k2r)P::,(cos e)C~S mcpl .. 

omn k2r sm 

1 a a 
+ --;;;. or [rZn(k2r)) iijP::'(cos e) ~?~ mcp1e 

2 

m a sin 
'F • -[rZn(k2r)]P::,(cos e)cos mcpl", 

k2rsm e or 

where 1 .. , Ie, 1" are unit base vectors for the spherical 
coordinate system; Zn(kir) can be anyone of the spheri­
cal Bessel functions jn(kir),nn(kir),h~l)(kir) or h~2)(kir); 
P::,(cos e) is the associated Legendre polynomial; and 
the subscript e or 0 refers to the even or odd nature of 
the function of cp. These functions form a complete set 
with the 1 functions corresponding to the compression 
wave and the m and n functions corresponding to the 
shear waves. 

3. BOUNDARY PERTURBATION FOR A ROUGH 
SPHERE 

Let the position vector be r = (r, e, cp). If the random 
surface S has only a small deviation from the sphere 
with radius a we may define the surface S (Fig. 1) by 

r = a[l + Ej(e, cp, q)], (3.1) 

where E is a small parameter such that I Ej I < 1; 
j(e,cp,g) is a smooth continuous function of e and cp such 

that I :~ I < 1 and I :~ I < 1; and g is a random variable 

over the probability space Q in which a probability den­
sity function P(g) is defined such that the average value 
of a random function V(r, g) is defined as 

«v» = J
Q 

V(r,g)P(g)dg. 

The perturbation technique consists of setting the 
scattered wave Us in the form 

00 

us(r,g) = uso(r) + 6 EiuSj(r,g) 
j=I 

(3.2) 

(3.3) 

and expanding u i and u sj in Taylor series near r = a. 
Upon settingro = (a,e,cp),we obtain 

(3.5) 

Next, we substitute these expressions into the boundary 
condition (2.3). By collecting coefficients of EO, E, E2, 
... and equating each one to zero, we obtain 

(3.6) 

(3.7) 
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+ at02Uso! ] + at OUsll 
or2 y=a or T=a 

As it has been pointed out by Chen,3 the essential effect 
of this boundary-perturbation technique is to transform 
the original boundary value problem to an equivalent 
boundary value problem with unperturbed body as the 
scatterer on which equivalent sources are induced. 
These source functions arise from the interactions 
between the surface irregularity and all the lower order 
solutions. 

4. PERTURBATION SOLUTION OF A ROUGH SPHERE 

Consider the case where a unit plane compression wave 
propagating along the negative direction of z axis and 
impinging on the aforementioned rough sphere. Since the 
incident wave is independent of cp and the fact that 

IOOn{r) == 0, n == 0,1,2, . ". (4.1) 

This incident wave can be expressed as 

(4.2) 

where 

O'n == 1/k1 {2n + 1)exp [ilr/2{n + 1)], (4.3) 

since u;{O) < 0Ci, we let Zn{k1r) == jn{k1r) in leon{r) of 
(4.2). 

The zeroth-order scattered wave can be represented as 
the linear combination of I, m and D. Since u i (r) is inde­
pendent of cp and the sphere is symmetric with respect 
to cp, U so(r) should be also independent of cp, i.e., the 
subscript m is equal to zero. Observing the fact that 

loOn{r) =moon{r) =ooOn{r) =0, n==0,1,2,"', (4.4) 

and 

we can represent the zeroth-order scattered wave as 
co 

uso{r) = '6 [AnleOn{r) + Bnmeon{r) + CnDeOn{r)], (4.5) 
n =0 

since us{r,g)! T .... OO "" (1/r)e- i kIT, we let Zn{kir) = 
h'l"){kir) in all scattered waves. By matching the boundary 
condition (3. 6), we obtain 

O'nleOn{ro) + AnleOn{ro) + Bnmeon{ro) + CnDeOn{ro) == 0, 

n=0,1,2,"', (4.6) 

which is equivalent to 

O'nklj~(kla) +Anklh~2)'{kla) + C n n(~ + 1)h~)(k2a) = 0, 

2
a 

(4.7) 

O'n1n (k1a) + Anh:f)(k1 a) 

+ C n ~ [h~)(k2a) + k2ah:f)'(k2u)] = 0, (4.8) 
2 

(4.9) 

Upon solving (4.7), (4. 8), and (4.9), we obtain the zeroth­
order solution 

co , 

uop .. (r) = '6Anklh'l") (k1r)Pn(cos 0), 
n~O 

(4.11) 

QQ 1 a 
uope(r) = '6A n -h:f){k1r) -Pn(cos 0), 

n=O r ao (4.12) 

uOs r (r) = .tCn n(n + 1) h~)(k2r)Pn{Cos 0), 
n=O k2r 

(4.13) 

(4.14) 

with 

(4.15) 

C = --- h(2)(k1 a)h(2){k2a) - ---.!h<2)I(kl a)[h(2)(k2a) + k 2ah(2Y(k2a)] e i (rr /2)n. 2n + 1 (n(n + 1) k ~-l 
n k~a2 k

2
a n n k2 n n n 

(4.16) 

Here uOP" and uope are the r and the 0 components of 
zeroth - order reflected P (pressure) wave, respectively. 
Similarly,uos r and uOs 6 are the r and the 0 components 
of zeroth-order reflected S (shear) wave respectively. 

The first-order solution can be represented by the 
complete expansion, 

co QQ 

usl(r,g) = '6 '6 [Amnlemn(r) + BmnI"mn{r) + Cmnmemn(r) 
n=O m=O 

+ Dmnmomn(r) + EmnDemn(r) + FmnDomn(r)]. (4.17) 

The boundary condition (3. 7) becomes 

uS1(ro,g) = '6 '6 1Amnlemn(ro) + Bmnlomn{ro) 
n=O m=oL 

J. Math. Phys., Vol. 15, No.6, June 1974 

,----------------------------------------------
To find the coeffiCients A",n through F mn' we take the 
scalar products of (4.18) with lemn(ro) through DOmn{ro) 
successively. Here the scalar product of I and ° is de­
fined as 

21T 1T 
(I'n) = 1 11'Dsin 0 dOdcp, o 0 

(4.19) 

where sin OdOdcp is the element of surface on the unit 
sphere, Upon using the orthogonality relations given in 
Appendix (1), we get 

Amnll11l2 + Emn(I'n) = (sl·lemn(ro», 

Bmnll1112 + Fmn(l'D) = (sl'lomn(r o», 

Cmn llml1 2 = <Sl' m emn(ro», 

Dmn11ml12 = <sl·momn(ro», 
Amn<l·n) + Emnllnl12 = (Sl'Demn(ro», 
Bmn<I'D) + Fmnllnl12 = (Sl'Domn(r o»' 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 
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By solving this system of six linear equations with six 
unknowns, we obtain the coefficients 

Amn = Gmn[\In\l2(Sl·lemn (rO» - (1· n)(sl· nemn(ro»], (4.26) 

Bmn = Gmn[ IlnI12(sl· 1omn (rO» - (1· n)(sl· nomn(ro»], (4.27) 

Cmn =: \Iml!-2(sl·memn (ro», (4.28) 

Dmn =: \Im\l-2(sl·m Omn (ro», (4.29) 

Emn =: G ... ,,[\I1\12(sl· nemn(ro» - (1· n)(sl· l.mn(ro»], (4.30) 

F m" = Gmn [\\l\l2(S( nomn(ro» - (1· n)(sl·lomn(ro»), (4.31) 

(4.32) 

The second-order and higher-order solutions can be 
obtained exactly in the same manner. 

5. ZEROTH-ORDER SOLUTION IN THE EXTERIOR 
OF A LARGE SPHERE 

The solution obtained in the preceding section is quite 
general and valid as long as the roughness of the sur­
face satisfies the prescribed conditions. However, for 
the purpose of numerical evaluations and physical inter­
pretation, these series converge fast enough only for 
a < L, where L is the wave length of the incident wave. 

Thus when k1a > 1, we must seek another representation 
of the solution. Some years ago, Negase14 obtained the 
high-frequency asymptotic solution for the problem of 
diffraction of elastic waves by a spherical cavity im­
bedded in an infinite elastic medium. Later, the high­
frequency asymptotic solution for the problem of diffrac­
tion of elastic waves by a smooth convex rigid cylinder 
and a smooth convex soft cylinder were derived by 
Gilbert and Knopoff.12,15 More recently,Christiansen16 

has obtained the high-frequency asymptotic solution for 
the case of an elastic cylinder imbedded in a different 
elastic medium. Since the zeroth-order solution for 
the case of smooth rigid sphere and its asymptotic solu­
tion has not appeared in the existing literature, it is 
worth the effort to derive it in a complete manner here. 

In this paper we shall follow the treatment of Chen, 3 

Chen and Fan4 rather closely. By means of Poisson 
summation formula [Appendix (2)] and from the rela­
tions between spherical Bessel functions and Bessel 
functions [Appendix (3»),Eqs.(4.11)-(4.14) can be re­
written as 

x exp (- i2rrl" + irrl + i1-rrv- itu)vdv 

x exp (- i2rr lv + irr l + i1-rr 11- d rr)vdv, (5.1) 
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1 ( rr )1/2 00 00 a 
uope(r) = -k -2k .0 fo H,,(2)(kl r) -P,,_1/2(COS 0) 

1r lr l=-oo ao 
x exp(- i2rrlv + irrl + ihv- i~rr)vdv 

+ _1_ (~V/2 i3 100 No H~1)(kla)H<2)(klr) ~ 
k1r 2kl;j 1=-00 0 Do H~2)(k1a) ao 

x P,,-1/2(COS 0) exp (- i2rr lv + irr l + irrv - itu)vdv, 

(5.2) 

uou.(r) = _1_.0 1 _ ,,2 2 (2k a 2)1/2 00 00 1 ffi2)(k r) 

k~a3k2r rrr 1=-00 0 Do H~>(kla)H$2)(k2a) 

XPj,_1/2(COS 0) exp (- i2rrlv + irrl + i1-rrv- itrr)vdv, 

(5.3) 

2 (2k1a2)1/2 ~ 100 1 H~2)l(k2r) a 
Uo e(r) =-- --- 2] - -

s kra3 rrr 1=-00 0 Do H~2)(k1a)H~2>(k2a) ao 
x P,,_1/2(COS 0) exp (- i2rr lv + irr l + i1-v - itrr)vdv, 

where (5.4) 
v2 H~l)1 (k1 a) Hf,2>' (k2a) 

N = --- - ---- ---~ 
o kl k2a2 H~l)(kl a) H~2)(k2a) 

(5.5) 

and 
112 142)' (kl a) 142)'(k2a) 

Do = --- - -'----- ---~ 
k1 k2a2 H~2)(kla) Hf,2)(k2a)· 

(5.6) 

A. Geometric optics wave 

The criterion for the proper identification of the geo­
metric optics wave from the asymptotic evaluation of 
equations (5.1)-(5.4) is the existence of real saddle 
points Vo such that 0 < Vo < kla. 

Define 

(5.7) 

(5.8) 

where Q,,-1/2 is the Legendre function of the second 
kind. Then we may substitute 

P _ (1) (2) 
,,-112 - Qv-1/2 + Qv-1/2 (5.9) 

into (5.1)-(5.4). After using the proper asymptotic 
forms [Appendix (4), (5)] and the saddle-pOint method 
[Appendix (6)], it can easily be sho~ that there is no 
real saddle point for terms with Q":1/2 and for terms 
with Q,,-1/2 the real saddle points exist only when l = O. 

The corresponding saddle-point equation of the first 
terms of and uope is 

(5.10) 

It has a unique real solution only for the field point r 
lying in the shadow region (Fig. 2) and the solution is 

Upon substituting (5.11) into (5.10), one obtains the 
correct geometrical relation 

0=0. 

(5.11) 

(5.12) 

The corresponding saddle point equation of the second 
terms of U OPy and uope is 

(5.13) 
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It has a unique real solution only for the field point r 
lying in the lit region (Fig. 3) and its solution can be 
expressed in terms of physical entities as 

Vo = k1asin 1/op = k2asin Aop = k1rsin ~op" (5.14) 

By substituting (5.14) into (5.13),one obtains the correct 
geometrical relation (Fig. 3) as 

21/o p - ~op = 8. (5.15) 

p 

SHADOW 
REGION 

The saddle point equation of uos .. and uos s is ----~--------

Vo Vo Vo 1T 
cos- 1 - - cos- 1 - - cos- 1 - = 8 - -. (5.16) 

k2r k1a k2a 2 

It has a unique real solution only for the field point lying 
in the lit region (Fig. 4) and its solution can be expressed 
in terms of physical entities as 

Vo = k1asin 1/o s = k2asin Aos = k2rsin ~os· (5.17) 

By substituting (5.17) into (5.16), one obtains the correct 
geometrical relation (Fig. 4) as 

1/o s + Aos - ~os = 8. (5.18) 

The saddle-point path C is shown in Fig. 5. It is found 
that the end-point contribution of integrals is asympto­
tically small in comparison with the saddle-point contri­
bution; hence it can be neglected. Finally, the saddle­
point contributions of each component of u so are 

u8p .. (r) ::::: cos ~opDoJlopexp [- ikl (rcas ~op - 2a COS1/op)] 

in the lit region, 

::::: cose exp[iklrcos 8] in the shadow region,(5.19) 

u8ps(r) ~ sin ~opDoJlopexp [- ik1 (rcos ~op - 2acos 1/op)] 

in the lit region, 

"" - sine exp [iklrcos 8] in the shadow region, 
(5.20) 

u8sr(r) ~ Nsin ~osDosRos 

x exp [- ik2(rcos ~os - acos Aos- (liN) acos 11os)] 

in the lit region, 

~ 0 in the shadow region, (5.21) 

u8se(r) ::::: - Ncos ~osDo.Ros 

x exp [- ik2(rcos ~ Os - acos Aos - (liN) acos 110.)] 

in the lit region, 

""0 in the shadow region, (5.22) 

with 

D= op Op , 
( 

a2cos 1/ sin 11 )1/2 

op rsin e(2rcos ~oP - acos 1/Op 

FIG. 2. The geometry of Eq. (5. 10) is shown. 

LIT 
REGION 

p 

FIG.3. The geometry of Eq. (5. 13) is shown. 

LIT 
REGION 

FIG. 4. The geometry of Eq. (5.16) is shown. 

( 
a2cos Aos sin 110s )112 

DOs = , 
rsin 8[rcos ~Os + (cos 11oslNcos Aos)(rcos tos - acos Ao s)] 
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(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 
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V pla.ne 

FIG. 5. The saddle-point path C is shown schematically. 

J) plane 

FIG. 6. This figure shows schematically the positions of the poles of 
the integrand of (5.31)-(5.34), as well as the negative path of integra­
tion in the v plane. 

where Dop and Rop are the divergence factor and the 
reflection coefficlentl o of the zeroth -order reflected 
compression wave, respectivelYiDos and Ros are the 
divergence factor and the reflection coefficient of the 
zeroth-order reflected shear wave, respectively. Hence 
from (4.10), (5.19)-(5. 22), we have 

uso(r) ~ (cos ~oplT + sin ~ople)DopRop 

x exp [- ik1 (rcos ~oP - 2acos 1)op)] 

+ N(sin ~oslT - cos ~osle)Do.Ros 

x exp[-ik2(rcos~os-acos Aos - (ajN)cos 1)0.)] 

in the lit region, (5.28) 

in the shadow region. 

The unit plane compression incident wave, which propa­
gates along the negative direction of Z axis, has the 
simple form 

uj(r) == -lzexp (ik1z) 

== (- cos el r + sin I e)exp (ik1rcos e). (5.29) 
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Finally, combination of (5.28) and (5.29) yields the total 
zeroth-order geometric optics wave, 

uj(r) + ufo(r) ~ (- cos el r + sin Ble)exp [ik1rcos e) 

+ (cos ~oplr + sin ~Ople)DapROp 

x exp [- ik1 (reos ~oP - 2acos 1)op)] 

+ (sin ~oslr - cos ~osle)NDo.Ros 

x exp [- ik2(rcos ~os - acos Aos - (ajN)cos 1)os)] 

in the lit region, (5.30) 

~ 0 in the shadow region. 

B. Diffracted Wave 

Contributions to the integrals (5.1)-(5.4) also arise 
from the poles of the integrands. In order to make the 
asymptotic evaluation, we first extend the integrals 
along the positive real II axis to the entire real II axis. 

It is easy to see that Do has zeros of first order, which 
in turn, are the simple poles of the integrands. With the 
aid of the Appendix (8), the approximate positions of 
the poles II A are determined by the equation 

~ _ i (1 _ lit) 1/2 (_6_) 1/3 e i1T13 Ai'(t .. ) = 0 
k1k 2a2 kra2 k 1a Ai(tA) 

(5.31) 
and have the form 

(5.32) 

where Ai(tA) is the Airy functions of tA • 

After closing the contour in the lower half complex II 

plane (Fig. 6), evaluation of the residues and neglecting 
terms of O[(kia)-l], i == 1,2, we obtain the zeroth-order 
diffracted wave, 

in the lit region 
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a
2

) 1/2 . ( a2) 1/2 - + zk2 a2 --
N2 N2 

+ ivAcos
l :r -ivA cos-

l ~ ] in the shadow region, 

(5.33) 
where the coefficients 5)op and 5)os are defined as 

for the zeroth-order diffracted P -wace, and 

5) = 21TN 1 - - -- -- --- e 3 
2( 1) 3/

4
( 1 )1/2(k1a) 113 1 -111 

OS N2 kla 6 Ai(tA) 

(5.35) 
for the zeroth-order diffracted S wave. 

The detailed physical interpretation of the zeroth-order 
diffracted wave has been given for scalar and vector 
waves before.11 ·12 Hence only few simple geometric 
interpretation are shown in Figs. 7 and 8. 

6. FIRST ORDER SOLUTION IN THE EXTERIOR 
OF A LARGE ROUGH SPHERE 

Upon substituting (4.26)-(4.31) into (4.17), we have 

+ u14(r,g) + ulS(r,g), (6.1) 

where 

00 00 

u 1 2(r,g) = - ~ ~ Gmn(1'n)[(S1'nemn(ro»Iemn(r) 
'1=0 m=O 

(6.3) 
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p 

SHADOW 
REGION 

p 

FIG. 7. P-P-P ray paths. 

P 
FIG. S. P-P-S ray paths. 

00 00 

SHADOW 
REGION 

u13(r,g) := ~ ~ Ilmli-2(Simemn(rO»memn(r) 
n=O m=O 

00 00 

u14(r,g):= ~ ~ GrnnII1112[(Sl'nemn(rO)nemn(r) 
'1=0 m=O 

00 00 

ulS(r,g) ;:::: - ~ ~ G mn (I'n) [(Sl'Iemn(ro)nemn(r) 
'1=0 m =0 

(6.4) 

(6,6) 

Here, the decomposition of Usl is purely for the conve­
nience in calculation. 

A. Geometric optics wave 

The criterion for the proper identification of the geo­
metric optics wave from the asymptotic evaluation of 
(6.1) is the same as that of the zeroth-order solution. 

Upon substituting (4.32) into (6.2) and utilizing the 
orthogonality relations of 1, m, n and the addition for­
mula for the Legendre polynomials [Appendix (9)J, we 
obtain 

ull(r,g) = Jw,[(II'Y'IY + I I'e'ly)l y + (II'Y'le + I1'e'le)l e 

(6.7) 

where the subscripts of I a'b' cd indicate the origin of the 
terms, with a'b 'cd standing for the product composed of 
the scalar product of 8 1 with the b' component of a' and 
the d component of c; 

J 'J211J" , , , w' ••• dw == 0 o· .. sine de dcp, (6.8) 
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y 

z 

FIG. 9. The geometry of the angle 'Y is shown. 

FIG.10 The geometric ray from the equivalent source at a point Q on 
the surface to the field point is shown, and so is the geometrical rela­
tion between 'Y and 'TIl po 

with (a, e " q/) being a point on the spherical surface: 

00 

IZ'r'lr = L; slr,k~h~)'(kIa)h~)'(kIr)HInPn(Cosy), (6.9) 
n=O 

1 (aYja y) IZ'r'l<{> :::= -. - -- - I l 'r'16' 
sme acp 09 

(6.13) 

and 

11'6'1<{> == _1_ (~/ay) 11'6'16' (6.14) 
sine acp oe 

with the spherical angle (Fig. 9) defined by 

COSy == sine sine' cos(cp - cp') + cose cose', (6.15) 
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[n + (1/2)] (n2 + n + 1 
H = a2 rk<2)(k a)]2 

In 21T k~a2 l n 2 

+ k:a h<;}(k2a)hC;)'(k2a) + [h<;)'(k 2a)]2) 

(
n(n + 1) k 

X k
2
a h~)(kIa)h~)(k2a) - k~ h<;)'(k l a)h<;)(k2a) 

- k1ah~)'(kla)h~)'(k2a~-2 (6.16) 

and slY' and s1e' being the components of 8 1 in the direc­
tion of 1r , and Ie" respectively. 

To find the contribution of the waves radiated directly 
from the equivalent 8 1 [as a point (a, e " cp') on the 
spherical surface] to the field point r, we have to eva-
1uate I's asymptotically by the saddle-point method. 
After using the proper asymptotic forms, it is found that 
aUI's have a proper real saddle-point only when 
(a, e', cp') is in the lit region of rand t == O. The saddle­
point equation is 

VI V1 
cos- l -- - cos-l - == y. 

klr k i a 
(6.17) 

Its solution can be expressed in terms of physical enti­
ties as 

VI == k1a sin77lP = k 2a sinAIP == klr sin~lP (6.18) 

and then (6. 17) becomes 

T/1P - h p == y, (6.19) 

which gives the correct geometrical relation (Fig. 10). 

Since the end-point contribution of l's is asymptotically 
small in comparison with the saddle-point contribution, 
the major contributions of I's are 

IY'r'lr"'" DlPRlPlslr' COS~lP COST/lP exp[-ikl(r cos~IP 

- a COS771P)]' (6.20) 

IG "" D R oy t . 
I'e'zr - lp lPzsle' ae' cos'>lpSInT/1P 

x exp[- ikl(r coshp - a COST/lP)]' 

ay 
IY'r'16 "'" DlpRlPIS1r' - sinhp COST/IP ae 

x exp[- ik I (r COS~IP - a COST/lP)]' 

I
G "" DRay ay . t . 
z'e'Hi - 1P 1Pz s1e' oe a;;; sm'>1P sm111P 

1 (aYja y
) If'r'l<{> == -. - -- -- IY'r'le 

sme acp ae 

and 1 (ay/ay) 
IY'B'I<{> == -. - -- -- If'B'w' 

sme acp ae 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 
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where .c means that the integration is carried out only on 
the portion of spherical surface in the lit region of r: 

and 

D --
ik 1a [ a2 sin171P ] 1/2 

1p - 21T r cosy(r cos~ 1p - a cos171P) 

COS171p cos2A1P 
R 1PZ = ---~--~~ 

COS 2 (1]lP - AlP) 

(6.27) 

(6.28) 

Similarly, we have 

ur2(r,g) "" J J.c D 1p R lpn (SIr' COSAlp - Sle' :;, SinA1P) 

( 
. ily Sin~lP ily ~ 

X COS~lP lr + sm~lp --Ie + -.-- --1", 
ilB smB ilcp 

x exp(-ik1(r cos~lP -a cos1]lP)]dw', (6.29) 

where R 1pn is defined as 

COS1]lP sin(171P + AlP) 
RIP n = ----'''''-2--~----=L.. 

cos (171P - AlP) 
(6.30) 

In a similar manner, we obtain the saddle-point equation 
of ur3(r, q), 

A1s - ~ls = y, (6.31) 

where the angles Als and ~ls satisfy the equation 

k 2a sinA1s === k2r sin~ls' (6.32) 

And the solution is 

f'r ily COSA1s ( ily 1 ily J u<b(r,g) "" J.c D 1sS 16,-, --. - - - -- 1 +--1 
ilcp smB ilcp sinB e ilB '" 

exp[ - ik 2 (r cost1s - a COSA1s)]dw', (6.33) 

where the coefficient DIs is defined as 

D 
__ 2_ ls ik a ( a2 sin A ) 1/2 

1 - . 
s 21T r siny(r cost Is - a cosA Is 

(6.34) 

In a similar manner, we obtain 

x exp(- ik 2 (r cos~ls - a cosAls)]dw', (6.35) 

where the coefficient R 1sn is defined as 

cos2171s COSA1s 
R lsn === ----=--..::.::. 

cos2 (171s - A1s) 

Finally, U<i5 is obtained as 

(6.36) 

ur5(r,g) ~ JJ.c D1SR1sZ(Slr' COS171s+ s16' :;, Sin171S) 

ily cost1s ily 
x (sin~ls1r - cos~ls --16 - --. - --I", 

ilB smB ilcp 

(6.37) 
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where the coefficient R 1s Z is defined as 

COSA1s sin(171s + Als) 
R 1Z === 

s coS2(171S - Als) 
(6.38) 

Upon substituting (6.26), (6.29), (6. 33), (6.35) and (6.37) 
into (6.1), we obtain the first-order geometric optics 
elastic wave, 

+ Ds -------1+-1 ily COSA1s ( ily 1 ily ~ 
Jf.c Is 16'ilcp' sinB ilcp sinB 6 ilB '" 

(6.39) 

U~l represents mainly the total contribution from the 
elastic waves radiated directly from the equivalent 
source 8 1 everywhere on the portion of the spherical 
surface which is in the lit region of r to the field point 
r. Its surface integral will be asymptotically evaluated 
and the corrections to reflection coefficients of the 
zeroth-order solution in far field region will be de­
rived in a sequel to this paper. 

B. Diffracted wave 

Similar to the zeroth-order solution, contributions to the 
integrals (6.2) -(6.6) also arise from the poles of the 
integrands. In order to make the asymptotic evaluations, 
we again extend the integrals along the positive real 
IJ axis to the entire real IJ axis. 

Note that in the integral with the domain of integration 
.c, the lit region of r, we have to subtract the term 
(t == 0) which gives the geometric optics wave; whereas 
in the integral with the domain of integration .c', the 
shadow region of r, the summation remains the same. 

Since D1 = D5, the positions of the poles are exactly the 
same as those of the zeroth-order diffracted wave, de­
termined by (5.35) and (5.36) and they are poles of 
second order. 

After closing the contour in the lower half complex IJ 

plane, and evaluation the residues with poles of second 
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FIELD POIN"J, /' I 

// I 

I 
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/ 
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I 

Q I 
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I 

I 
I 
I 
I 

FIG. 11. The geometric ray from the equivalent source at a point Q on 
the surface to the field point is shown, and so is the geometrical rela­
tion between y and >'15 • 

order, we obtain the first-order diffracted wave 

+-- -k J -i----J +i-- N2- - J 1 ~0,a a .../N2-1 .../NLlg2 J 
sine r pm p r N2-2 p N2-2 r2 s 

F/£LD POINT 

r / 
/ 

/ 
/ 

I 
/ 

/ 
/ 

FIG. 12. The diffracted rays generated from the equivalent source at 
Q are shown. 
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where 

J p = i(N2 _1)1/2(N2 - 2)(k1a/6)1/3e-i~ [Ai(t>,)r1 

x a2/r2 siny) 1/2(1 _ a 2 /r2) 1/4(1 + e -i2nv >,r1 

X [ Ok (2 2) 1/2 ° -1( I ) exp - t 1 r - a + t lJ >, cos a r , 

J s = i(2k 1a/r)1/2(N2 - 2)(1 _1/N2)1Ale-i(n/4,l 

(6.41) 

x (a2/r2 siny) 1/2(1 _ a2 /N2r2) 1/4(1 + e -i21TV,Iy 1 

X exp(- ik2(r 2 - a2 /N2) 1/2 + ik2(a 2 _ a2/N2) 1/2 

-1 -1 ! + ilJ >, cos (a/Nr) - ilJ>, cos (1 N)], (6.42) 

kpc. = -i2lT + ilTe- invA sec(lTlJ A) + i cos- 1(a/r) 

± y f~~ (YlJ A + IT/4) in £ 

= -ilT + i1Te- i1TVA sec(lTlJ A) + i cos-1(a/r) 

'f(lT-y)tan(lTlJ -ylJ -n/4) in£', cot A A 
(6.43) 

ksc.=--i2lT + ilTe-
i1TVA

sec(lTlJ>,) + icos-1(a/Nr) -icos-1(1) 
± y tcot(YlJ A + IT/4) in £ an 

= - ilT + ilTe-invAsec(lTlJ>,) + i cos- 1(a/Nr)-icos- 1(1/N) 

'f (IT - y) ~~~(lTlJ>, - ylJ>, -IT/4) in £', (6.44) 

Ep = exp[-ilJ>,(2lT -y) + ilT/2] ± exp[-ilJ>,(2lT + y)] 
m 

in £ 

=exp[-ilJ>,(2lT-y) +ilT/2]'f exp[-ilJ>,Y] in £'.(6.45) 

Uf1 represents mainly the total contribution from the 
waves which are radiated from the equivalent source 8 1, 
travel along the surface certain angular distances with 
phase velocity close to Wk]l while delay exponentially, 
and then either leaves the surface tangentially as a com­
pression wave or leaves the surface by critical refrac­
tion angle as a shear wave toward the field point r (see 
Fig. 12). Again, its surface integral will be asymptoti­
cally evaluated and the corrections to reflection coeffi­
cients of the zeroth -order solution in far field region 
will be derived in a sequel to this paper. 

The higher-order solutions can be systematically con­
structed in a similar manner. Their general expres­
sions are the same as that of the first-order solution 
with 8 1 replaced by 8 j (j = 2, 3, 4, .•. ). 

7. PERTURBATION SOLUTION IN THE EXTERIOR 
OF A LARGE CONVEX ROUGH SCATTERER, MEAN 
WAVE FUNCTION AND MEAN INTENSITY 

The zeroth-order solution is the solution for the special 
case of a large convex smooth and deterministic 
scatterer for which an asymptotic solution in the ex­
terior of the scatterer can be constructed from the geo­
metrical theory of diffraction 10,11,12 as mentioned in 
the Introduction. The higher-order solutions can be 
simply constructed by following the recipe for the 
scattering of scalar waves. 3 

The mean value of the wave function and intensity in the 
exterior of the scatterer are, respectively, 

co 

«Ui + us» = u i + u so + L) Ej«U Sj» (7.1) 
and j

o
1 

«Ius 12» = Iu so 12 + 2ERe(u!o·«u s1») 
+ E2 [2Re(u!o·«Us2») + «lus1 12»] + O(E3 ). (7.2) 

Upon examining our problem, it is found that the statis­
tics of this problem are contained only in the equivalent 
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sources Sj (j = 1,2,3, .•• ). Since Sj contain various 
combinations of f in sums and products, once all of the 
moments of these various combinations are known, then 
the mean values of the scattered wave function and the 
scattered intensity are determined. Furthermore, if the 
surface is statistically homogeneous, the mean value of 
the surface fluctuation is zero, i.e., «f» = 0, and then the 
mean value of the first-order perturbation solution is 
zero. In this case, the explicit computation of the 
second-order perturbation solution is needed. However, 
as long as the surface is not statistically homogeneous, 
the effect of the random rough surface on the scattering 
of elastic waves can be sufficiently explained by knowing 
the first-order perturbation solution explicitly. 

APPENDIX 

(1) Orthogonality relations between 1, m, and D: 

11111 2 = J 21f r 1 e mn (r 0)·1 e mn (r 0) sine de dcp o 0 0 0 

21T (n+m)! 1 
= (1 + lim) -- - {k~a2[h~)'(k1a))2 

2n + 1 (n -m)! a2 

+ n(n + l)[h~)(k1a))2}, 

11m 112 = t"r memn(ro)'memn(ro) sine de dcp o 0 0 0 

21T (n + m)! 
= (1 + lim) -- n(n + l)[h~)(k2a)]-2, 

2n + 1 (n -m)! 

/I D/l2 = J21f J" De mn(rO)'De mn(ro) sine dedcp o 0 0 0 

21T (n+ m)! {n2+ n +1 = (l+lim)-- n(n+l) [h~)(k2aJ2 
2n + 1 (n-m)! k~a2 

+ k:a h~)(k2a)h~2)'(k2a) + [h~)'(k2a)]2}, 
( ) J2!fj'" I'D = 0 0 16mn(ro)'D<Smn(ro) sine dedcp 

21T (n+m)! 1 = (1 + li m)-- n(n + 1)-
2n + 1 (n - m) , a 

x [k~a h~)(k1a)h<2)(k2a) + h~2)(k1a)h~)'(k2a) 

+ ~ h(2)'(k 1a)h(2)(k2a)1 
k2 n n J' 

where li m = 1 if m = 0 
= 0 if m > 0, 

all other scalar products are zero. 

(2) Poisson summation formula: 
00 00 00 

~ g(n) :::= 6 J g('v) exp(- i21TlII)dll. 
n=O 1=-00 0 

(3) Relations between spherical Bessel functions and 
Bessel functions: 

jn(p) = --h/2pJ nTl/2(P), 

jn'(p) "" ,/1T/2pJ~Tl/2(P), 

h~)(p) :::= ..J1T/2pHR{/2(p), 

h~)'(p) "" • ./1TJ2pHn(~r/2(p). 

(4) Debye asymptotic forms for large argument and in­
dex, with 1111 < z, are 

HP)(z) ~ ..J2Tri(z2 - 112)1/4 exp[i(z2 - 112)1/2 

- ill COS-1(II/Z) - i'n/4], 
HP)(z) ~ .,jz /1T(Z 2 - 112)-1/4 exp[- i(Z2 - 112) 1/2 

+ ill COS-1(II/Z) + i1T/4], 

HP)'(z) ~ i(1 - 112 /Z 2)1/2HP) (z), 

HP)'(z) ~ - i(1 - 112/Z 2) 1/2HP)(z). 
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(5) Asymptotic forms of QS~)1/2 and QS~)1/2 for 0 < e < 1T: 

Q~:>1/2(cose) "" (21111 sine)-1/2 exp(- ille + i11/4), 

Q~~)1/2(COSO) "" (21111 sine)-1/2 exp(ille - i1T/4), 

Q ~:Yl/2(- cosO) "" (211'11 sine)-1/2 exp(ill1l' - ille - i1l' /4), 

Q~~)1/2(- cose) "" (21111 sine)-1/2 exp(- ill1l' + illO + i11/4). 

(6) Saddle point method for line integral: 

tf(t) exp[ixh(t)]dt 
a 

"" [211'/xh "(to)]1/2f(t o) exp[ixh(to) + i11/4], X ~ 00, 

where to is the saddle point and satisfies 

h '(to) = 0, h "(to) ;" O. 

(7) Relations between Legendre functions and Hankel 
functions: 

Pv_1/2(cosB) :::= - ie i !fVPv_1/2(- cose) 
+ (1 + e i211v )Q(1) (cosO) v-l/2 , 

P-v - 1/ 2(- cosO) = P v - 1/ 2(- cosO), 

H_(P e-i(1f/2)v :::= HSl)e i (,,/2)V. 

(8) Airy function representations for the Hankel functions 
for argument and index both large, and II"" z: 

H51)(k1a) "" (2/1T)ze-i(2!f/3)Ai(te-iC211/3»), 

H51)'(k1a) "" - (2/1T)z2 e-i(4!f/3)Ai'(te- i (2,,/3»), 

H 52) (k 1 a) "" (2/11')z Ai( t), 

H~2)'(kl a) "'" (2/11')z 2Ai'(t), 

/11 HS2) (k1a) "'" (2/11')z2Ai'(t), 

00
11 

HS2)'(k1a) "'" (2/11')(z3/3)tAi(t), 

where 11 

Z :::= (6/k1a)1/3 e \ t = Z(II - k1a). 

(9) The addition formula for the Legendre polynomials: 
n (n -m) I 

Pn(cosy) = Pn(cosO)Pn(cose ') + 26 . 
m=l (n + m)! 

x P::'(cosO)P::' (cosO ')cosm(cp - cp'), 
where 

COSy == sine sinO' cos( cp - cp') + cosO cose '. 
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Convex prestruclUret;, II mathematical framework that extends the usual concept of convex subset of 
a real linear ·.paCl'.ar,· vmpJoycd to generalize methods used in the study of axiomatic quantum mechanics. 
A brief summary of till' mathematical framework of convex prestructures is given. Convex prestructures 
arc ,ci",sified. imL1 !h(';~ which are isomorphic to a convex subset of a real linear space are characterized. 
Till' oper'l! "lIlal 'F'dl\[ lim mechanics of Davies and Lewis is generalized within the framework of convex 
prcstruclurcs '''1<1 thl' <.'""knec of a physically motivated orthomodular poset is given. Mielnik's beams 
and filters arc ai:;" dis(\I';s,~d within the framework of convex prestructures. An error in Mielnik's 
formulation ,,; he'all' llli\IUreS is pointed out and it is shown that his beam mixtures and one 
c1assificatioll oi' cc'I,I'O, prcstructures are equivalent. Also his concept of a filter is generalized in the 
framework o! (,)11"0. prcslrllctmcs and geometric requirements needed on the set of normalized states so 
that tbt'Y Imy uJr,'c'spo,,,l lo a physical system are investigated. Finally, Mackey's axioms are discussed 
and rcformublt'd j" 1 he lanj!ltagc of P-convex structures. 

1. INTRODUCTION 

Axiomatic quantum mechanics has been developed 
from several viewpoints. Two of the most widely ac­
cepted approaches have been the C* -algebra approach1

,2 

and the "quantum logic" approach. 3-6 However, recently 
several researchers h:lV0 ~lllproached the development of 
axiomatic quantum nwch'lnics using convex set methods 
to study the geometrie properties of the set of normal­
ized state 51' This" eonvex set" or "operational" ap­
proach has been studied by Ludwig ct al.7 -11, Gunson, 12 

Mielnik, 13,14 Davies and Lewis, 15.16 and others. 17-21 

The authors have recently generalized the usual con­
cept of a convex subset uf a real linear space from a 
viewpoint that seems to be x'easonably physically moti­
vated. 22,23 In this paper, we shall use this framework 
to generalize and unily the formalism of operational and 
convex set methods used by Davies and Lewis, 15,16 and 
Mielnik. 13,14 This generalization of convexity involves 
only the set of normalized states of a phySical system 
with an operation of tl1f' formation of "mixtures" of 
quantum states. 

2. CONVEX PRESTRUCTURES 

Let 51 coc {p, if, r, . , 'r be the set of normalized states 
for some physical system. For generality, we shall not 
specify any particular form for these states but take 
them to be undefi.ned, primItive elements. In different 
axiomatic models for qLtantum mechanics the states take 
various forms. In th0 cunventional model, the states 
are positive trace-class operators with trace one4

-
6

; in 
the quantum logic model, the states are probability mea­
sures on an orthomodular lattice3

-
6

; in the algebraic 
model, the states are positive, normal, linear func­
tionals on a C*-algebra1

•
2

; in the operational model, the 
states are positive elements of an ordered Banach 
space. 14.16,18 Although in these models the normalized 
states form a convex subset of a vector space, we can 
formulate an axiomatic framework without any linear 
structure whatsoevel'. Thus our theory not only general­
izes the usual models but leaves open the possibility of 
nonlinear structut'es for quantum mechanics. 22,23 

We shall assume;] concept of a mixture of quantum 
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states by postulating a map 

T 1 : [0, 1] X 51 X 81 ...... 81 

(A,p,q) ...... (A,p,q) 

where (A,p, q) is a mixture of the normalized states p 
and q. PhYSically, (A,P,q) can be interpreted as a mix­
ture of (1 - A) parts p and A parts q. If 81 is a convex 
subset of a linear space, it shall be understood that 
(A,p, q) = (1 - A)P + Aq. There exist many instances in 
which 51 cannot be considered as a convex subset of a 
real linear space; for example, 81 can be finite or count­
able. The structure (51) T1 ) will be called a convex pre­
structure. No real restriction is placed on a set 81 

by postulating such a map Tl unless some axioms are 
placed on T1 • Some of the more useful axioms are: 

(i) (A,p,q)=(l-A,q,p) 

(ii) (O,p,q) =p 

(iii) 

(iv) 

(v) 

(A,P,P)=P 

("A,p, (p.,p, q» = (AP.,P, q) 

(c -commutativity) 

(O-endpoint condition) 

(pOint convexity) 

(weak aSSOCiativity) 

(A,p,(p.,q,r» 

=(~q.L,("A(l- p.)(l-"A/l)-I,p,q),r) ("AWF 1) 

(c -associativity). 

Two measurement axioms are also useful: 

(Ml) ("A,p,q)=p implies "A=O or p=q 

(M2) ("A,P,q)=("A,p,r) implies "A=O or q=r. 

Convex prestructures with some of the above axioms 
have been studied in detail by the authors and are 
covered elsewhere. 22 All that shall be attempted in this 
section is a brief summary of the main results that will 
be needed later in this paper. 

Three sets are useful in the study of convex 
pre structures : 

[p,q]={rE51 :("A,p,q)=r for some "AE:[0,1j) (line), 

(p,q)={rESl :(A,p,q)=r for some "AE(O,l)}, 

(p, q) = [p, q J- {p, q} (interior). 

An affine map cp from (8 1 , T l ) to (8{, T;l satisfies 

Copyright © 1974 American Institute of Physics 842 
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<l>({A,P,q»=(A,<l>(P),<l>(q»'. The set of all affine maps 
from Sl to Sf is denoted by Af(S!> SD. If Sl = S{, 
Af(Sl,Sl)=Af(Sl) and if S{=R, Af(S!>R)=Sf. si is total 
if p,* q implies there exists <l> E si such that <l>(p) '* <l>(q). 
If we require that the map A -(A,P,q) be affine, then Tl 
must be c-commutative, weak: associative, and have 
the O-endpoint condition. Such a structure is referred 
to as a convex line-based structure. If we require Tl to 
be c-associative, rather than weak: associative, in 
addition to being c-commutative and having the O-end 
point condition so that we can deal meaningfully with 
mixtures of more than two states, we obtain a convex 
structure; and if we also require point convexity, we ob­
tain a P-convex structure. A P-convex structure that 
satisfies (M1) is dense and if it satisfies (M2), it is full. 

Theorem 2.1: If (Su Tl ) is a convex line-based struc­
ture, then all lines [p, q] belong to one of the follOwing 
classes: 

Class I: (p,q)=cp and (p,q)=P or q; 

Class II: (p,q)=(p,q) r for some rESl; 

Class Ill: [p,q] is isomorphic to [0,1] where isomor­
phic means there exists a bijective affine map from 
[p,q] onto [0,1]. 

Using point convexity and c-associativity, it is easily 
seen that a P-convex structure is a convex line-based 
structure. Examples can be given·· which show that a 
convex line-based structure need not be a convex struc­
ture and a convex structure need not be a P-convex 
structure. 

We shall now define a "distance" between normalized 
states. Let 

a(q,p) inf{O~A <1 :(A,P,Pl)=(A,q,ql),Pl,qlES1} 

and 

pep, q) =u{p, q)[1 - a(p, q)]-l. 

If (Su Tl ) is a convex structure, then p is a semi­
metric (called the intrinsic semimetric) and O~ p(p,q) 
~ 1. In fact, if Sl is a bounded convex subset of Rn then 
p is topolOgically equivalent to the Euclidean metric. 

Let So be a convex set in a real vector space V with 
intrinsic semimetric p. So is absorbing if for any x E V 
there is a o(x) > 0 such that AX E So for all A with I A I 
~ o(x). So is balanced if AXE So, for all XESo, IAI ~ 1. 
Let D={cp -dq :O~ c, d ~ 1; p,q E So}; then D is a con­
vex, balanced absorbing subset of X, the subspace of V 
generated by So, and 0 ED. For x EX, let I x I = inf{A 
>0: XE AD}. Then 1·1 is the Minkowski functiona12l for 
D in X. I·j is a seminorm induced by the intrinsic 
semimetric p. 

Theorem 2. 2: (a) For a convex prestructure, the 
follOwing are equivalent: 

(i) (Sl' TJ is a P-convex structure that satisfies the 
(M2) measurement axiom; 

(ii) S:, the set of all affine functionals into the reals, 
is total; 

(iii) Sl is isomorphic to a convex subset So of a real 
linear space. 

(b) For a P-convex structure (Su T1 ), P is a metric if 
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and only if Sl is isomorphic to a bounded convex subset 
So of a real linear space. 

For physical applications, it is important to consider 
the set S=S~={(a,p): a?- 0 andpESJ. We shall define 
(a,p)=(/3,q) if a=/3'*O andp=q and (O,p)={O,q)=O for 
all p, q E Sl' For convenience we shall write ap instead 
of (a,p). If Sl corresponds to the set of normalized 
states of a physical system, then S corresponds to the 
states. For ap E Sand /3?- 0, we define fl...ap) (/3a)p. A 
convex pre structure (S, T) can then be generated on S 
from the convex prestructure (Sl' T l ) on Sl in the fol­
lowing manner: 

(A, ap, fXJ) = 0 if (1 - A)a + A{k 0 

and 

(A, ap, fXJ)=[(1-A)a +A/3](A/3[(1-A)a +A/31-1
, p,q). 

Theorem 2.3: The generated convex prestructure 
(S, T) satisfies the axioms (i) through (v) and (M1) and 
(M2) if and only if the convex prestructure, or genera­
tor, (Sl' T1 ) does. 

We define a binary operation, + on (S, T) by p +q 
2(t,p,q). 

Theorem 2.4: Let (S1' Tl) be a P-convex structure. 
Then the operation + on the generated P-convex struc­
ture (S, T) satisfies the following: 

(1) X+O=X, 

(ii) X+Y=X implies Y=O, 

(iii) X+ Y==O implies X= Y=O, 

(iv) X+Y=Y+X, 

(v) X+(Y+Z)=(X+Y)+Z. 

(Note: For proofs of the above results and additional 
results concernin~ convex prestructures, the reader 
is referred to other works by the authors. 22.23) 

3. OPERATIONAL QUANTUM MECHANICS 

In this section we briefly describe a generalization of 
Davies' and Lewis' operational quantum mechanics16 in 
our convex structure framework. The set Sl of normal­
ized states is assumed to be a convex structure and the 
set of states S is defined as S= {ap : a?- 0, p E Sl}' As 
we have seen S can be made into a convex structure 
(Theorem 2.3) and Sl can be thought of as a convex sub­
structure of S. Now T E S* is the distinguished affine 
functional defined as T(ap) a for all ap E S. We endow 
S* with the weak: * -topology; that is, if fo E S* a neighbor­
hood offo is a set of the form N(fo; Pl"" 'Pn;€)={j 
ES*:lf(PI)-fo(PI)1 <E, i 1, ... ,n}wherePl, ... ,Pn 
E S, E > O. We also endow Af(S) with the topology given 
by neighborhoods of the form 

N(Ao;PU"',Pn;E) {AEAf(S):p(Ap/>AoPI)<€, i=l, ••• ,n} 

where PI> .•• 'Pn E S, E > 0 and p is the intrinsic semi­
metric on S. 

An observable is a triple (X,/I, a), where X is a set, 
/I is a a-algebra of subsets of X and a: II - S* satisfies: 

(i) 0 ~ a(E) ~ a(X) for all E Ell; 

(ii) a(X) == T; 
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(iii) if E j are mutually disjoint sets inll then a (~;' E j ) 

= ~;' atE j) where the convergence is in the topology of S*. 

An instrument is a triple (X, II, C) consisting of a 
Borel space (X,II) and a map C :.1{- Af(S) satisfying: 

(i) r[t(X)p] = r(p) for every PES: 

(ii) if E j are mutually disjoint sets inll, then t(U~ E j ) 

= b;' t(E j) where the convergence is in the topology of 
At(S). 

Now to every instrument t on (X, II) there is a unique 
observable a on (X, II) such that r[t(E)p] = a(E)p for 
every PES, E Ell. Indeed, if we define a(E)p = r[t(E)p] 
then it is easily checked that a is an observable. Con­
versely, any observable a on (X,IO is determined in the 
above manner by at least one instrument. Indeed, let 
p E S1 and define C:/I - At(S) by C(E)q = [a(E)q ]p. Then 
C is an ins!rument and r[C(E)q]=a(E)p. More generally, 
if p j E S1 and E I are mutually disjoint, i = 1, ... ,n, then 
define C(E)q = ~ [atE n E j)q ]p i' 

If C and t are instruments on Borel spaces (X,II) and 
(Y,B), respectively, and there exists an instrument G 
on (Xx Y, II xB) such that q(E XF)=C(E) 7-(F) for all 
Borel sets E Ell, FEB, we call q the composition of 
C following 7- and use the notation q = Co]. It is clear 
that q is unique if it exists. Davies and Lewis16 give an 
existence proof in their framework; we shall not discuss 
existence here. 

Davies and Lewis give the following interpretation of 
their model. A state p corresponds to a "beam" of non­
interacting copies of a system and r(p) is a measure of 
the strength of the beam. An instrument t : (X, II) 
- Af{S) measuring a physical quantity taking values in 
X corresponds to a family of filters indexed by the sub­
sets II; the filter corresponding to C(E) allows a copy 
of the system to pass if its observed value lies in E and 
in so dOing transforms the input state p into the output 
state C(E)p. Now E- r[c(E)pl/r(p) is a probability 
measure on (X, II); the right-hand side is the ratio of 
the strength of the output beam to the strength of the 
input and hence is the probability that in the state p the 
physical quantity observed takes a value in E Ell. 
Successive applications of two families of filters corre­
spond to the composition of instruments. 

For A EAf(S) we define the linear operator A * : S* 
- S* by (A *j)(p) = j(Ap) for all jE S*, pES. 23 Let (X, C) 
and (Y,]) be instruments which determine observables 
(X, a) and (Y, b), respectively. The S* -valued measure 
F- C(X)*b(F) is an observable called the observable 
b conditioned by the measure a with instrument C. If 
} oC exists the observable c(M) = U oC)(M)*r is called 
the joint distribution of] following C. Let uS check that 
the marginal distributions are c(YXE)=a(E), c(FXX) 
=c(X)* b(F). Indeed, 

c(YXE)p = [(J ot)( YXE)*]p 

= r[(] o[)( YXE)p] = r[J(Y)C(E)p] 

= (r(E)p) =a(E)p 

and 
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c(FXX)p = r[(] 0t)(FXX)p] = r[J(F)c(X)p] 

= b(F)[[(X) p] = [[(X)* b(F)]p. 

Thus a joint distribution gives the desired marginal 
distributions. 

Let (S, T) be a convex structure satisfying the (M2) 
measurement axiom. We define a propOSition as an 
element A EAj(S) satisfying: 

(1) A2=A; 
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(2) there existsA'EAj(S) such thatA'2=A', A'A=AA' 
=0, andA+A'=I. 

Notice that A' is unique, since if A + B = I then 

2(2-1 ,Ap,Bp)=Ap +Bp=(A +B)P=(A +A')p=AP +A'p 

= 2(2-\Ap, A'p) so Bp =A'p for all pES. Let P be the 
set of propositions. For A, BE P we define A ~ B if 
AB=BA=A. 

Theorem 3. 1: P is an orthomodular poset. 

Proof: Notice O,IEP where O(p)=O, I(p)=p for all 
pES. Clearly 0 ~ A ~ I and A ~.A for all A E R If A ~ B 
and B~A thenA=AB=B and ifA~B, B~ C thenAC 
= (AB)C =A(BC)=AB=A so A ~ C. Thus P is a poset 
with universal bounds 0,1. We now show A -A' is an 
orthocomplementation. Clearly A" =A. If A ~ B, then 
since I=A +A' we have B'=B'A +B'A'. But B'A 
=B' BA =BA =0 so B' =B'A'. Similarly, B' =A' B' so 
B'~A'. Now if AlB then A +BEP. Indeed since B 
=AB + A' B =AB + B we have AB = 0 and Similarly BA 
= 0 so (A + B)2 =A + B and (1) is satisfied. We now show 
(A +B)'=B' A' which would prove (2) for A +B. In fact, 
since B +A' B'=A' B +A' B'=A' we have B' A' B'=B'A' 
and since B +B' A'=BA' +B'A' =A' we have B'A' B' 
=A' B'. Thus (A' B,)2=A' B' and (A +B)A' B'=O 
=A' B' (A + B). Finally, since B + B' A' =A' we have 
A + B + B' A' =A + A' = I. Clearly A, B ~ A + B and if 
A,B~ C then c(A +B)=CA +CB=A +B=(A +B)C so 
A +B~ C and hence A I\B=A +B. Clearly All A'=I 
for all A E P. Finally, if A ~ B then B=BA +BA' 
=A + BA'. Since A lB' from before, we have BA' 
=(A +B')'EP. We thus see that B=A!\ (BA') which 
completes the proof. 

The set of propositions from the basis for the quantum 
logic approach of Jauch-Piron4,24 and Mackey. 5 It 
should be mentioned that Davies and Lewis16 argue that 
the order we have used in Theorem 3.1 is not the cor­
rect order for physical implication while Mielnik14 

pOints out that condition (2) for propositions may not be 
a realistic physical assumption. Thus there might be 
propositions which do not satisfy (2) so the set of propo­
Sitions may not have as rich a structure as an orthomo­
dular poset. We shall not argue these points here but 
merely set down the facts so the reader may judge for 
himself. 

Returning to our general convex structure of states 
S, suppose there are enough observables to distinguish 
between states or equivalently that S* is total. It then 
follows from Theorem 2.2 that S1 is isomorphic to a 
convex set in a real linear space V. Then S is a cone 
with base S1 and X = S - S is a subspace of V generated 
by S. The intrinsic semimetric p is a metric and so we 
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can form the completion S1 of S1' Then 81 i~ a bas~ for 
a cone S which generates the linear space X =:s - S. If 
1·1 is the intrinsic norm on i then 81 is normalized and 
hence (X, I, I ) is a Banach space with closed generating 
cone 8 (Ref. 23, Theorem 3. 7). Defining l' as above we 
see that T(X) = Ixi for every XES and the triple (X,S,T) 
becomes a complete base normed space (or state space), 
the basic framework for the operational quantum me­
chanics of Davies and Lewis. The norm 1·1 is equivalent 
to the natural norm I· 11 used by Davies and Lewis and 
our definitions of observables, instruments, joint dis­
tributions, etc., reduce to theirs (Ref. 23, Theorem 
35). We thus see that in the case of a separating set of 
observables our framework reduces to that of Davies 
and Lewis and hence gives a simple, axiomatic motiva­
tion for their theory. 

4. QUANTUM INFORMATION SYSTEMS: 
MIXTURE OF BEAMS 

In the next three sections we compare our theory to 
that of Mielnik, the latter being similar to and repre­
sentative of the framework of Ludwig, Gunson, and 
others. As has been pOinted out previously, it is possi­
ble that (pure) quantum states do not form a linear 
space. For example, if the superposition principle does 
not necessarily hold then the states may form a nonlin­
ear structure. As a step in this direction Mielnik13,14 
has considered simple examples of physical systems in 
which the pure quantum states cannot be represented by 
vectors in a Hilbert space. 

In Mielnik's development of axiomatic quantum 
mechanics,14 a general information system (D, T, B) is 
defined as three sets: D, a set of detectors; B, a set 
of beams; and T, a set of transmitters such that 

1. There exists a map D xB - R, (d, x) - dx such that 

(a)::J! OEB such that dO=O, ydED, 

(b) ::J! OED such that Ox=O, y XEB. 

2. There exists a map BXB-B, (x,y)-x+y such that 

(a) x+y=y+x, 

(b) x+(y +z)=(x+y) +z, 

(c)x+O=x, 

(d) x+y +z=x implies y=z=O. 

3. T is a non-abelian semigroup of operators in B. The 
image dx defined in condition 1 is the average intensity 
of the beam x measured by the detector d; the image 
x + y defined in condition 2 the combination of x and y. 
From condition 1 above, each dE D determines a 
detection functional on the set of beams and each x E B 
determines a beam functional on the set of detectors. 

Mielnik extends the definition of combinations of 
beams by defining nx = x + x + .•• + x (n times) for n E N 
and then assumes that there exists a map R+ xB- B, 
where W ={A E R: A '" o}, such that y A, /J. E R+ and 
yx,yEB 

l. lx=x, Ox=O, 

2. A(/J.X) = (A/J.)X, 

3. (A + /J.)X=AX + /J.X, 

J. Math. Phys., Vol. 15, No.6, June 1974 

845 

4. A(X + y) = AX + AY, 

5. nx=x+x+··· +x (n times), nEN. 

This will be called multiplication by nonnegative scalars 
and it is closely related to average beam intensity. 
Mielnik notes that B, with combinations and multiplica­
tion by nonnegative scalars, does not give one a linear 
space; however, he does state 

... B admits a convenient representation as a convex 
cone in a real linear space X so that the linear com­
bination with positive coefficients defined in B be­
comes a special case of the general linear combina­
tion in X. The space X can be constructed as the set 
of formal differences x - y of beams x, y E B with the 
assumed identity: x-x=O .... The embedding of B 
in X is done by assigning to each x E B an element 
x - 0 EX. The set B then becomes a positive cone in 
X (Ref. 14, p. 7). 

In the above, Mielnik impliCitly assumes that it is possi­
ble to define an inverse; he does this through the irre­
versibility axiom 2d. 25 The above axioms do not imply 
that B can be embedded in a linear space, as the follow­
ing example will show. 

Let S1 = {p, q}, p '* q, and consider the cartesian 
product R+ XS; we shall write AP and JJ.q for (A,P) and 
(/J., q), respectively. If A '* 0 '* /J., we define AP = /J.p iff 
A = /J. and p = q; Op = Oq. This is an equivalence relation 
on (R+,S). Also assume that lx=x and define A(/J.X)X 
= (A/J.)X for A'" 0 and x E {p, q}. Define AP + JJ.q to be 
(A + /J.) p if A'* 0 or /J.q if A = 0; further, define (A + /J.)x 
=AX + /J.x and A(X + y) = AX + AY for x, y E {p, q}. One can 
easily see that x + y and AX so defined do satisfy all of 
Mielnik's axioms on combinations and multiplication by 
nonnegative numbers. Such a structure does not, how­
ever, generate a linear space; indeed, if ::J (-p) such 
that p+(-p) = 0, then (p +q) -p = (p +p) -p which im­
plies p =q, a contradiction. Therefore, Mielnik's state­
ment that B can be represented as a positive cone in a 
linear space is incorrect. We shall now show that the 
above structure is a P-convex structure. 

Let (S1> T1 ) be a convex prestructure and let (S, T) be 
the generated convex prestructure as defined in Sec. 2. 

Theorem 4.1: If (S1' T1) is a convex line-based (con­
vex, P-convex, dense P-convex, full P-convex) struc­
ture, then (S, T) is a convex line-based (convex, P-con­
vex, dense P-convex, full P-convex) structure. 

Proof: It has been proved that if (S1' T1) either is C­
commutative, or is C-associative, or satisfies the 0-
endpoint condition, then (S, T) either is C-commutative, 
or is C-associative, or satisfies the O-endpoint condition 
(Ref. 23, Lemma 2.7). Therefore, we need to prove 
similar results for weak associativity, the point convex­
ity condition, the Ml measurement axiom, and the M2 
measurement axiom. First, we show weak associativity. 

If (1 - /J.)(] + /J. l' '* 0 and Aa'* 0, then 

(>.., ap, (/J., (]p, Tq» 

=<A'(]P,[(I-/J.)(]+/J.Tl~I_/J.):+/J.T' p,q)) 
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/A[(l - /J.)U + IJ.'r] 
=[(l-A)U+A[(l-/J.)U+/J.T]]\(l_A/J.)U+A/J.T' 

p, ~l-:):+/J.T' p,q)) 

= [(1 - A/J.)U + A/J. T ]~1 _ A~~T+ A/J. T ' p, q) 

=(A/J.,UP, Tq). 

If (1 - /J.)U + /J.T=O, then 

(A, up, (/J., up, Tq» = (A, up, 0) 

so that (S, T) is weakly associative. Also, 

(A, /J.P, /J.p) = /J.(A,P,P) = /J.p, 

so (S, T) satisfies the point convexity condition. Next, 
we prove the M1 measurement axiom. Assume that 

(A, /J.P, vq) = vq. 

If (l-A)/J. +AV=O, then either A=l or /J.=O, so /J.P=O. 

If (l-A)/J. +AV*O, then 

(A, /J.P, vq) = [(1 - A)/J. + A/J.] ~1 _ A~; +A/J. ' p,q)= vq. 

The latter occurs only if (l- A)/J. +AV=V, so either /J. 
= v or A = 1. If /J. = v, then /J.(A,P, q) = /J.q = (A,P, q) so 
that p =q. To prove M2 measurement axiom, assume 

(A, p.p, vq) = (A, p.p, ur). 

If (l-A)p. +AV=O or (l-A)p. +AU=O, then follow steps 
similar to those in the proof of the M1 axiom above. 
Otherwise, 

[(1 -A)/J. +AV]~l_A~; +AV ,p,q) 

=[(l-A)p. +AU]«l_A~: +AU' p,:; , 
so that 

(l-A)p. +Av=(l-A)p. +AU. 

If A * 0, then (J = v and from that we easily obtain q = r. 

From this we shall show that Mielnik's set of beams 
with combinations and multiplication is equivalent to 
(S, T) for some P-convex structure (S1> T l ). A detector 
or transmitter is c-linear if <t>(x +y) = <t>(x) + <t>(y) and 
<t>(AX) = A <t>(x)'1 A ~ 0, 'I x, yES. A standard quantum 
detector e is a c-linear detector such that (1) ex~ ° 'I x 
E B and (2) ex= ° implies X= 0. For a given standard 
quantum detector e, we can define the statistical figure 
Se={xEB:ex=l}. Since e is c-linear, (l-A)x+AY 
ESe 'Ix, Y E Se '1A E [0, 1J. Consider 

Te :[0, 1]xSe xSe- Se, 

(A,p,q)-(l- A)p +Aq. 

Lemma 4.2: (Se, Te) is a P-convex structure. 

Proof: 

(a) O-endpoint condition: (1-0)p +O=lp +O=p; 

(b) C-commutativity: (l-A)p +Aq=[l-(l-A)]q +(l-A)p; 
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(c) C-associativity: (l-A)p +A[(l- /J.)q + p.r] 

= [(1 - A)P + A(l - /J.)q] + A/J.r; 

(d) Point convexity condition: (1 - A)P + AP 

Lemma 4.3: B=(Se)+. 
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Proof: Obviously, (Se)+ r;;; B. Let x E B. If e(x) = 0, then 
X=OE(S)+. lfe(x)*O, then [e(x)]-I XE Se, SOXE(Se)+. 

Define p +q = 2(t ,p, q) for the convex prestructure 
(S, T). 

Lemma 4.4: For a generated P-convex structure 
(S, T): 

(a) if [x, y] is Class III and x + y = x, then y = 0; 

(b) if [x,y] is Class I or II and x+y=x, then x=y=O. 

Proof: (a) If [x, y] is Class Ill, then CH({x, y, a}) is 
full. Thus (A,P,q)=(A,p,r) implies A=O or q=r, for 
any p,q,rECH({x,y,O}), and (t,x,y)=tx=(t,x,O) 
implies y = 0. 

(b) If [x,y] is Class I, then either (i) x=(x,y) or (ii) 
y=(x,y). If (i) holds, x+y=x=2x. If (ii) holds, x+y 
=x=2y=3y. If [x,y] is Class II, then x+y=2z=x 
=3x/4 for some zECH({x,y,O}) so that x=y=O. 

Lemma 4.5: If (S, T) is a generated convex line-based 
structure, then 'I x, YES, X + Y = ° implies X= y = 0. 

Proof: x+y=2(t,x,y)=0, so (t,x,y)=O and (A,X,O) 
=(A/2, x,y), '1AE[O,l]. Therefore, '1AE[O,lJand 
'I p. >0 

(A,x,p.O)=(l +AP.)\i ~~p.' x,O). 

Let p. = 1/(2 - A); then 

2~ (h, x, 0) =(A, x, 0) =(h, x, y). 
-A 

If A = 1, then 2(t, x, 0) = 0 = x + 0 - 0 and y = O. 

Theorem 4.6: There exist a one-to-one correspon­
dences between statistical figures and P-convex struc­
tures and between the class of sets of beams and the 
class of generated P-convex structures. 

Proof: By Lemmas 4.2 and 4.3, if Se is a statistical 
figure, then it is a P-convex structure and the set of 
beams is a generated P-convex structure. To show the 
converse, it is sufficient to prove that every generated 
P-convex structure (S, T) satisfies the axioms on com­
binations and multiplication by nonnegative numbers, 
because the map e given by e(Ax) = A for x E SI is a 
standard quantum detector and Se = S1> where (SI' T l ) is 
the generator of (S, T). It has been shown [Ref. 23, 
Lemma 2.9] that a generated convex structure given by 

p +q=2(t,p,q) satisfies 

(a) p +q=q +p, 

(b) p +0 =p, 

(c) AP +.\q =A(P +q), 

(d) p +(q +r)=(p +q) +r. 
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By definition, Ip ==p, Op == 0, and A(jJ.P) == (AjJ.)P. To show 
that (A + jJ.)p == AP + lUI, one simply applies the definition 
of p +q. If A == jJ. == 0, then the result is trivial. If A and 
IJ. are not both zero, then 

AP + IJ.p == 2(t, AP, IJ.p) 

A+IJ. / f.l ) 
== 2 -2 - \A + IJ. ' P ,P 

All that remains to be proved is that P +q +r==p implies 
q == r == 0; This follows immediately from Lemmas 4.4 
and 4.5. 

5. FILTERS 

The concept of a filter, yes-no, experiment or ques­
tion is a crucial one in axiomatic quantum mechanics. 
Mackey states as an axiom that the set of all questions 
under a given ordering is isomorphic to the poset of all 
closed subspaces of a separable, infinite-dimensional 
Hilbert space. 5 As Mackey indicated, this assumption 
is made simply because it gives a theory that "explains 
physical phenomena and successfully predicts the re­
sults of experiments" (Ref. 5, p. 72). Mielnik has de­
fined a filter for a general information system (D, T,B) 
if (1) B can be embedded in a linear space and (2) there 
exists a standard quantum detector e ED. 14 Such a sys­
tem will be called a quantum system (e,D, T,B). If we 
have a general information system (D, T, B) with a 
standard quantum detector e, then (e,D, T,B) will be a 
quantal information system. 

For a quantum system (e,D, T,B), Mielnik defines a 
filter a ETas a linear transmitter such that 

1. eax~ex, 'f/xEB; 

2. eax==ex implies ax==x; 

3. ifbE{CET:c islinearandcx==x if ax==x} and 

ebx~ eaX'f/XEB, then eb==ea. 14 Obviously, a filter a can 
be defined for a quantal information system (e, D, T, B) 
if a E T is a C-linear transmitter such that a(Ax + /J.Y) 
== Aax + lJ.ay 'f/ A, IJ. '" 0 and 'f/ x, y E B. In terms of the sta­
tistical figure Se' condit;<Jn e above simply states that if 
XE Se and aXE Sel then ax= x. For a filter a E T, if b 
E {c E T : c is linear and CX== X ifax== x} implies ea < eb, 
then a is an absolute filter. Mielnik has shown that for 
a quantum system and for any filter a, the sets Ba I 

=={x E B : ax== x} and Ba,o == {XE B :ax== O} are closed ex­
treme subsets of B in the weakest topology in which all 
detectors are continuous; further, he has shown that 
Sa, I={XE Se : ax= x} and Sa,o ={XE Se: ax== O} are closed 
extreme subsets of Se in the same topology (Ref. 14 
Proposition 3). In this discussion, we shall deal solely 
with full P-convex structures. A convex prestructure 

(S, T) is complete if for every X,YES, :::3P,qES that 
form a maximal line [p,qj such that (x,Yl~[p,qj. Such 
a maximal line will be denoted by [x, Y J. 

Obviously, if (S, T) is a full P-convex structure then 
it is possible to embed S into a complete full P-convex 
structure (S, f). (S, '1') is a completion of (S, T). 

Lemma 5.1: For a quantal information system 

J. Math. Phys., Vol. 15, No.6, June 1974 

(e,D, T,B) and a filter a, if Xc 
thatxE(Y,Z), then[v,zj'~SO(" . , 

and :-c .", z E S such 

Proof: If XE(Y, z), ::J~. ''C (0, 1) such that. x==(7I.,V, z). 
Thus ax = (1 - A)a)' + ,\17" =.0 and by Theorem 4.6 
(1 -A)ay=O=Aaz, so 17'.'= a2·' 0 and l \', ? i, 050 ,0' If p 
E[y,Z]-[Y,z], assume jJ.= R",_ ':5u L;lat "'\/J.,p,y) for 
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some /J.E(O,l), Then az.=(l- ·;-\u.1 •• ,=O and either 
(1 - y)ap == ° or ap = 0; therefore Y,;; I 8".0' 

Lemma 5.2: Let (e,D, T,E) if ~, quailtal information 
system such that the statistic',l Esure S, is a full P­
convex structure. For a filter iT. it· \' . S '. j Qnd 
:3 y, Z E S such that X E\.I', c" ~h;ji ; i, . j' 

Proof: Assume ax = x, in c' :.L/i , and Ii:= VI! for some 
p, q E Sand /J., V '" 0. Sill c e ('171' <: ( v ';f r foe B, 11, V ~ lo, 1 J 
so that (A, Y, z) =x for some, ~ .0, l) and \A, 1', z) 
==(A,IJ.P,Vq). If (1-7I.)/J. +\y~J tn:;!] ,,,,0, a contradic­
tion since ° f S. Thus 

so that (l-A)J.L+AV=.1. Since';, ·.e,l;, /.1 u··lsothat 
ay=p and az=q; but II is a filt •. ~'.l·, ar,d ccer/. 

Then ay = y and az = ,?:, so 1'" '" " Ld!.c C~';;-l and 
assume t E R",e' If I = (A, y, C?) fo:' SOil)f3 ,\; [0,1 i, then 
al=a(A,y,z)=(A,ay,az.;=· ." = I. Ifi" (~,!,?) for 
some A E [0, 1 J, then l' 'c In~' ',Xl and since 
S is full, ap =P so that [~~~r" .',!' 

Lemma 5.3: If (e,D, T, B) IS ,) quantal information 
system and the statistical fit(ul':' is " F-(:o!1vex struc­
ture and a is a filter, then x _ S ,'] Z,.UCi j S", [ imply 
[x,yj=[x,yj. 

Proof; Assume p c: r,~i. 1J , ,:", 1 lO!' some ,\ 
E(O,I), thenax=.(A,ajJ,II1-;<-;u:;"ti 0= !)-A)a/)+Ay, By 
Theorem 4.6, J =ap = 0, a C',i.,.:',lclIC,l,);: as',' .c' Sand 
Ots". If Y=(A,P,X) for some' (0 1), t!Jen \ 
== (1 -A)ap, a contradiction sineI' 1 - !,) (l1)!< 1 and 

ey=1. Thus [x,yJ=r~I' 

Let ¢ be the isomorphism that maps the full P-convex 
structure (S, T) onto a convex subset of " real linear 
space V. A flal is a subset.it :. S of a !-'-convex structure 
(S, T) such that ¢(A) =. C ( G'l\S) where C is a subspace of 
V. A flat A is extremal if rf.lJI) i:.: aI', oxtreme subset of 
S. From the above three lemmas, we obtain the 
following: 

Theorem 5.4: If (e,D, T,n) ::3 a qualllal information 
system with a statistical fi;~un) " that ie; a full P-convex 

structure, then for any filter e T, I and S'{l,Q are 
extremal flats. 

Up to this point, we have nul used the "minimal 
entropy" condition: if hrc T such that ,',I, <,'a and ax=c x 

implies bx=,x, then (,/)=,'(1. Wi' :,hall now use this con­
dition to prove a very importcllil rcsuli.. If (e,D, T,B) is 
a quantal information system wi Ii) ], statisti cal figure 
that is a complete, full P-cor;vcY.. Stl'llctU1'C, then 
(e,D, T,B) is discYimill(i1illg. Obviollsly, if (c,D, T,B) 
is a discriminating quantal illi'jj'"",U'Al ,ovstem, then 
D j ={bEB:chs;l}isacoJ!1pk>., t';"i: ,'-u.'Dvexstruc­
ture and any filter maps 1) I ill[,) ';, H \ S and II is a 
filter, then I7X= A.1' for some :\.- ,0,1 i ;lEd some .1' E S. 
A filter is idempotent (Ref. 14, Proposition 2), so 
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a2x=a(AY)=AY and ay=y if A*O; thus YES.,I' 

Theorem 5.5: If (e,D, T,B) is a discriminating quan­
tal information system with the statistical figure S, then 
for any filter a 

S= CH(Sa,I U Sa,o). 

Proof: Let XE S. For a filter a, aX=AY for some 
AE[0,1]andsomeYES.IfA=0, thenxESao, ifA=1, 
then XE Sa I; thus we need only concern ourselves with 
A E (0 1). S is complete, so by Lemma 5. 3 ~p E S such 
that [~, y] = [p, y]. Thus ~ a E (0, 1) such that x=(a,p, y), 
so that ax==-(a,ap,ay) or (a,ap,y)=(1-a)ap +ay since 
a is idempotent. It is sufficient to show that A = a, for 
then Theorem 4.6 implies (1 - A)ap == 0, so that ap = ° 
and p E Sa o' From the definition of a standard quantum 
detector, 'one obtains eAy=e(1-a)ap +eay. Then either 
A == (1 - a)eap +a or 

A-a 
eap= -1-~0; 

-a 

thus A ~ a. Define the map b : S - S such that 

(a) br = r if r E an == {q E S : aq == q} 

(b) br=Obp==O if rEECH(Sa,oU{p}) 

and extend b so that it is affine on CH(an U Sa 0 U {p }); 
then bx== x. Further define b(Aq) = AbqYA ~ Oyq E S so 
that b is linear on B. By minimal entropy condition on 
a, ea=eb; therefore, eap=ebp=O, so that A=a. The 
following theorem is now clear. 

Theorem 5.6: The set of extremal flats, ordered by 
set inclqsion, has a subset that is isomorphic to the set 
of filters ordered by the standard quantum detector e. 

6. REDUCTION MAPS 

A map cP is a reduction map on a convex prestructure 
(S, T) if cP EAf(S) and cp2 = cP, where cp2(a) means 
cp(cp(a». If CP(a)=ayaES, cP is the trivial reduction 
map; if cp(a) == x ya E S and for some fixed XES, then cP 
is a total reduction. Obviously, there are as many total 
reductions in Af(S) as there are pOints in S. The main 
motivation behind the definition of a reduction map is 
the concept of a projection in a linear space. In general, 
however, there does not exist a zero element in a con­
vex prestructure; for this and other reasons, a reduction 
map is more general than a projection in a linear space. 
One can easily define a partial ordering On the set R(S) 
of reduction maps of S by cp,,;; l/J iff CP(S) C IP(S) for cP, If 
E R(S). Obviously, R(S) is not a lattice, as CPA l/J may 
not exist. For example, for two distinct total reduction 
maps CPx and CP" CPxACP, does not exist. 

Lemma 6.1: If cP E R(S) for a P-convex structure 
(S, T) and if CP(b) = b and cp(c) = c for some b, c E S, then 
cp(a)=ayaE [b,c]. 

Proof: Assume a=(A,b,c) for some AE[0,1]. Then 
cp(a) = (A, cp(b), cp(c» = (A, b, c) == a. 

Lemma 6.2: If cpER(S) for a full P-convex structure 
(S, T) and if t<b) = b and cP(c) == c for some b, c E S, then 
<t>(x) =xYXE b,c]. 

Proof: By Lemma 6.1 cp(x)=xyxE[b,c]. If xE[b,c] 
- [b, cJ, assume ~ A E (0,1) such that b =(A, x, c); then 
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cp(b) == (A, cp(x), CP(c» = (A, cp(x), c) == (A, x, c), so x = CP(x). 
The proof is similar if ~ A E (0, 1) such that c ==(A, x, b). 

Two sets that are of some interest in P-convex struc­
tures are CH(A) and ECH(A) where, for A C S, CH(A) is 
the smallest convex substructure containing A and 
ECH(A) is the smallest flat containing A. Therefore, 
given a full P-convex structure (S, T) and a reduction 
map cP on S, there corresponds a set A == cp(S) such that 
A = ECH(A). If A = ECH(A), then A is a flat. The follow­
ing theorem is immediate. 

Theorem 6.3: For a P-convex structure (S, T), if A 
and B are flats, An B [ECH(A U B)] is the largest 
(smallest) flat contained in (containing) A and B. The 
set F(S) of flats of a dense P-convex structure forms a 
lattice under set inclusion. Therefore, R(S) is isomor­
phic to a subset of the lattice F(S) of flats for a full 
P-convex structure (S, T). 

Corollary 6.4: The lattice F(S) of flats of a dense 
P-convex structure (S, T) is atomic. 

Proof: ECH({p})={P}, so every pOint is a flat; thus 
the atoms of a dense P-convex structure are the atoms 
of F(S). 

7. MACKEY'S AXIOMS OF QUANTUM MECHANICS 

A standard approach to axiomatic quantum mechanics 
is that used by Mackey. 5 As will be shown, Mackey's 
system carries over naturally to that of a full P-convex 
structure. Mackey is concerned with the set B of all 
Borel subsets of the real line R and with two undefined 
sets: S, the set of all states, and 0, the set of all ob­
servables. There exists a map 

p:oxSXB-[0,1], 

(A,X,E)-XA(E) 

satisfying the axioms below. 

1. XA(¢)=O and xA(R)=ly xESandyAEO, and 
xA(U~Ej)== L:~xA(Ei) whenever the E j are pairwise dis­
joint Borel sets. In other words, each XA is a probabili­
ty measure on B. 

2. If xA(E)=XA,(E) YXES and V EEB, thenA=A'; 
and if xA(E) = xA(E) y A EO and VEE B, then X= x'. 

3. For any real-valued functionf On R and any A E 0, 
~A'EOsuchthatxA,(E)=xA(f-l(E» xESand EEB. 
A' is denoted by f(A) in the literature. 

4. For Xu x2 , ••• , E Sand Al' A2"'" E [0, 1J such that 
L:"'Aj=1, ~yES such that 

'" 
YA(E) =6 Aj(Xj)A(E), 

1 

Y E E Band yA E 0; y shall be denoted by L:~Ah' A 
ques tion is an observable A such that y XES, 

xA({0,1})=L 

If we define a quantity mx(q)=xq({l}) for each question 
q and each XE S, then mx(q) can be used to define a 
natural partial ordering in Q, the set of all questions, 
by ql";; q2 iff mx(ql)";; m x(q2) y XES. If mx(ql) + m X(q2) 
,,;; 1 y XE S, then the questions ql and q2 are disjoint. 
We next assume the axiom: 

5. If {q;} is any pairwise disjoint sequence of ques-
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tions, then Z;~qi exists. Let q: be the question repre­
sented by the function ¢E :A - {o, 1} which is 1 for x E E 
and is 0 for xtE. Any function B- 0, E-qE is a 
question-valued measure if 

(a) mx(q<t»=O and m x(qR)=1VXES; 

(b) En F = C/J implies q E and q F are disjoint; 

(c) EinEj=C/J for i*j implies q(El UE 2 U •• ·) 
=qE

l 
+qE

2 
+ .... 

We also assume the axioms: 

6. If q : E - q E is any question-valued measure, then 
:3A EO such that q: = qE VE E B. The assumptions listed 
below are also given in Mackey. 5 

7. The poset of all questions in quantum mechanics 
under the natural partial ordering is isomorphic to the 
partially ordered set of all closed subspaces of a sepa­
rabie, infinite -dimensional Hilbert space. 

8. If q is any question that is represented by a Borel 
function that has nonzero values, then :3 XES such that 
mx(q) =1. 

There is an additional axiom regarding quantum 
dynamics which will not be discussed here. 

A possible alternative for Axiom 2 above is the fol­
lowing assumption: 

2'. If mx(A)=m)C) VXES, thenA=C. 

For a physical motivation of these axioms and their 
development, the reader is referred to Mackey. 5 

Using the concept of convex prestructures to revise 
Mackey's axioms, we shall show some additional physi­
cal motivation for them. Axiom 1 and 3 will be left as 
stated above. Mackey admits that Axiom 7 "seems en­
tirely ad hoc" (Ref. 5, p. 71). A modification of Axiom 
7, equally well suited to phYSical phenomena, will be 
indicated in this paper. 

To replace Axioms 2, 4, and 7 we shall use certain 
axioms discussed below. 

A. There exists a map 

T:[0,1]XSXS-S, 

(A, x, y) - (A, x, y) 

on the set of states such that 

(A,X,Y)A(E)=(1-A)xA(E) +AYA(E) 

and (S, T) is a convex prestructure such that p(A, " E) is 
an affine functional of S for each A EO and each E E B. 

B. There exists a topology on S such that the sequence 

(AU x2 , Xl)' (A2' x3 , (Al1 X 2 , Xl)}' (A3' X 4 , (A2' X 3 , (AU X 2 , Xl» >, ... 
converges whenever Ai E [0,1] and Xi E S for i = 1, 2, ..• 

Obviously, these two axioms are a rewording of 
Mackey's Axiom 4 in a language compatible with our 
development of convex prestructures. Axiom 2 will be 
replaced by Axioms C and D below. 

C. If xA(E)=xA-(E)VXES and VEEB, thenA=A'. 

Do There exists an equivalence relation on (S, T) such 
that X is equivalent to x' iff x' A(E) = xA(E) VA E 0 and 
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VEE B. Therefore, if (A, x, Y) =(A, x, z) for some A 
E (0, 1] and for some XES, then y should be equivalent 
to z; this will be denoted by y * z. Clearly y * y. Also 
Y * z implies z * y for any convex prestructure. Next 
consider transitivity: if X * Y and y * z, then :3 PES and 
:3 A E (0, 1] such that (A,P, x) =(A,P, z). From this it 
seems natural to assume the axiom: 

E. (S, T) is a P-convex structure. 

One of the authors has shown that it is possible to 
define an equivalence relation, called indistinguish­
ability (mod S) between two pOints X and y in a P-convex 
structure iff there exists a point z E S and A E (0,1) such 
that (A, x, z) = (A, y, z). 22 The set of indistinguishable 
(mod S) equivalence classes Sm.s can have a map T m,s 

defined in terms of T such that (Sm, s' T m ,s) forms a full 
P -convex structure. 

Theorem 7.1: Let (S, T) be a P-convex structure. 
Then (a) S* separates Sm,s equivalence classes, and (b) 
p(x, y) = 0 implies x and yare indistinguishable (mod S) 

if Sm,s is isomorphic to a bounded convex set of a real 
linear space. Indistinguishability (mod S) gives an 
equivalence relation in which y is equivalent to z iff 

(A, x, y) A(E) = (A, x, z) A(E) 

for some AE[0,1], some XES, andallEEB. 
(SM,S' T M,S) with Axiom B above is therefore equivalent 
to (0, S,B,p) with Mackey's Axiom 2 and 4. 

Unfortunately, physical measurements cannot indicate 
whether (S, T) is full, as measurements on indistin­
guishable states give identical results as can be seen 
from Theorem 7. 1. The major difficulty is that a state 
x is simply a member of an undefined set S. Dirac de­
fines a state as "an undisturbed motion that is restrict­
ed by as many conditions or data as are theoretically 
possible without mutual interference or contradiction 
(Ref. 26, p. 11)." Use of this definition seems to re­
quire fullness of (S, T). Until the concept of a quantum 
state is defined in a manner useful to axiomatic quantum 
mechaniCS, however, it will be necessary to consider 
the possibility of indistinguishable quantum states. Even 
if (S, T) is a full P-convex structure, the isomorphism 
theorems in Sec. 2 do not force (S, T) to be a subset of 
Euclidean space, as (S, T) may be part of a complete 
Riemannian manifold that has a large curvature. 

Given a full P-convex structure (S, T) there are five 
associated classes of objects: the class F(S) of all flats, 
the class EF(S) of all extremal flats, the class R(S) of 
all reduction maps, the class L(S) of all filters, and the 
class Q(S) of all questions. They can be ordered by the 
one-to-one morphism between them; this ordering is 
shown by the diagram in Fig, 1. 

Mielnik requires that L(S) replace Q(S),14 so that one 
is not concerned with questions, but with filters. 
Mackey's Axiom 7 (Ref. 5) and the requirement that 
states be represented by unit vectors in a Hilbert space 
together imply that Q(S) ~ R(S) ~ F(S). Mielnik and 
Mackey are obviously in disagreement over the concept 
of questions vs filters. It seems reasonable, however, 
to place the follOwing restriction on the "shape" of the 
set of states S: 
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F(S) 

Q(S) 

o R(S) EF(S) 

L(S) 

FIG. 1. 

F. For the completion (SM,S' TM,s) of (SM,S' TM,s), 
EF(SM,S)~L(SM,S)' The shape of the set of states will be 
explored by one of the authors in a future paper. An 
additional axiom is also required: 

G. The completion (SM,S' TM,s) of (SM,S' TM,s) is 
homeomorphic to a compact convex subset of a topologi­
cal linear space with a locally convex Hausdorff 
topology . 

From the Krein-Milman Theorem, EF(SM s) must 
then be atomic, since there exist extreme po'ints in S 
and every extremal flat has an extreme point. There­
fore, L(SM s) is atomic. In the required topology, all M 
(mod S) eq~ivalence classes are closed and there do not 
exist any proper nonempty open subsets of an equiva­
lence class. The sequences mentioned in Axiom B 
therefore converge to a set of states which are all 
indistinguishable. 

It should be noted that no reference has been made to 
the dimensionality of SM s. Mackey requires that the 
poset of questions be is~morphic to the lattice of sub­
spaces of a separable, infinite-dimensional Hilbert 
space; however, Pi ron has shown that the Hilbert space 
H can be decomposed into mutually orthogonal subspaces 
{Ha} A by some superselection rule. 27 The indexing set 

aE 
A may be continuous, as in the case of time, so that H 
need not be separable, even if each Ha is. For this 
reason, the dimensionality of S hasn't been discussed. 

We conclude this section with a proposed set of 
axioms for a quantum mechanical system. 

Axiom 7. 1: x A is a probability measure on the Borel 
sets of the real line R for each XES and each A E O. 

Axiom 7.2: If xA(E)=XA~E)"IXES and "IEEB, -then 
A=A'. 

Axiom 7. 3: For any real-valued Borel function f on R 
and any A E 0, O3A' E 0 such that xA,(E) = XAU-I(E» x 

E S and "I E E B. 

Axiom 7.4: 3 T :[0, 1]XSXS-S such that (S, T) is a 
P-convex structure and the p(A,., E) are affine maps on 
SVA EO and V EEB. 

Axiom 7.5: There exists a topology on S such that 
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(a) the sequence (A1> X2, Xl), (A2' X3, (A1> X2, Xl», 
(A3,X4,(A2,X3,(AUX2,XI»), ••• converges whenever AI 
E [0,1] and XIE S for i=1,2, ••. ; and 
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(b) the completion SM,S of SM,S is homeomorphic to a 
compact, convex subset of a locally convex Hausdorff 
topological linear space. 

Axiom 7.6: For the completion (SM S, T M s) of 
(SM,S' TM,s), EF(SM,S)~L(SM,S)' ' , 

Axiom 7. 7 If q : E - q E is any question -valued mea­
sure, then there exists a filter q such that q:=qEVE 
EB. 

Axiom 70 8: If q is any filter represented by a Borel 
function with nonzero values, then 3 XE S such that 
mx(q) = 1. 

S. CONCLUSION 

As can be seen from the above results, the framework 
of convex prestructures gives a generalizing and unify­
ing formalism for Mielnik's convex set and Davies' and 
Lewis' operational methods in quantum mechanics. Also 
this framework lends itself naturally to a reformulation 
of Mackey's axioms. The authors hope that this 
approach will lead to greater understanding of the math­
ematical formalism used in axiomatic quantum theory. 
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In this paper we deal with the Lie (pseudo.) group of coordinate transformations in four dimensions. 
We discuss the detailed structure of the corresponding Lie algebra, especially including Theorem II, 
which states a limited set of structure relations that uniquely determine the structure of the algebra. 
Using Theorem II, we attack the problem of finding unitary representations of the pseudogroup. 
Finally we discuss some physical implications of these representations. 

INTRODUCTION 

In this article we study the structure and representa­
tion theory of the (pseudo) group which consists of all 
invertible, local, analytic transformations on some 
neighborhood in Rn. This set is closed under the opera­
tion of composition of transformations, but is not a true 
group because that operation is not always defined. 1 We 
call our (pseudo) group the complete coordinate trans­
formation group in n dimensions (abbreviated CCTGn). 
Sets of transformations of this general type have been 
discussed by Cartan,2 and more recently be Singer and 
Sternberg. 1 For physical reasons we are primarily in­
terested in the CCTG4. We study the commutation rela­
tions of its infinitesimal generators, proving two the­
orems. We then apply our second theorem to the prob­
lem of describing representations of the CCTG4. 

The CCTGn belongs to a class of objects known as 
"infinite Lie groups" or "Lie pseudogroups". These 
pesudogroups bear a strong Similarity to ordinary Lie 
groups, but there is no completely satisfactory corre­
spondence between the Lie pseudo group and its Lie alge­
brao This is because "One-parameter subgroups do not 
fill a neighborhood of the identity in a ... Lie (pseudo-) 
group. ,,3 The neighborhood of the identity of the "group" 
thus contains more information than does the algebra. 
However, we will deal primarily with the algebra of the 
CCTG4 (abbreviated ACCTG4) and will assume that in 
doing so we have not neglected anything of physical im­
portance. We will find that this algebra looks just like 
an ordinary Lie algebra except that its dimension is 
infinite. 

Let us now derive a Hermitian representation of the 
Lie pseudoalgebra of the CCTG4. There is one ready­
made, faithful representation-the representation on the 
space of functions j(xIJ.) , /J. = 0,1,2,3, where 

and (1) 

We interpret j(xIJ.) as a spatio-temporal probability am­
plitude (e. g., j=[1/(21T)2]exp[i( pOt + piX + p2y + p3Z )] is 
the amplitude for a spinless particle with 4-momentum 
pIJ.). If the functions j have the transformation property 

j'(x'IJ.) = [J(x' I X)]-1/2j(XIJ.) , (2) 

where J0c'lx) is the Jacobian of the coordinate trans­
formation from x to x', then the j(x") will indeed trans­
form under a Hermitian representation of the algebra. 
Since the elements of the CCTG4 are analytic, we may 
write 
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(/J., v, Y, 0=0, 1,2, 3) (aIJ., aIJ. y , etc-. are real numbers) 

(3) 

in some neighborhood of the origin of the pseudogroup. 
If, for example, all the a's except the aIJ. are zero, then 
the transformations are just translations, and of course 
the corresponding infinitesimal generators are 

. 0 . ., 1 
t oXV = -tu y= Ii Py, (4) 

In general, if all the a's except a/i' "Yn are zero, then 
the corresponding infinitesimal generator is 

-B Yi"'Yn= ixVi' "XVno +'"i(~oY XYi" ·XY, ••• xYn) (5) 
Y Y 2 Y, 

(Y, VlJ' •• ,V"= 0,1,2,3; land n are positive integers, 

l ~ n). 

Special cases are the familiar 

J j = rotation generator, 

K j = Lorentz generator, 

1Y = conformal generator. 

We also define the operators 

(Y,VU '" ,11"=0,1,2,3). 

(8) 

(10) 

The C's are equivalent to the B's, but they are given in 
terms of conjugate momenta coordinates. The A's are 
non-Hermitian operators, but they satisfy the same 
commutation relations as the B's and C's. 

Let us have a graphic look at the ACCTG4. We group 
the elements of the algebra as follows: 

Copyright © 1974 American Institute of PhYSics 851 
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io '" oth row 

ix'"o" 1st row 

ix'"x"oy 2nd row 

ix'"x"xYo. 3rd row 

etc., where IJ., v, y, E = 0,1,2,3. When we say that an 
operator is in the nth row, we mean that it is a linear 
combination of operators shown explicitly as in the nth 
row above. Each row as a vector space is finite-dimen­
sional. Note that the ACCTG4 includes as finite subalge­
bras the rotation group, the Lorentz group, the con­
formal group [SO(4, 2)], and also SL(4, r) and GL(4, r). 

FIRST THEOREM 

Theorem I: The ACCTG4 has a finite generating sub­
set of two elements. These elements are [in the faithful 
"A" representation given by Eq. (9)] 

G1 =io x ' 

G2 = i[X7(X20X> + x5(xo) + X4(yo z) + x2(zo t) + (to x)] . 

This theorem can be generalized to the ACCTG in n 
dimensions, with generators 

G1 =ioX1 ' 

Proof of Theorem I: The most general element of the 
ACCTG4 is a linear combination of elements of the form 

ixOnoXlnlX2n2XsnsO J (j=0, 1,2,3) 

(nJE Z+=the set of nonnegative integers), 

Starting from ixo"'oo (0: E Z+) and commuting with 

ix 1 00 n1 times, 

ix200 ~ times, 

ixsoo ns times, 

we generate the operator 

if no =0: -n1 -~ -ns ~ 0, 

(Please note that 0: and the nJ are exponents, not super­
scripts. ) Hence given ixgoo ('0'0: E Z+) and ix ,00 
(j=1,2,3), we can generate all the 

Also, given ioo and ixgoo it is easy to generate all the 
other ixooo. By similar development for iXO"OXl "lX2"2XS"SOJ 
(j = 1, 2, 3), we see that the entire algebra is generated 
by 

io"ix~oJ,ix,Ok (j,k=0,1,2,3; j*k). (11) 

Noting the equation 

i(ix~o J) = [ix~o k' i(x0 i j + XiOk)] (j H) , (12) 

it is readily seen that the operators (11) are generated 
by 

Ox, xo y' yo., ZO t' tox' x20x 

and these in turn are generated by repeated commutation 
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of G1 with G2, and some elementary algebraic 
manipulations. 

SECOND THEOREM 
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A bracket expression is any commutator of commuta­
tors of commutators, etc. A bracker expression of 
order n contains n (not necessarily distinct) elements of 
a Lie algebra; e. g. , 

is of order 7. A proper commutator of order n is an ob­
j ect of the form 

[A l , [A2' [As, [ ... ,[A"_l' An]' .. ] 

where Alo ..• ,An are elements of a Lie algebra. 

From Theorem I we know that the ACCTG4 is gen­
erated by a finite set of elements; which is to say that 
each element of the algebra can be given in terms of 
bracket expressions of the elements of the generating 
set. Moreover, any nth order bracket expression (in 
elements All ... ,An) can be shown (by repeated use of 
the Jacobi identity) to be a sum of nth order proper com­
mutators of At> •.. ,An. Hence, any commutator 
equation 

[A,B]=iC A, B, CEACCTG4 (13) 

can be reduced to an equation between sums of proper 
commutators of the members of any generating set. 

Suppose we have a Lie algebra V whose elements are 
matrix or differential operators, or both, and we wish to 
demonstrate that it constitutes a representation r of the 
ACCTG4. Then we must show that the operators satisfy 
the same commutation relations as the elements that 
they are supposed to represent. Suppose that we want 
aJ (where aJ E V; j= 1, m) to represent the elements of a 
generating set. From the previous paragraph it is clear 
that if all the appropriate equations 

(14) 

required by the structure of algebra are satisfied, then 
all the appropriate relations 

[A, B] =iC (A, B, C E V) 

will be satisfied, and V will indeed represent the 
ACCTG4. 

Equations (13) are the structure relations of the alge­
bra. We have shown that they are satisfied if (14) are 
satisfied. Theorem II states an even more restricted set 
of commutation relations, which if satisfied insure that 
(14) and in turn (13) are satisfied. Thus, Theorem II 
gives a criterion which can be used to established that a 
set of operators is a representation of the ACCTG4. 

Theorem II: Let V be a Lie algebra as above, and let 
"ix"l •.• ""nay" signify the element of V which we want to 
correspond to B/l"·V

". (We use the form "ix"l •. . x"na.;' 
in order to enhance the reader's insight into the formu­
las that follow-for computational simplicity we will also 
drop the ubiquitous factors of "i" and use just 
"X"l ••• x"nOy .") Then V will represent the ACCTG4 if the 
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following equations are satisfied: 

[xJ8~, 8/]=0, j*k, k*l, j=l, 

[XJ8~,x~a/]=XJal' j*k, kf-l, j*l, 

[XJa~'Xla.]=o, j*l or q, k*Z, 

[XJa~,x2a/]=0' jf-k, kf-l, jf-l, 

[xJmx_na" x/x_Saq] 

= o{rxJ
m+ T-1X~ n+sa. + 0/ sxJm+T x~ n+ s-la. 

_ 0/mxjm+r-1x~n+$al_ 0/nxJm+TXkn+S-1al 

(15a) 

(15b) 

(15c) 

(15d) 

(15e) 

(where m, n, r, S E Z+ are exponents; and for (15e) 1 = j or 
k, q=j or k). Equations (15e) are just the structure re­
lations of the ACCTG in two dimensions. Obviously, as 
a further refinement of Theorem n, (15e) can be re­
placed by the commutator relations involving any gen­
erating set of the ACCTG2 [cf. Eqs. (14)]. 

Proof of Theorem II: Our strategy in proving this 
theorem is to begin with (14) and eliminate equations as 
redundant if they can be derived from other structure 
relations by use of the Jacobi identity. We must not 
make use of properties which are specific to the form 
"x"l. 0 0 x"nay." 

We begin by selecting a generating subset of the 
ACCTG4. We do not use G1 and G2 but rather 

aJ' X:8j , XJa~ (j, k = 0, 1, 2, 3; j f-k) . (16) 

We then select a set of canonical definitions of the 
operators XV1"' ,vnay, in terms of (16). If a set of opera­
tors is shown to represent the ACCTG4, then in retro­
spect the particular choice of definitions is mute. Re­
calling Eq. (12) we can define xJa J easily in terms of 
(16). We define 

XJaJ = [x:a" x}aJ], 

xjaj = ~3[x~aJ' xj" l aj ] n-

Finally, we define 

x"ymzTf' a" 

=(n + m :t+ S) ,)-1 

m 

[x"+m+ 1'+S ax]. • . ] 

r S 

(18) 

and Similarly for the operators xnymz1'f'8J (j=0, 2, 3). 
Our remaining arguments utilize only these definitions 
and the Jacobi identity. 

Equations (14) in the present context consist of the 
commutator relations of (16) with x"ymzTf'8J. We wish to 
reduce (14) to (15). Let us consider commutator rela­
tions involving first row operators; for example, 

[yax, xnymz1'f' 8,,] . (19) 
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The value of this commutator is fixed by definition pro­
videdn>O. Now consider (y8 .. ,x"y mzTf'ax]' By repeated 
use of the Jacobi identity we find that the value of this 
commutator is fixed, provided that we are given all 
commutators of first row elements with each other, and 

[ya .. , x"+m+ 1'+$ ax] = 0 . 

Consider [x8y, x"ymzTf'axl; once again using only the 
Jacobi identity and internal commutators of the first 
row, we fine that this commutator is fixed if we fix 

[y a xn+m+ 1'+$ a ] 
Y' r , 

(20) 

(21) 

But (21) involve just two coordinates and so are covered 
by (15e). 

Now let us return to (20). By the definition of 
x"+m+T+s8x, we see that (20) is satisfied if 

[ya., x2ax] = 0, (20') 

[ya .. , x3axl = 0 . (20") 

But (20') is a special case of (15d), and using the defini­
tion of x38x, (20") can easily be reduced to several 
equations included in (15). Finally, consider (19) with 
n=O: 

[yax, ymz1'f' ax] = 0 . 

Using Eqs. (15b) and (15c), we can write 

[ya", ymzTtSax] 

m! 
(m+r+s)! 

(19') 

x [zay, [ ... [z8y, [tay, [ ... [tay, [ya", ym+1'+Sax)' •• ) • 

. ~~' 
r S 

But [yax,ym+T+Sax]=O by (15e). So (19') is satisfied. 
Commutators like [yay, xny mz1'f'axl quickly reduce to ap­
plications of the cases discussed above. Thus we have 
shown that commutators involving elements of the first 
row can be reduced to (15). 

In order to reduce those cases of (14) which involve 
commutators of zeroth row elements (viz., 
raj, x"ymzTf'a~]), we need only the commutators involving 
first row elements, plus the internal commutation re­
lations of rows zero and one, and 

[aJ• x:aJ] = 2xj aj , (22') 

[aj,x;aj)=o kf-j, (22") 

Of course (22) are special cases of (15d). 

The only cases of (14) left to be considered are those 
involving commutators like 

[x2ax, x"y mzTtS ax] , (23') 

[y 28y , x"ymzTf'a..J . (23") 

Using (15d) we see that y2ay commutes with z8x and tax' 
Consequently, we need only be concerned with 
[y2ay , Xn+T+Sy rn8..J, which is covered by (15e). This takes 
care of (23') and a similar line of reasoning is used for 
(23"). Thus the theorem is proved. 
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Remark: With trivial modifications, such as 

j, k, 1, q = 1, 2, 3, .•• ,n; n E Z· , 

Theorem II and its proof can be generalized to apply to 
the ACCTG in n dimensions, n> 4. 

REPRESENTATIONS OF THE CCTG4 

Formanek,4 Havlicek, and Votruba5 studied unitary 
representations of Infinite Lie Groups which contain the 
inhomogeneous Lorentz group and SU(n). But we know of 
no research on the unitary representations of the Co­
ordinate Transformation Group. We will briefly describe 
a few of our results .. 

First, let us discuss the importance of unitarity. The 
representation (call it rs) whose infinitesimal genera­
tors are given by By"l'''''n, is unitary acting on the func­
tions f(~). We think of f(x"') as a 4-dimensional proba­
bility amplitude, and of I fl2 as a probability density (a 
density of events), so that 

l'(x'l') = [J(x ' / X)]-l /2f(x"') , 

I f'(x'" ') j2tfx' = I f(x"') ~trx , 

J II' 12dV= J Ifl2d4x. 

(2) 

(2/) 

(2") 

We shall deal with representations which preserve (2) 
when acting on functions of the coordinates. Such repre­
sentations are clearly unitary for the (pseudo) group and 
Hermitian for the algebra. 

In Theorem II we have accomplished a substantial 
simplification of the structure of the ACCTG4. We shall 
now study some substructures of the algebra with the 
object of using Theorem II to build up representations. 

Consider the one-dimensional ACCTG. Its repre­
sentatives in the C,."l··· ... n representation (call it ro) are 

p, 
ip8p +i/2, 

P8p8p + 8p, 

iP8p 8p 8p + fi8p 8p , etc. 

Let us say thatp, ip8p +!,p8p 8p + 8p represent, respec­
tively, M, N, and Q. These three elements are iso­
morphic to the algebra of SO(2, 1). Consider the SO(2, 1} 
representations in which M - P (we use "-" to indicate 
correspondence between an element and its representa­
tive); then by satisfying the structure relations of 
SO(2, 1) we get 

M-p, 

N -ip8p + i/2, 

Q -P8p 8p + 8t; + ep-l; e is a real scalar. 

We call this re' We also find that 

Casimir operator=N'2 -iM +MQ=1 +c, (24) 

so the representations r c are irreducible. Note that as 
c- 0, we get back r 0, so our notation is justified. 
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We define Sn as the elements of the ACCTG1 which 
satisfy (in the r 0 representation) 

S _ p(op)n+(n/2)(op)n-t, n even, 

" ip(o p)n + i(n/2)(o p)n-1, n odd. 

Clearly, 

Sn = [( -1)"/i(n - 3) ][Q, Sn_1J. 
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(25) 

(26) 

By iteration we can define all the Sn in terms of Q and 
S3: 

Sn= ( !3)! (_1)n(n+1J/2(i)n-3[Q,[Q,[Q,[. •• [Q,S3J. 
n '~~ 

n-3 

(27) 

We wish to enlarge r c to represent all the Sn' Using the 
method of Theorem II we find that the representatives 
need only satisfy (27) and 

[M,Ss]=-3iQ, 

[N, S3] = - 2iSs , (28) 

[Sn' S3] = (n - 3)iSn+2 , 

where M, N, Q are given by roo USing these equations 
we can compute an expression for the representative of 
S3 in the expanded representation r M 

S3 - ip(Op)3 + if(o ,,)2 + (3ie/ p)op + (d - fie)/ p2, (29) 

where c and d are now Hermitian operators on an ex­
panded representation space. Further calculations with 
c and d are extremely difficult. 

We now consider the two-dimensional ACCTG, which 
plays a special role in Theorem II. Applying a treatment 
similar to that used for the ACCTG1, we find two class­
es of representatives ru and rv for zeroth and first row 
elements: 

!J! ru rv 
Pl PI Pl 

P2 P2 P2 

iPI0PI +i/2 iPlo pl +i/2 iPI0 I>t + i/2 

iP20P2 + i/2 iP20 P + ia ° '" + i 
2 

iP20P2 +i/2 

iPl oP 2 
iP10p 

2 
iP1 0 P2 - /3p/ P2 

iP20p 
l' 

. 0 a P2 zp + - --
2 Pt P1 Pl 

iP20 PI - /3p/ PI 

x (iao '" + i/2) 

where a and /3 are operators. 

We have also obtained Hermitian representations of 
the zeroth and first rows of the ACCTG4, but have not 
been able to combine them with r M' 

DISCUSSION 

Theorem II gives us a method of computing repre­
sentations of the infinitesimal generators of the coordi­
nate transformations. But why are we interested in 
these transformations? Most of them do not even ap-
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proximately conserve familiar quantum numbers like 
mass and spin. Recently Jackiw, Fubini, and Hanson6 

have used the dilatation operator L; uixua u in a quantiza­
tion scheme. In their approach "Dilatations replace time 
translations as dynamical equations of motion. " Field 
operators are quantized on a surface 

L;xuxu = positive const = 7'2 

" 
and then transformed or propagated via the dilatation 
operator to other surfaces with different values of 7'2. A 
similar scheme may be envisioned using the conformal 
generators. With the use of such noninvariance trans­
formations to propagate quantization schemes, one would 
like to know more about the representations of the pseu­
dogroup of general coordinate transformations. We also 
believe that we can shed some light on Jackiw's obser­
vation that "2-dimensional models are in some way rele­
vant to particle theory of the 4-dimensional physical 
world. ,,6 A glance at Theorem II reveals that nearly all 
the structure of the CCTG4 is implicit in the CCTG2. 
Hence, it is tempting to conclude that the essential 
transformation properties of spin zero particles can be 
encompassed in a two -dimensional theory. 

We believe that the elements of the CCTG4 can be 
implemented physically in such a way that measurable 
quantities must transform under the action of these ele­
ments. For example, a device to measure spin in rec-
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tangular coordinates could, in principle, be redesigned 
along curvilinear lines to measure a transformed "cur­
vilinear" spin. Different representations of the CCTG4 
could be distinguished on the basis of the transforma­
tion behavior that they prescribe for the spin and other 
"intrinsic" measurables, as is the case with the con­
formal group. 7 Then by performing appropriate mea­
surements it ought to be possible to determine which 
representation corresponds to an observed physical 
process. 

*Present address: Johns Hopkins University School of 
Medicine, 725 N. Wolfe St., Baltimore, Maryland 21205. 
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Tachyons and gravitation 
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This note presents the following results: (I) In the weak field approximation, the tachyon apparently 
experiences a repulsion due to ordinary matter; (2) a tachyon turns back from a black hole after 
penetrating the Schwarzschild singularity; (3) in ever expanding isotropic universes the tachyon 
velocity becomes arbitrarily large at a finite time; (4) between tachyons themselves, there is 
apparently an attraction. 

There have been some investigations on tachyons in 
general relativity. While Vaidya1 has sought to identify 
an axially symmetric static metriC as due to a tachyon, 
Foster and Ray2 have conSidered a continuous distribu­
tion having the energy momentum tensor T"v=v"vvP 
where v" is a spacelike vector and p is positive. Such 
a distribution they have called a tachyon dust 
distribution. 

In the present note we seek to investigate the behavior 
of space like geodesics in different gravitational fields so 
as to obtain an inSight into the nature of gravitational 
interaction between tachyons and ordinary matter as 
well as between tachyons themselves. 

In the weak field approximation one obtains3 

gik=-(1+2</>)1>ik, goo=1-2</> 

so that the geodesic equation gives 

dv
i 

+2VkVi</> -</> r/dt) 
2 

+(dr)2J =0. 
ds ,k, t\ds ds 

For ordinary material test particles, the condition of 
low spatial velocities leads to the Newtonian equation 

(1) 

(2) 

. with </> as the Newtonian potential, but such a condition 
is not realizable for tachyons and one has a basically 
non-Newtonian situation with velocity dependent forces. 

However, for the case of simple radial motion (i. e. , 
where the world lines are orthogonal to the 2-spaces 
defined by </> = constant) one obtains 

d;;: = </>, {(::r -(~;rJ 
=±</>,i> (3) 

where the upper and lower signs hold respectively for 
time like and spacelike lines and thus the tachyons 
apparently experience an inverse force of repulsion. 

The situation seems interesting for the Schwarzschild 
field 

ds2=(1-2mr-l)dt2_(1-2mr-ltldr_rd02, (4) 

and one obtains for space like geodesics 

(5) 

where the constants hand k are defined by 

2 d </> k dt (1 " 
h=r ds' = ds -2mr-1). (6) 

Equation (5) shows that for radial motion (i. e., h = 0) 
there exists a minimum of r at r = 2m(k2 + 1 tl. Thus a 
tachyon moving radially inwards turns back after pene-
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trating inSide the Schwarzschild singularity. There also 
exist circular orbits for tachyon with r < 3m. 

We next conSider the case of the isotropic expanding 
universe with the line element 

(7) 

The geodesic equation gives, on integration, 

(
dt)2 ds ±1 =KG-2 (8) 

where K is a constant and the positive or negative sign 
is to be used according as the geodesic is space like 
or time like. Thus if the model be open so that G in­
creases indefinitely, dt/ds would vanish at a finite value 
of G or in other words the velocity of the tachyons 
-gjk(dxi/dt)(dxk/dt) [as measured by an observer at 
rest in the coordinate system of (7)] would become 
arbitrarily large at a finite time. It thus seems difficult 
to posit the existence of tachyons in open isotropic 
universes. 

Lastly to have an idea about the interaction between 
the tachyons themselves, let us consider a continuous 
distribution similar to that of Foster and Rar. Using 
the identity 

(v'';v" - v";"v) VV =Rv",vvv" (9) 

and the field equations 

(10) 

one obtains for the simple case in which the v" con­
gruence is hyper surface orthogonal and "Shear-free, 4" 

(11) 

irrespective of whether v" is time like or spacelike, e 
in the above equation indicates the "expansion" v'';". We 
thus see that the expansion of the congruence will be a 
monotone decreasing function as one proceeds along the 
world lines (for the tachyons, these are spacelike) 
indicating a basically attractive interaction. 

1p. C. Vaidya, Current Science (India) 40, 651 (1971). 
2J. C. Foster, Jr. and J.R. Ray, J. Math. Phys. 13, 979 
(1972). 

3A. Einstein, The Meaning oj Relativity (Methuen, London, 
1950). 

4The shear defined as CT"v=V(",V) -v("Vv) -!9(g"v-v"v) is 
orthogonal to v'" but in case v" is spacelike, it is not neces­
sarily a space tenosr. One may define a shear tensor which 
is in the 2-space orthogonal to v", but this requires an addi­
tional timelike vector field. See, in this connection P. J. 
Greenberg, J. Math. Anal. Appl. 30, 128 (1970). 
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A possible description of Regge trajectories in terms of an irreducible representation of the Lie 
algebra of the ll-parameter Weyl group is proposed. 

1. INTRODUCTION 

It has been known for many years that the study of 
representations of Lie algebras is a tough subject, since 
the family of irreducible representations (irreps.) of 
a given Lie algebra is a priori a much richer object 
than the irreps. of a corresponding Lie group in a topo­
logical vector space. 

For the case of the simplest complex simple Lie alge­
bra-which is sl(2)-one can find in Ref. 1 a class of al­
gebraically irreps. where one of the elements, the reg­
ular element J3 of the Cartan-Weyl basis of sl(2), has 
pure denumerable point spectrum ~ with multiplicity 
one. These are the representations D(u, rna) with rna and 
u E C (u and - u -1 giving equivalent reps.), 0.; Re rno 
< 1, rna± u Ej: Z' for which ~ = {rna +n; n E Z}, the reps. u' 
with UEC, 2uEj:N, and ~={±(n -u); nEN}, and the 
usual finite-dimensional reps. D{j), 2j E N, where ~ 
={j,j -1, ... , -j}. 

Miller1 and recently Arnal and Pinczon2 have shown 
that this class of irreps. are up to equivalence all the 
irreps. where a regular element has an eigenvalue. The 
latter, however, also found many other algebraically 
irreps. among which one finds reps. with a nilpotent 
element in the Cartan-Weyl basis having the eigenvalue 
1. Among these reps. we shall use one which is especi­
ally interesting since it admits a continuous spectrum 
for J3 if realized in a suitable Hilbert space. We propose 
here to use the irreps. of the Lie algebra ~ of the 11-
parameter Weyl group W ( W being the semidirect pro­
duct of the real positives IR. with the Poincare group) 
for a description of Regge trajectories. The spin con­
tent of these reps. will be given by those of the irreps. 
of the inducing Lie algebras su(2) or su(1, 1) in a manner 
to be described below. 

The Weyl group is known to be the maximal space­
time group that preserves causality globally. In contrast 
to the irreps. of the Weyl group W, which have continu­
ous mass spectrum (with exception of the case rn = 0) 
we'll construct irreps. of'H, which for rn 2 >0 have dis­
crete and for rn 2 <0 have continuous mass spectrum. 
When restricted to the Poincare subalgebra, these reps. 
decompose into irreps. which for rn 2 > 0 have the spin 
content given by one of the irreps. of Miller, with dis­
crete spectrum for J 3 , and for rn 2 <0 by one of those of 
Arnal and Pinczon, with continuous spectrum for J3 • 

For rn 2 > 0 any such irrep. of the Poincare subalgebra 
will be interpreted as a collection of particles, the spin 
eigenvalues of which are given by the eigenvalues of J 3 • 

This is in accordance with a description of a collection 
of particles with the same mass, with spin j and with 
representatives I j, rn j) (- j $; rn j $; j) glued together so 
that the space (e. g., in the semibounded case) contains 
only the representatives Ij,j) for all j E ~ with ~ simple. 
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Correspondingly, for rn 2 <0, the states will have con­
tinuous spin values. As an example of how such a state 
space could be realized one can envisage the particles 
carrying electric charge and magnetic moments. By 
applying a magnetic field to the particles and subsequent 
energy analysis (or application of optical pumping tech­
niques) beams can be produced where the particle states 
have rn j = j relative to a given direction. The ensuing 
pattern of the states in an irrep. of UJf is in accordance 
with the gross features of a family of Regge trajectories 
embraced (for rn2 >0 or rn 2 <0) in one irrep. ofUJf, 
demonstrating the richness of this type of representation. 

The technique for constructing the irreps. is that of 
Ref. 3 where an example is given of a relativistic sym­
metry algebra which admits of an irrep. with discrete 
mass spectrum. Our irrep. of UJf gives a mass spectrum 
linear in the mass. As an alternative to this type of 
irrep. of UJf one can utilize the technique of Ref. 4 
[where an irrep. is given of the conformal Lie algebra 
su(2, 2) with discrete mass spectrum linear in (mass)2] 
to construct irreps. of UJf with this type of mass 
spectrum. 

Finally, we mention that a more orthodox spin spec­
trum (where the states have really 2j + 1 components 
for every value j) can also be obtained, utilizing a 15-
dimensional Lie algebra which is a Wigner-lnonii con­
traction of the conformal Lie algebra. However, this 
type of example is rather arbitrary, and is not minimal 
for our purpose as far as its dimension is concerned. 

2. IRREDUCIBLE REPRESENTATIONS OF '}f 

The Lie algebra q)f of the ll-parameter Weyl group W 
is defined by the Poincare generators PI' and M UV which 
together with the dilatation generator D satisfy the 
commutation relations of the POincare algebra and, in 
addition, 

[D,p"l=pU, (2.1) 

[D,M"V]=O. (2.2) 

'Ncan be considered as a spectral unification of the 
POincare algebra with the two -dimensional solvable 
Lie algebra. This means that the technique of Ref. 3 is 
applicable for the construction of some irreps. of q)f • 

We distinguish now among the following cases. 

A. Casem2 >0 

Let JC u be the Hilbert space obtained by completing 
the carrier space Vu of one of the irreps. of sl(2) given 
by Miller with respect to the topology of l2 defined by the 
algebraic basis in V •. 

Consider now a positive mass rep. of the Poincare 
algebra in the Hilbert space Hl=L2(R3,a3P/2Pa)@JCu' 
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The corresponding generators are denoted by P'Il and 
M'''" and the generators of the Lie algebra su(2) of the 
inducing little group are Jl> J 2 , and J3 acting in :feu' Let 
a =d/dq be the differential operator in L 2(T,dq), where 
T is the interval [0,21Ta]. The generators of q» are then 
defined in H = HI ® L 2( T, dq) by 

pIl=p'Il®ia, (2.3a) 

(2.3b) 

(2.3c) 

where 1 is the identity operator on HI and l1" is the 
identity operator on L 2(T,dq). The bar here and in the 
following means operator closure. We now distinguish 
between two subspaces S. and So of H. S. is the domain 
in H conSisting of functions obtained by taking in 
L2«(?3; d3p/2po) functions belonging to 8«(?3), in:feu func­
tions consisting of finite sequences in 12

, and in L2(T,dq) 
functions that are Coo periodic on T. So is the subspace 
of S. obtained by taking in L2(T,dq) functions that are Coo 
and vanish together with all their derivatives at q = ° and 
q = 21Ta. The commutation relations of UI are satisfied on 
So. pIl and D are skew-symmetric on So. The spectral 
domain for pll is, however, S. where the eigenvalues 
of the (mass)2 operator - p2 = - p'2 ®( - a2) are given by 
m2=m~na, n=O, ±1, ±2, etc., which gives the mass 
formula m = mon, where mo = a -lm~ and where m~2 is the 
eigenvalue of _p,2. For fixed n, the spin content of the 
corresponding Poincare algebra rep. is given by that of 
:feu (i. e., of Vu ) for which we take one of the irreps. of 
Miller. 1 Several pOSSibilities, of which we mention two, 
can at thi§ stage be envisaged. 

(1) One can take the unbounded irreps. D(u, mol, in 
which case we shall interpret the absolute value of the 
eigenvalue of J3 as the spin. The doubling of states will 
be interpreted as a parity doubling coming from the 
preparation of the space of states, e. g., as described in 
Ref. 1, by taking into account that both Ij, j) and I j, - j) 
can equally easily be produced by changing the sign of 
the magnetic field. Thus the irreps. D(u,O) giving the 
spins j = 0, 1, 2 etc. and D(u, t) giving the spins j = t, 
t, etc. (with, e.g., u=t) are suitable for mesons and 
baryons, respectively. 

(2) If we insist upon having semibounded irreps. (to 
avoid doubling) one interesting difference occurs be­
tween baryons and mesons. While for baryons the semi­
bounded irrep. (-t)+ gives the states of spins (in our 
interpretation) j = +t, + t, etc., for mesons we have 
eithertheirrep. (-1)+withj=1, 2, 3, etc. in which 
the fundamental pseudoscalar octet is miSSing, or, if 
we want to include the pseudoscalar particles in one 
irrep., we are obliged to take the irrep. (0 - a)+ with 
j=O+a, 1+a, etc., where aE(:, lal*O, which, 
however, can be chosen as small as we want. This 
difference between baryons and mesons might have to 
do with the fact that while the baryons contain one stable 
particle, the proton, no meson is known to be stable. 
Since none of the mesons is stable the difference ex­
plained above might have to do with the yet unknown 
definition of the spin of an unstable particle. 

The negative energy states can be interpreted as 
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antiparticles after applying the usual formalism of 
second quantization. The unfaithful rep. of the ·Poincare 
algebra that occurs for rn = ° (n = 0) is interpreted as a 
type of infinitely degenerate vacuum state or as zero 
4-momentum scattering states. The above representa­
tion is what we call for Lie algebra representations 
topologically irreducible. This means that it is the clo­
sure in the above-defined topology of an algebraically 
irreducible representation in the sense of Ref. 2. 

B. Casem2 <O 

For the case rn 2 < 0 the Lie algebra of the inducing 
little group is su(1, 1). An irrep. of this algebra, which 
has continuous spectrum for J 3 , can be obtained from 
an irrep. of sl(2) given by Arnal and Pinczon,2 where 
the nilpotent element has the eigenvalue + 1. 

The sl(2) Lie algebra in the Cartan-Weyl basis is 
defined by the commutation relations [Y,F]=F, [Y,G] 
= - G, and [F, G] = 2 Y. The Casimir invariant in this 
basis is given by R = FG - Y + y2. FollOwing Ref. 2 an 
irrep. II of this algebra in the algebraic space Vu 
spanned by the basis {I,,}; with II(F)/o = 10 exists such 
that II(Y)/" = 1,,+1> II (F)/" = [II(Y) -1]"/0' II(G)/" 
= [II(Y) + 1]" (110 -11 -/2)' where II(R)/" =rl", rE «:. A 
simple realization of such an irrep. in L2~\dt) with 
lo(t) = exp( - t2

) is given as follows with f,,(t) = t" exp( - t2
): 

II (Y)/,,(t) = tl,,(t) , 
II (F)(t" exp( - t2

)] = (t _1)" exp(- t2), 

II (G)[t" exp( - t2)] = (t + l)"(r - t - t2) exp( _ t2
). 

In this realization only the operator II( Y) = J 3 is formally 
symmetric. Other realizations [in L2(0, 00)] exist which 
are symmetric, but since only J 3 = II (Y) has a direct 
physical interpretation we shall stick to the above one. 
The dense invariant domain on which the Lie algebra 
rep. of su(1, 1) is defined is 8(Rl) on which J 3 is essen­
tially self-adjoint. J 3 admits the continuous spectrum 
~=(_oo,oo). Of course in this case we shall start with 

j 

10 

FIG. 1. Regge lattice with trajectories for baryons in an ir­
reducible representation of w for m 2 > O. 
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a local imaginary mass rep. of Poincare (_pI2 <0) on 
a space L 2(0) ® L 2(R, dt), where 0 is a one -sheeted 
hyperboloid and L 2(IR,dt) carries a local irrep. of the 
Lie algebra su(1, 1) of the inducing little group as in­
dicated above. The mass -spectrum generating space in 
this case will be L 2(lt,dx) with the invariant subdomain 
8ftl) so that the dense invariant subdomain S~ of the 
total Hilbert space H=L2(n)®L 2(lRI,dt)®L 2(lR I ,dx) con­
sists of functions in H which for every x and t belong to 
a Girding domain in L 2(0) and which are c~ and of fast 
decrease in t and x. The spectrum of _ p2 == _ P 12 ® (- a~) 
is continuous and consists of (- "", 0). We thus have a 
topologically irrep. of W, which has a continuum of 
negative (mass)2 states with continuous spin spectrum. 

The pattern for case m2 > 0 is depicted in Fig_ 1, 
which exhibits a Regge lattice with an infinite family of 
Regge trajectories drawn through the recurrences by 
respecting the 6.j = 2 rule coming from the Signature 
phase factor T = (- l)j +B /2, where B is the baryon 
number. 

C. Other possibilities 

Our example presented above gives a pattern of mass­
spin states that is compatible with Regge trajectories 
that are naturally linear in the mass. Other types of 
reps. of q)f- admit other mass dependencies if the two­
dimensional solvable Lie algebra is represented, e. g. , 
by means of pseudodifferential operators. Some un­
solved mathematical problems in this connection hinder 
us yet from exhibiting their structure. 

Another possibility is to consider instead of OH' the con­
formal Lie algebra su(2, 2). An irrep. of su(2, 2) that 
gives rise to a mass-spectrum linear in (mass)2 has 
been conSidered earlier by one of us. 4 If the generators 
of that example, which are differential operators on an 
invariant domain C~(Q) (where Q is a "cube" inJR4

), are 
supplied with spin generators of the inducing little 
groups, then a pattern Similar to the above one for OH' 
emerges which has a mass-spectrum linear in (mass)2 
in this case. The momenta are discrete, and are to be 
interpreted as the momenta of the components of a 
system "quasibound" in the interaction region Q. 

This construction can of course be also directly 
applied tOOH', giving rise to irreps. of OH' that have a 
mass-spectrum linear in (mass)2 and a spin spectrum 
as in cases 2A and 2B above. 

Finally, we'll diSCUSS briefly an example of a 15-
dimensional Lie algebra g [which is a contraction of the 
conformal Lie algebra su(2, 2)] that gives rise to irreps. 
with discrete mass spectrum and with a spin spectrum 
where the spin is the conventional one, namely giving 
rise to 2j + 1 spin states for every irrep. of the Poincare 
algebra in the decomposition. The structure of g is 
given by the Lorentz generators MUv, the two 4-vector 
generators pu and Xu, and the dilatation operator D, 
together with the commutation relations 
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(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

[D,puj==pu, (2.4e) 

[D,Xu]=xu, (2.4f) 

[D,MuVj=O, (2.4g) 

the MUv,s closing to the so(3, 1) algebra. 

The 14-dimensional subalgebra g' of g, generated by 
MU v, pu, and X", having the Casimir invariants p"pu, 
X" X", and P" Xu, can be represented irreducibly on the 
Garding domain of the representation space HI of a uni­
tary irrep. U( W') of the Lie group W I given in Ref. 5. 
If we take M"v and P" to be the generators of the 
(physical) Poincare subgroup 9', the reduction of a uni-

N 

tary irrep. of W 'on the universal covering 9' of 9' for 
_ p2 > 0 as in Ref. 5 gives the decompositions ,EB D(j, m2) 

co )=0 

or ~o D(n +t, m 2
), where DU, m 2

) are the usual Wigner 
unitary irreps. of the POincare group. 

The Lie algebra g can now be represented in the 
Hilbert space H=HI ®L2(T,dq), where L2(T,dq) is the 
same space as in Sec. 2A. The generators in Hare 
given by 

M"V=M'''V'® 1., (2.5a) 

P" =p'" i§ ia, (2.5b) 

XU =X'" ® ia, (2.5c) 

(2.5d) 

where M 'UV , p'U, and X'" are the generators of g' in HI' 

The commutation relations (2 Aa) -(2. 4g) as well as 
the missing ones can be checked on the invariant dense 
domain S~' of H conSisting of functions that belong to the 
Garding domain of U( W') in HI and are C~ on T = [0, 27Ta] 
and vanish together with all their derivatives at q = 0 
and q == 27Ta. The resulting rep. of g is weakly Schur­
irreducible on S(;. By this we mean that every bounded 
operator commuting with the spectral resolution of 
every generator on a domain where this is skew-adjoint 
is a multiple of the identity operator. 

The mass-spectrum domain is again S; (:::J S~') where 
the functions with respect to q are simply C~ periodic 
on T. The spectrum of _p2 = - p'2i§ (- a2) is again given 
by m2=n2m~, n=O, ±1, ±2, etc. with mo=a-Im~. For 
each value of m, the spin content of this irrep. of g is 
the one indicated above. 

A similar construction can be carried out for m2 <0. 

3. DISCUSSION AND CONCLUSIONS 

In our opinion one of the most interesting aspects of 
the above examples is that one single irrep. of OH' em­
braces a whole family of Regge trajectories (for m 2 > 0). 
The importance of this has to do with the fact that on one 
hand one irrep. can be considered as a quantum-mech­
anical elementary system and on the other hand that the 
structure of the pattern becomes very rigid. As can 
easily be seen from Fig. 1, the pattern, for m 2 >0, has 
a lattice structure rather than giving emphasis on indi­
vidual trajectories. Some hints to such a situation from 
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experimental observations have also been given. 6 For 
m 2 <0 there is a continuum of spin-mass states. The 
two regions are mutually independent (since they belong 
to different irreps. of 6If) , something that also occurs in 
potential scattering models. 

The introduction of representations of Lie algebras 
into physics asks in principle for an extension of the 
present rudimentary theory of measurements in quantum 
mechanics. The scheme of, e. g., von Neumann is at 
best applicable to a situation of stationary states, and 
since our Lie-algebra representations are intended to 
describe unstable particles (except for the proton) there 
is certainly no problem here with the fact that, e. g. , 
all spin generators are not simultaneously essentially 
self-adjoint on the domains in question. Furthermore, 
to avoid misunderstanding, we emphasize that the 
irreps. presented here (apart from the orthodox exam­
ple in Sec. 2C) are on much the same footing as the 
spectrum generating reps. of 80(4.1) relative to the 
H atom. 

In confronting the irreps. of '*" above with the phe­
nomenological situation as displayed, e. g., by Barger 
and Cline, 7 the analysis of data (in lack of any theory! ) 
seems to suggest that the trajectories are linear in 
(mass)2 with universal slopes, although deviations exist. 
Some years ago the data as well as the minds of many 
physicists were in favor of trajectories linear in the 
mass for baryons. Thus it may be too early yet to draw 
any definite conclusion. Anyhow, variations of the 
theme presented here are (as indicated in Sec. 2C) 
capable of producing mass dependencies of different 
types, e. g., linear in (mass)2. 

We conclude with three suggestions: 
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(1) Try to study, by even more examples, the real 
physical meaning (observables, states, measurement 
theory, etc.) of Lie-algebra representations. 

(2) Try to study pseudodifferential representations of 
Lie algebras, since, as was explained in Sec. 2C, these 
might have some advantages with respect to our 
problem. 

(3) Try to find out which additional dynamical restric­
tions really can impose the form of the trajectories on 
our group theoretical Regge lattice. 
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Using a convergent expansion of the resolvent of the Hamiltonian H = H 0 ~ X. V. V = f d x 
X (x) : op4 : (x), g(x) ECO' , g(x);;' 0, we give a simple proof of (a) the self-adJomtness of the 

Hamiltonian and (b) the volume independent lower bound of the vacuum energy per unit volume. 
Also, we obtain some coupling constant analyticity properties of t.he Hamiltonian, and the limit 
(Ho +Xv-zrl -+(Ho:::zrl, zEp(Ho) in nonn as IX 1-+0 uniformly m tX: largXI <7Tf· 

1. INTRODUCTION 

The past few years have seen the birth of a new 
branch of quantum field theory whose purpose is to 
prove rigorously the existence of model field theories 
satisfying certain physical and mathematical require­
ments (axioms). Glimm and Jaffe1 have pushed the two 
space-time dimensional cp4-interaction [abbreviated 
(:cp4:)1+11 to almost a theory which is known to satisfy 
all the Haag-Kastler axioms and many of the Wightman 
axioms. A basic step in the construction of the field 
theory is to prove the boundedness below and the self­
adjointness of the Hamiltonian operator 

H(A) =Ho + AV(g) 

(1.1) 

where Ho is the free Hamiltonian, A the coupling con­
stant, and g(x) E C~(R) is real value. The first proof of 
the semiboundedness in a finite volume with periodiC 
boundary conditions was given in the pioneer work of 
Nelson. 2 His method was extended by Glimm3 who re­
placed the periodic box by a fixed g(.) space cut-off. 
Later, Glimm and Jaffe4 obtained a lower bound of the 
Hamiltonian proportional to the volume (i. e ., a volume 
independent bound of the vacuum energy per unit vol­
ume). The first proof of the self-adjointness of the 
Hamiltonian (1.1) was given by Glimm and Jaffe. 5 Segal6 

simplified the proof of self-adjointness and developed 
powerful techniques which were elaborated further and 
systematized by Simon and Hoegh-Krohn. 7 Recently, 
Federbush8 considered a convergent expansion of the re­
solvent for the Hamiltonian (1.1) and obtained easily the 
semiboundedness of the Hamiltonian. 

On the other hand, there has been another trend in the 
rigorous study of model field theories. The second trend 
involves the study of coupling constant analyticity of 
various objects associated with the theory. It also, ex­
amines the asymptoticity of the perturbation series of 
quantities such as the ground state, the ground state en­
ergy, and equal time vacuum expectation values. Often, 
the exact objects can be recovered from the asymptotic 
series by proper summability methods such as P ade 12, 13 

or Borel. 14. 15 

In this paper we use Federbush's expansion of the re­
solvent to give a simple proof of the self-adjointness of 
the HamiltOnian, and of the volume independent lower 
bound of the vacuum energy per unit volume. Also, we 
study the Hamiltonian (1.1) for complex values of the 
coupling constant A. We prove that Federbush's expan­
sion of the resolvent is uniformly convergent for A in 
{A : I arg A I < 1T}. This yields full cut plane analyticity of 
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the resolvent, and analyticity of the ground state energy 
and vacuum vector in a neighborhood of the positive real 
axis. In addition, it implies that if Z E p(Ho), p(Ho) the 
resolvent set of Ho' then 

(Ho + AV(g) - Z-l - (Ho - Z)-l (1. 2) 

in norm as I A I - 0 uniformly in I argA I < 1T. (1. 2) is im­
portant in the study of the asymptotic nature and the 
Borel summability of the Rayleigh-Schrodinger pertur­
bation series for the ground state and the ground state 
energy. A corollary of (1.2 is the uniqueness of the 
ground state for small values of the coupling constant 
(the uniqueness of the ground state for any values of the 
coupling constant is a more difficult problem4• 7). In a 
forthcoming paper, 16 using the methods of this paper, 
we give a simple proof of the self-adjointness of a local 
Lorentz generator formally given by 

M=Mo +M1{g) 

= ~ f :{~(x) + Vcp(X)2 + f.1.~cp2(x)}: xdx + V(xg). (1.3) 

The organization of this paper is as follows: In Sec. 
IT, we summarize the most important ingredients of 
Federbush's expansion and prove the self-adjointness of 
the Hamiltonian. In Sec. ill, we prove the volume inde­
pendent lower bound of the vacuum energy per unit 
volume, and in Sec. IV, we prove the uniform conver­
gence of Federbush's expansion for values of the cou­
pling constant in a certain complex domain. 

2. A CONVERGENT EXPANSION FOR THE 
RESOLVENT AND SElF-ADJOINTNESS OF 
THE HAMILTONIAN 

In this section we summarize the main points of 
Federbush's paper8 and prove the self-adjointness of the 
Hamiltonian. Following Ref. 8, we consider 

H. =Ho + V.(g) =H 0 + Af dxg(x): cp;: (x), (2.1) 

where gE C~(R), 0.,; g(x).,; 1, Ho is the free HamiltOnian, 
and cp. is the boson field with a momentum cut-off 1(. Let 
PI be the projection operator onto states with number of 
particles in the interval (21 ,2 1+2), i = -1,0,1,2, ... , and 
Pe and Pa the projection operators onto states with num­
ber of particles in the ranges 

U (2 1 -4.,; N.,; 2i +4), 
;=eV8n 

U (2 1 -4.,; N.,; 2i +4), 
I=odd 

respectively. We define 

Hi =PiH"Pi = Pi HoPI +Pi V.pi =HOoi + V •. I> 

H = '0 HI=Ho+ '0 V. I' 
e i=even i=even t 
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(2.2a) 

(2.2b) 

(2.3) 

(2.4) 
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We= V - E V~," 
I( i=even 

W =V - E V . 
d " =odd ~,' 

Then 

H=He + We=Hd + Wd . 

Federbush considers the expansion 

R.(b ;H.) =R~(b; He) 

- R.(b;Hd) WeR~(b; He) 

+ R.(b;He)W ~.(b;Hd)WeR.(b;He) 

..... , 
=R.(b;He) 

-R.(b;Hd)Pe WePeR.(b;He) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9a) 

+ R.(b;He)Pd WdPdR,,(b;Hd)P. WePeR.(b;He) 

... , (2.9b) 

where b is a large positive number, and R(Z) = (Z + A)-l 
denotes the resolvent of operator A. The results of Ref. 
8 can be summarized in Theorem (2. 1). 

Theorem 2.1: There exists a finite constant a, inde­
pendent of K, such that for b > a, expansion (2.9) con­
verges in the uniform operator topology and is continu­
ous in I( for 0.; I( .; + "'! Roo (b) is the resolvent of an op­
erator H = Hoo (g) such that H> - a. 

The basic estimates which yield theorem (2.1) are 

Estimate 1: 

H,;;. 2l-lP" for large i; 

Estimate 2: 

IIPeP,R(b; H,)Pdll'; cl exp(- c22' /2) 

for large i, and for some Cl , c2 > O. 

(2.10) 

(2.11) 

To obtain Estimate 1, we choose an increasing se­
quence of momentum cut-offs and write 

H, =PiHoP, +Pi V.p, +P,(V. - V.,)P,. (2.12) 

Clearly, one has 

P,HoP, ;;'m2'P,. (2.13) 

By undoing the Wick ordering of V. , we obtain the mo­, 
mentum cut-off dependent bound 

V. ;;. - const(lnl(,)2. 
i 

By a standard NT estimatel,3 

II (N + I)-l(V. - V.,)(N + I)-III.; O(l(jl /2). 

(2.14) 

(2.15) 

Estimate 1 is obtained from (2.13-2.15) by choosing 

lei =exp[(M/C)I/22(i-l) /2], 

where C is the constant in (2.13). 

The proof of Estimate 2 is based on the following 
theorem: 

Theorem 2.2: Let A be a positive self-adjoint opera­
tor of norm less or equal to M, and I a) and I (3) two 
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vectors of unit length. Suppose 

(aINI{3)=O, forO.;k.;N. (2.16) 

Then, for any J.1. > 0 a real number, 

Federbush applies Theorem 2.2 to the operator 
Ai = b + P, (N + V.(g»Pj - 2/-1 which satisfies 

A,;;'O, 

lib +Pi(N+ V.(g»P,II.; d22
,. 

(2.18) 

(2.19) 

Estimate 2 is obtained by using N.; const Ho, and choos­
ing laj)=P,Pdla), 1(3) =P,P.I b) (la) and Ib) normal­
izedvectors), J.1.,=2l-l, M,=d2 2', and N, <[(2,+l_4) 
- (2' +4)]/4, and i large enough. 

Our main result in this section is Theorem 2.3. 

Theorem 2.3: The operator H defined in Theorem 2.1 
is self-adjoint. The proof of Theorem 2.3 follows from 
the following two lemmas. 

Lemm a 2 . 4: Let E > 0 be sufficiently small. Then 
there exists a constant C(E) such that 

IIR(b;H.)II, IIR(b;Hd)lI.; l/b, 

"WeP ~(b;Hd)Pell, IIW.PeR(biHe)Pdll < t, 
"R(biHd)W.R(b;H.)II.; c(E)/bl

+
E

, 

II WdR(b; Hd)WeR(b; He) II .; c(E)/b+l +E • 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

Proof: Inequality (2.20) is easily obtained from Esti­
mate 1. Let I a) and I b) be two normalized states in the 
Fock space. Then, to obtain Estimate (2.21), we 
consider 

<al WdPdR(b;Hd)P. +b) 

= L; (al WdPdR(b;Hd)P.P, +b) 
'=odd 

= E (al WdPdR(b;H,)Pel b) 
'=odd 

= L; <al (I-P,)V.PIPdPfR(biHf)P I b), 
'=odd e 

(2.24) 

In the last step above we have used Estimate 2 and a 
standard Nt estimate. Similar arguments establish in­
equalities (2.22) and (2.23). 

Remark: Estimates (2.20) through (2.23), without the 
b-independence of the bounds, were also used in Ref. 8. 

Lemma 2.5: For b large enough, the series (2.9) con­
verges in the uniform operator topology to an operator 
R.(b) which is a continuous in I( pseudoresolvent and 
satisfies 

norm-limbR.(b) =1, 
b _+<10 

R.(b): :JC-:JC is injective, 

where :JC is the Fock-Hilbert space. 

(2.25) 

(2.26) 

Proof: Estimates (2.20)-(2.23) imply that the nth 
term in the expansion (2.9) is bounded by c(e)nb-1

- ne . 
Therefore, the series (2.9) converges, in the uniform 
operator topology, for b>(e)I/E, for 0';1(';+00. The 
continuity in I( is obtained from the uniform in I( esti-
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mates (2.20)-(2.23). The bound c(e)'/b1+., of the nth 
order term yields 

limb{IIR(b;He)1I + IIR(b;Hd)WgR(b;He)1I + .•. } 
b-+CIO 

= limbllR(b;Hell +lim b{IIR(b;Hd)WeR(b;He)l1 + .•• }. 
b ~+oo b _+00 

(2.27) 

The second term above goes to zero as b - + 00 while the 
first term goes to one. It is easily shown that R.(b) is a 
pseudoresolvent, and satisfies (2.26). 

Proof of Theorem 2.3 and of Theorem 2.1: Let .Ar(b) 
be the null space of Roo (b), i. e. , 

(2.28) 

Since Roo(b) is a pseudoresolvent, .A (b) is independent of 
b, and, by (2.25), vr(b)={O}. We define 

H(b) =- b + Roo (b)-l (2.29) 

and domain 

D(H(b» =R.,(b)JC. (2.30) 

Let <I> EJC be orthogonal to R.,(b)JC. Then, 

(<I> ,R.,(b)w) = (Roo (b)<I> ,'11) (2.31) 

for all WEJC. Since .Ar(b)={O}, we get <I> =0, and, there­
fore, D(H(b» is dense in JC. The pseudoresolvent prop­
erty of Roo (b) implies that D(H(b» is independent of b. 
Therefore, for large b, H =H(b) is bounded below and 
independent of b. The self-adjointness of this operator 
follows from the following lemma. 17 

Lemma 2.6: If T is an operator on the Hilbert space 
JC, and if r 1 exists and has dense domain, then (T*)-1 
= (T-l)*. 

3. VACUUM ENERGY PER UNIT VOLUME 

The Hamiltonian H(g) =Ho + V(g) has a unique ground 
state n(g) with eigenvalue E(g). According to the pertur­
bation theory, E(g) is proportional to the volume of 
space in which the particles interact in each order of the 
Rayleigh-Schrodinger (= Fe ynm an ! ) perturbation series. 
However, the perturbation expansion for E(g) diverges. 18 
Thus, we cannot conclude from perturbation theory that 
E(g) is proportional to the volume. In this section we 
prove rigorously that the prediction of the perturbation 
theory is correct. Our main tool in the proof is the lo­
calization indices introduced by Glimm and Jaffe in a 
similar context. 19 We consider the Hamiltonian H(g) =N 
+ V(g). 

Theorem 3. d: Let g(x) E C~(R) have the following 
properties: 

(i) 0", g(x) '" 1 ; 

(ii) for some constant Ct > 0, 

(3.1) 

(3.2) 

Set m(g) = measure (supp. g). There exist constants a 
> 0 and c > 0, independent of g, such that 

0", c(H(g) + am (g)). (3.3) 

J. Math. Phys., Vol. 15, No.6, June 1974 

863 

Remark 1: Inequality (3.3) implies that there exists 
c 1 > 0 independent of g, such that 

- c1m(g) '" E(g) '" 0, (3.4) 

that E(g) '" 0 is trivial. 

Remark 2: Estimate (3.4) is the main technical step 
in proving the locally Fock property19 of the represen­
tation (of the algebra of local observables) associated 
with the Hilbert space of the physical states obtained in 
the limit g-1. 

Proof of Theorem 3.1: Let 'I)(x) E C~(R), 0", 'I)(x) '" 1, 
be such that the translates 

'l)J(x)=1J(x-j), jE Z 

define a partition of unity: 

I) 'I)/x) =1 for all XE R. 
JEZ 

(3.5) 

(3.6) 

Let I(g) ={j E Z:suppgn sUPP'l)j(x) *} and II(g) I denote the 
number of elements in I(g). We decompose g and V(g) 
into a sum of local parts 

(3.7) 

(3.8a) 

= I) fdk •.• dk t (4) b (k ••• k )a* .•• a* 
JEr(K) 1 4 a:O Ct f 1 4 kl kOl 

(3.8b) 

where 

~ 4 

b (k .•• k ) = [1/(2(21T»2]('I) g)(k + ... + k ) II wl/2 
j 1 4 j 1 4 / =1 k/ ' 

J.L! =k~ + J.L~. 
I 

(3.9) 

(3.10) 

Instead of using g, we use a simplified space cutoff g. 
defined by 

(3.11) 

Instead of (3.3), we will prove 

0", H(g.) +O(n) =N + V(g.) +0(1). (3.12) 

We prove (3.12) for each translate separately, i. e. , we 
prove 

(3.13) 

N loe is a local number operator to be defined below, and 
then summing over all translates we obtain (3.12) and 
hence (3.3). To prove (3. 13) we introduce localization 
indices in configuration space (localization indices in 
momentum space4 could be used as well). First, we in­
troduce local NT operators. 

Let J.Lk = (k2 + J.L~)1 /2 denote the one particle energy . 
Let a: and ak be creation and annihilation operators in 
momentum space, and A#(x) = (21T)-1 /2 f dk e±ikXA~ annihi­
lation and creation operators in configuration space. If 
J.L;E °rn(R) , 0", T",1, is considered as a multiplication 
operator on S(R1

), then the configuration space opera­
tion J.L; corresponding to J.L~ is convolution by a kernel 
kT(x) E O;"(R) (fqr notation see Ref. 20). kT(.) decreases 
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exponentially at infinity. Explicitly, 21 

2T/2+1 (Ilo) Hl/21~ 
kT(x) r(- 'T/2) "'GI 0 exp(- Ilo I x I cosht) 

(
1 + 'T) xcosht -2- dt. 

For 'T?3 -1 

I d~ kT(x) \ '" O[exp(- /lol xD]' as I xl - + 00, 

(3.14) 

n = 0,1 ,2, .. '. (3 .15) 

For 'T < - 1, (3 .15) holds if /lo is replaced by /lo - E, for 
any E > O. For 15 > 0 

(3.16) 

For tE °M(R) , nonnegative real, we define the local 
number operator 

NT, e = J dxdyA* (X) t(x)kT(x - y)t(y)A(y) , (3.17a) 

Strictly speaking, NT, e is the Friedrichs extension of the 
positive operator defined by the right hand side of (3.17) 
on Do, the set of vectors in Fock space with a finite 
number of particles and wave functions in t. If 'T= 1, 
then N1, e provides a local energy operator H&oe. For 
0'" 'T < t, one can replace t by the characteristic func­
tion EB(x) of an interval B, to obtain a sharply localized 
operator NT. B' N loc in (3.13) is of this type. Using tech­
niques of Fourier analysis, Glimm and Jaffe19 proved 
that 

(3.18) 

if 'T < t, and if t(x) == 1 on a neighborhood of B-. Further­
more, if t, (x) = t(x - j), then 

(3.19) 

These inequalities on the single particle space sym 
L 2 (R) lead to the estimate 

'0 NT B+J '" constNT '" constHo 
JEZ ' 

(3.20) 

of the sum of local number operators by (global) NT op­
erators. Estimate (3.20) holds as an inequality between 
positive self-adjoint operators in Fock space. It shows 
that in order to prove (3.12) [or (3.3)] it is enough to 
prove (3.13), or equivalently 

(3.21 ) 

where N loe is a localized number operator, and g is sup­
ported in a fixed interval B. 

We prove (3.21) by the method of Sec. n. Our discus­
sion in that section shows that we only need to prove 
(2.15), i.e., 

(3.22) 

Of course, one has to check also (2.25), but this is not 
hard. To prove (3.22), we note that V~ = V. - V. is a 
sum of five monomials in creation and iannihilatibn 
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operators 4 

V~ (g) = j dk1 ... dkiJ.' (ki •·· k4 ) '0 4 a*··· a* 
j j a=O 0/ k1 ka 

x a_
ka

+
1 
••• a-

k4
, (3.23) 

4 4 
=jdx ···dxb' (x "'x)'0 A*(x)···A*(x) I 4 "j i 4 a:O 0/ 1 a 

where 

'b:;:(ku ••• ,k4 )' = b.(k1 .•• k4) - 'b'
i 
(k1 •.• k 4) 

and b; (Xl' ... ,x4 ) is the Fourier transform of _ ( i 
b~ k p "" k 4 ). 

j 

(3.24) 

(3.25) 

Without loss of generality, we consider the case 
where B is an open interval whose closure is contained 
in (0, 1). Let 

X,=(j,j+1) (3.26) 

and Nx, the corresponding local number operators, j=O, 
± 1, ± 2, ... , which are commuting self-adjoint opera­
tors. We define Nloe by 

+~ 

N loe = "ENx exp[- /l0(ljl/2)) (3.27) 
J=-~ J 

and localize the operator V; (g) as follows. Define 
I 4 

bUl' .. j4(Xl> ... ,x4 ) = b~. (Xl' .• x4 ) n E, (x,), (3.28) 
1 • 1.1 I 

where EJ,(x) is the characteristic function of XJ" Equa­
tion (3.28) localizes each coordinate X, in the interval 
XJ" USing (3.28) we will prove that b;j (Xl> ... ,x4 ) is ex­
ponentially small at infinity in each of the variables X" 
We prove 

Lemma 3.1: b~i;h ... J4 (Xl>'" x4) is a bounded opera­
tor on L 2 (R4 ) satisfying 

Ilb;.;j .•. j 112'" lib;. 112 exp(- /loljJ··- /l0Ij41), (3.29a) 
,1 4 , 

'" O(Kjl
/

2 )exp(_ /loljr!·· - /l0Ij41). (3.29b) 

Proof: The transition from (3. 29a) to (3. 29b) has been 
established by Glimm3 (see also Ref. 1). Thus, we need 
only prove (3. 29a). The crux of the proof is a represen­
tation of b~i;J ""4(Xp •.. ,x4 ) developed by Glimm and 
Jaffe (Ref. H~, pp. 84-95). Let t(x) be a C~(R) with 
support in Xo and which equals one on a neighborhood of 
B. We define operators 

K - -1/2~( )/11/2 l-1 4 I - /lxl b x, "'xi -, ..• , , (3.30) 

where kernels k(x,z , ) are tempered distributions. Esti­
mate (3.15) of kT implies that k(xl'z,) is a C~ function of 
x, and zr such that 

Ik(xpz,)I'" O[exp(- /lolx,l- /lolz,I)). 

We now define localized operators K'd
l 

by 

K ,•J, =EJI(XI)/l;~/2t(xr)/l;:2, 1=1, ... ,4, 

whose kernels k i I (xI' Z I) satiSfy 

k. (x Z )={k(XI'ZI)'X~EXlz. 
11 I' 1 0, otherwIse 

(3.31) 

(3.32) 

(3.33) 

USing (3.31), one can prove that for j, *" 0 the operator 
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norm of K" i, is bounded by 

IIK"J,II.,;O[exp(-/lolj,I)]. (3.34) 

It is not hard to show that (3.34) remains true for j" 
even for j, =0. The representation of b~j;h'''J4 that we 
are after is 

(3.35) 

Representation (3.35) together with estimate (3.34) 
proves Lemma 3.1. 

We now return to the proof of (3.22). From (3.24) we 
get for 4> E Do' 

IIV~/g)lI.,; I) II V~j;JI"'J44>1I 
!rOO'J4 

(3.36a) 

~ const I) IIb~'J ... J 11211 IT (NXi + 1)1/24>11 (3. 36b) 
h"'i4 f' I 4 1=1 I 

~0(Kil/2) I) exp{- /loljll'" /lolj41) 
il' "J4 

4 

xII n (Nx . +1)1/24>11 
1=1 J , 

(3.36c) 

xexp~o~ + ... + /lol~) X II (N1oc +1)24>11 (3.36d) 

~ 0(Kjl/2)II(N
loc 

+1)24>11. (3.36e) 

Inequality (3. 36b) is an elementary local NT estimate. In 
(3.36c) we used (3.29b). In (3.36d-e) we used the esti­
mate II(Nx . + I)1/2(NIOC + 1)-1/211"; exp(/lo Ij/21 ). , 

Estimate (3.36) implies (3.22). QED 

4. COUPLING CONSTANT ANALYTICITY 

In this section we study H~ =Ho + AV{g) for A in the 
complex A plane cut along the negative real axis. We 
prove that Federbush's expansion for the resolvent is 
valid for values of A in the domain 

(4.1) 

where E > O. The basic theorem used in the proof is a 
generalization of Theorem 2.2 for bounded sectorial op­
erators22. 

Theorem 4.1: Let A be a bounded sectorial operator 
of norm less or equal to M, i. e., the numerical range 
e (A) of A is the subset of the sector 

larg(z-Y)I~e, 0~e<lT/2, yreal (4.2) 

lying in a circle with center y and radius M. Let I a) and 
I i3) be two vectors of unit length. Suppose 

(a IAkIi3) =0, forO~k~N, (4.3) 

then for any JJ. > 0 a real number: 

1 < a I R(+ IliA) I /3> I.,; O[exp(- N..J2 JJ./M)], 

N and M large. (4.4) 

The proof of this theorem is similar to the proof of 
Theorem 2.2, see Ref. 8. It is based on a theorem by 
Bernstein (Ref. 23, p. 84, and Ref. 24, pp. 130-31 and 
pp. 280-81) in the theory of the best approximation of 
analytic functions, stating that if j{z) is defined in 
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{Z:I argz I < IT/2, I z I.,; 1} =D and it is analytic in an el­
lipse with foci at -1 and 1 and with sum of its semiaxes 
equal to r> 1, then f(z) may be approximated on D by a 
Fourier-Chebyshev polynomial series of degree n 
within 

(2jm",,/r-1)(1/r n) (4.5) 

in the uniform norm. fm"" is the supremum of the abso­
lute value of f{z) in the ellipse. 

Let 

A~ =b +Hj(A) _2 i -1 

=b+PjHOP i +APiVPi _2 i -1 

=b +HO,i + AVj _2i-l. (4.6) 

By realizing V as a multiplication operator on the prob­
ability space L 2(Q, dq), we can write V = V+ - V- with 
V·V"=O (Refs. 1,7). Using (2.24) and 

v- .,; const N + const (4.7) 

implied by Theorem (2.1), we see that A~ is a sectorial 
operator, i.e., there exists a y such that 

1 1m (4) ,A~4» I ~ tan(argA/2){Re(4> , (A~ - Y)4>} (4.8) 

for A such that I avgA I.,; 1T - E ,E > O. Furthermore, if A~ 
= b + PjNPi + APi VPi - 21-1, then IIA~II.,; e22i. Therefore, 
Theorem 4.1 is applicable to the operator A~. We make 
the transition from A~ to A~ by using N.,; const Ho' Thus, 
as in the case of real A, we obtain the convergence of 
Federbush's expansion (2.9) for A in (4.1). This con­
vergence implies that H(A) is a family of analytic oper­
ators of type (B) in the sense of Kato (Ref. 22, pp. 345-
397). From the general theory of analytic perturbations, 
there follows 

Theorem 4.2: (1) Let H~ be the self-adjoint operator 
defined in Sec. II for A> O. Then H A has a resolvent 
analytic continuation to the cut A-plane. 

(2) The ground state n~, normalized by IInAIl = 1, n~ 
'" 0 and the ground state energy EA have an analytic con­
tinuation to a neighborhood of the real axis. 

Another property implied by the uniform convergence 
of (2.9) in the domain (4.1) is 

Theorem 4.3: Let p(Ho) the resolvent set of Ho' For 
- bE p(Ho) 

R~ (b) = (Ho + AV + b)-I - Ro(b) + (Ho + b)-1 (4.9) 

in norm as I A I - 0 in I argA I < 1T. 

Proof: Let R(n)(b;H) be the nth term in the expansion 
(2 .9). Then, one easily sees that for n .,; 1 

R(n)(b;H) .....!!WII.,.O 

as IAI-O, AE{A:largAI~1T-E};andforn=O 

R(O)(b;H) norm Ro(b) = (b +HO)-I 

limits (4. 10) and (4.11) imply (4.9) 

(4.10) 

(4.11) 

Using standard "stability theorems" (Ref. 22, pp. 
206-07, and Theorem 1. 7, p. 368), we obtain 

Corollary 4.4: For E > 0, there is a A> 0 such that if 
z E p(Ho) , then Z E p(H) for AdA: I avgAI ~ 1T-€, I AI ~ A}. 



                                                                                                                                    

866 Basilis Gidas: Properties of the (:.p" :)1 +1 interaction Hamiltonian 

Therefore, H~ has only one eigenvalue near zero. This 
eigenvalue is analytic in {~: I arg~1 .,; 7r -(3, I ~I.,; A}. 

Remark: Theorem (4.3) is useful in proving7, 15, 25 that 
the perturbation series for E(~), O(~), and W(~), the 
equal time vacuum expectation valves, are asymptotic 
series which are Borel summable to the exact solutions. 
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On the self-adjointness of the Lorentz generator for 
(: 1P4 :) 1 + 1 
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An alternative proof to that provided by Jaffe and Cannon of the self-adjointness of the local 
Lorentz generator for the (: op4 :)1 + 1 quantum field theory is given. The proof avoids the use of 
second-order estimates and a singular perturbation theory. 

In this brief note, we establish the self-adjointness 
of the local Lorentz generator for the two-dimensional 
: cp4: interaction by the method of Ref. 1. This result 
has been previously obtained by Cannon and Jaffe2 using 
first- and second-order estimates, and a singular per­
turbation theory. Here we avoid the use of second-order 
estimate and the Glimm-Jaffee singular perturbation 
theory. 3 It is hoped that a new proof may lead to some 
new results and insights. 

The (: cp4 :)1+1 quantum field theory has been brought to 
a very satisfactory stage mainly by the work of Glimm 
and Jaffe. 4 On the Fock space, they constructed a dense­
ly defined bilinear form cp(x, t), continuous in x and t, 
which gives rise to a unique self-adjoint operator 

cp(j)=J dxdtcp(x,t)j(x,t) (1) 

for a real function j E C~ (R2). The C* -algebra of local 
observables is defined as the norm closure 

= (~ (B»- . (2) 

Here the union is taken over bounded regions B of 
space -time and (B) is the weakly closed (von Neumann) 
algebra generated by 

{exp[iCP(j)J:j=! E C~(R)}. (S) 

The Poincare group P={a, A} is the semi direct pro­
duct of R2 with R1, 

{a,A}{a' ,A'}={a,Aa' ,AA'}, (4) 

where a E R2 is a space -time translation, a = (a , T), 
and A is the one-parameter Lorentz rotation 

As: (x, t) - (x cosh~ + t sinh~, x sinh~ + t coshm. (5) 

Poincare covariance means that there exists a 
representation 

O'{a. A }< (B»= ({a, AlB) (6) 

for all bounded open sets Band all {a,A}EP. The cova­
riance of the local algebras ensures the covariance of 
the field operators, namely 

O'{a. Al (cp(j» = cp(j{a. AI) 

with 

j la. AI (X, t) = j({a,A}-2(x, t». 

(7) 

(8) 

Space-time covariance was proven by Glimm and 
Jaffe. 5 The time translation is implemented locally by 
a unitary operator U(t;B), i.e., 

O't( (B»= U(t;B) (B)U(~;B) 

with 

U(t;B) = exp[itH( g) J , 

867 J. Math. Phys., Vol. 15, No.6, June 1974 

(9) 

(10) 

where H(g) is the Hamiltonian with a space cutoff 
g(X)E C~(R), g(x) =1 on a sufficiently large set depending 
on B. The space translation is implemented by exp(-ixP, 
where P is the free field momentum operator. 

The pure Lorentz transformation is locally imple­
mented by a unitary operator U(Aa;B), i.e., 

0' Aa ( (B» = U(AB ;B) (B) U-1 (AB ;B). (11) 

The formal infinitesimal generator of Lorentz trans­
formations in a region B is 

M(g) =Mo + MI(g) 

=J xHo(x)dx+ J xHr(x)g(x}dx, (12) 

where the space cutoff function g = 1 on a sufficiently 
large interval. Here, H(x)=Ho(x) +HI(x) is the energy 
density. Using space-time covariance, Cannon and 
Jaffe showed that it suffices to consider region B of 
space-time in the domain x> 0. Also, it is technically 
convenient to use different spatial cutoffs in the free 
and the interaction part of M. Thus, for a region B in 
x> 0, we take 

Mo=aHo, 

M1 = HO(xg1) + HI (xg2 ) , 

(lSa) 

(13b) 

(13c) 

wherea>O, xg.(x), xg2 (x);;.0, go(x),g(x)EC~(R+), and 

a +xg1 (x)=X=xg2 (x) (14) 

for x in a sufficiently large interval of the positive x 
axis. Here we have defined go (x) =xg1(x) , and g(x=xg2 (x). 
The first step toward proving that M = M (go ,g) is the in­
finitesimal generator for local Lorentz rotations, is to 
prove the self-adjointness of M. 

We write 

M =aHo + Ho.,,(go) + HI. ,,(g) + [Ho(go) -Ho.,,(go)] 

+ [Hr(g) -HI.K(g)], 
(15) 

where as usual K is an upper momentum cutoff. We first 
estimate each term in (15). By undoing the Wick order­
ing we obtain 

Ho.,,(go);;' - Cl~' 

HI •• {g);;. - c2(lnK)2, 

(16) 

(17) 

where C1 ,C2 are positive constants independent of K. By 
a standard NT estimate 6 

II (N + l)-l(Hl (g) - HI, ,,(g»(N + I)-111 >f C3K-1 /2, 
(18) 

To estimate the difference Ho(go) -Ho,,,(go), we write 
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Ho(go) =Hcill (go) + H~2) (go), 

with 

(19) 

(21) 

H~ll (go) is a sum of three terms having the form 
A*K(go}A in configuration space, where K(go) is a multi~ 
plication operator with a nonnegative kernel. Therefore, 
H~l) (go), and, similarly, H~l) (go) =H~~~(go) are nonnega~ 
tive operators. Jaffe and Cannon proved that H~) (go) has 
an L2 kernel and 

II (N + I)-I 12 (HJ2) (go) -H~~(go»(N + I)-1 /2/1.,; crl/4 , c4 > o. 
(22) 

Finally, we estimate the free term aHo by 

aHo~aJ.LoN. (23) 

Let P n be the projection onto states with numbers of 
particles lying in the range 

n8 .,; N< (n +2)8, .8~ 4. (24) 

We note 

~ P = ~ P =1. 
n= ev en n "-odd n 

(24') 

Picking K"=exp [(1/c2 )nBI2 ], and using (16), (17), (18), 
(22) and (23), we quickly obtain 

P"aHoP" ~ afJ.oP ~p":;, afJ.onB , 

Pflo'~n(go)p"~ -C, exp(2/cz), nB12
, 

P"Hr'K"(g)P":;' -nB, 
p"(Hcil

) (go) - Hci~~(go» p":;, 0, 

II Pn(H/(g) -H1,.(g»p" II.,; d1 exp(- d~NlIZ, du d~ > 0, 

(25) 

(26) 

(27) 

(28) 

II p"(Hci2) (go) -Hci~~(go» p"/I"; ~ exp(- ~Nl/2), (29) 

~,d!a >0. (30) 

Using (25) through (30) and choosing an appropriate a, 
we get 

(31) 

where d is a positive constant. For d large enough we 
get 

(32) 

Let M' be obtained from M by replacing aHa by aN, a 
multiple of the particle number operator. Then 

By a standard NT estimate 

II b + M~ II .,; d' NZB (34) 

for some constant d' . 

Following Ref. 7, we define p. and Pd as the projec~ 
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tion operators onto states with number of particles in 
the ranges 

and 

n.~d(n8 - 4.,; N.,; nB + 4), 

respectively. We define M.and Md by 

M.= ~ M"=aHo + L; P~lP", 
"=IVIII. n=eve& 

Md= L; M"=aHo + L; P ~lP", 
nllodd n-odd 

We write M in two different forms 

M=M. +L.=Md +Ld, 

L.,=M1 - ~ P"M1P", 
n=even 

Ld=Ml - L; P~lPn' 
"..,dd 

(35) 

(36) 

(37) 

(38) 

(39a) 

(39b) 

(39c) 

where the ranges (35) and (36) have been chosen so that 

P"L"P. =L"P. =P.L.=L., 

PdLdPd =L~d =PdLd=Ld, 

Federbush's expansion of the resolvent is 

R(- b;M) =R(- b;M.) 

- R(- b;Md)LeR(- b;M.) 

+R(- b;Me)L~(- b;Md)LeR(- b;Me) 

(40) 

(41) 

(42a) 

=R(- b;M.) 

-R(- b;Md)P.L.P.R(- b;Me) 

+ R(- b; Me)PdLdPdR(- b ; Md)P.L.P. 

XR(-b;Md ) 

_ .. '. (42b) 

Our main result is the following theorem. 

Theorem 1: Let go,g satiSfy (14), with go,g:;' 0, 
go,gE C~(R+). Then there is a finite constant 0 such that 
(42) converges in the uniform operator topology for b> O. 
The limit R(- b) is the resolvent of a self~adjoint opera~ 
tor M such that M > 0 . 

The proof of this theorem follows from the following 
three lemmas: 

Lemma 1: For n large enough, there exist positive 
constants Cu Cz independent of n such that 

II PeP"R(- b;Mn)Pd II.,; c1 exp(- cznB/z). (43) 

Proof: Since aHo"?- ftfJ.oN, it is enough to prove (43) 
with M~ replacing M". Estimates (32) and (34) permit us 
to apply Theorem 2.4 of Ref. 1, with. \ a,,) == P "P d \ a), 1.8,,) 
P"P.I b), fJ.,,==dn8, A=b+M~-dnBD,,=d'n2.8 (this corre~ 
sponds to M in the notation of Ref. 1), and N < {[ (n + 1)B 
- 41- (n8 + 4)}/4. Thus we obtain (43). 

Lemma 2: Let e > 0 be smal enough. Then there exist 
constant c(e) such that 



                                                                                                                                    

869 Basilis Gidas: On the self-adjointness of the lorentz generator for (: «14 :) 1 + 1 869 

II R(- b;M) II, II R(- b;Ma) II.,,; lib, 

II LePaR(- b;Ma)Pe II, II LeP"R(- b;Me)Pd II < ~, 

II R(- b;Ma)L"R(- b;Me) II ~ c(e)b-1
-., 

II LaR(- b;Ma)LR(- b;Me) II.,,; c(e)2b-1
-

1
• 

(44) 

(45) 

(46) 

(47) 

Proof: Inequality (44) is an easy consequence of esti­
mate (31). Let I a) and I b) be two normalized states in 
the Fock space. To prove (45), we consider 

<al LaPaR(- b;Ma)Pe I b) = :0 <al LaPaR(- b;Mc)P"Pnl b) 
n::odd 

= :0 (al LaPaPnR(- b;Mn)P,, 1 b) 
n=odd 

= :0 {al (l-Pn)MIP~aPn 
n=odd 

.,,; :0 c (n +2)2a exp(- c nB /2) < 1-
n=odd 1 2 2' 

In the last step above, we have used estimate (43) and a 
standard NT estimate. Similar arguments establish esti­
mated (46) and (47). 

Lemma 3: For b large enough, the series (42) con­
verges uniformily to an operator R(- b) which is a 
pseudoresolvent and satisfies 

lim(- b)R(- b) =1 (48) 
~+ .. 

in the norm operator topology. 

Proof: Estimates (44) through (47) imply that the nth 
term in (42) is bounded by c(e)nb-1- ne . Therefore, the 
series converges for b> c(e)l/e to an operator R(- b). 
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Clearly, 

limb[llR(-b;Ma)L"R(-b;M.)II +---]=0. (49) 
~+ .. 

This implies (48). It is not hard to prove that R(- b) is 
a pseudoresolvent. 

Proof of Theorem 1: We follow the proof of Theorem 
2.2 in Ref. 1 Equality (48) implies that R(- b) is an in­
versible operator. Then - b - (R(- b)-l defines M whose 
domain is independent of b because of the pseudore­
solvent property of R(- b). The self-adjointness follows 
from the next lemma. 8 

Lemm a 4: If T: JC - JC is an operator with dense domain 
on the Hilbert space JC, and if T-l exists and has a dense 
domain, then (1'*)-1 = (T-1)*. 
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Microscopic to macroscopic transitions in classical, nonequilibrium. particle-field systems pose a class 
of stochastic perturbation problems that can be solved via the formal theory of scattering. Such 
solutions permit the nonlinear microscopic equations descriptive of a turbulent plasma field to be 
ensemble averaged into macroscopic particle- and wave-kinetic equations. The method is essentially 
operator theoretical. The original microscopic operator is first conventionally decomposed into 
deterministic and stochastic parts and then via scattering theory its inverse is evaluated in terms of 
explicit. formally exact. operator expressions that admit rapidly convergent. nonsecular. series 
representations. These results may be obtained by either operator algebra or diagram methods. the 
former being preferred. The derivation appears to be more physically and analytically transparent 
than in most existing procedures and has the virtue of exhibiting explicitly higher order terms. some 
of which are novel. The theory is illustrated for the case of a simple isotropic electron plasma by 
the derivation of kinetic equations for particles and for waves. 

I. INTRODUCTION 

Theories of plasma turbulence, in common with other 
field theories, employ perturbation theoretic procedures 
to derive series representations for the physical quan­
tities of interest. The utility of such representations is 
dependent on the rapidity of convergence of these series. 
Operator techniques, employed in the spirit of the for­
mal theory of scattering, will be shown to provide al­
ternative and formally exact representations of turbu­
lent field quantities and their n-point ensemble aver­
ages. In appropriate parametric ranges these formally 
exact expressions are expandable into rapidly conver­
gent series; improper expansions lead to series with 
poor convergence or even secular terms. 

The formal theory is illustrated for an electron plas­
rna in which the initial state is defined by speCification 
of the ensemble average of the stochastic electron dis­
tribution function and the 2-point correlation of the 
electric field intensity at t= O. The subsequent temporal 
evolution of the electron distribution function is deriv­
able from a stochastic Green's function indicative of 
the possible phase space trajectories of an electron in 
a stochastic electric field with arbitrary statistical 
properties. For self-consistency these electric field 
properties are then identified via Maxwell's equations 
with those excited by the stochastic electron distribu­
tion. The difficult aspect of this initial value problem 
is the determination of a suitable expression for the 
stochastic Green's function of the Klimontovitch equa­
tion defining the electron distribution function. 

The stochastic field operator characterizing the 
Klimontovitch equation is variously decomposable into 
an "unperturbed" average part and a "perturbed" stoch­
astic part. The corresponding inverse operator, or 
Green's function, is representable via the methodology 
of the formal theory of scattering by a formally exact 
operator expression whose expandability is dependent 
on the "smallness" of the choice of the perturbation 
part. Different choices (renormalizations) lead to dif­
ferent convergence rates of series expansions. Renor­
malization procedures, both implicit and explicit, have 
been utilized by many workers in plasma turbulence 
(Dupree, Weinstock, Kraichnan, Kadomtsev, Ichikawa, 
Nishikawa, et al. 1), in random wave propagation 
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(Tatarskii, Keller, Furutzu, Bremmer, et al. 2), and 
of course in quantum field theory (Prigogine, Balescu, 
Kubo, et al. 3). Most of the renormalization procedures 
used in plasma turbulence are based, in the spirit of 
singular perturbation theory, on one or another approxi­
mation to the average particle Green's function, whose 
inverse represents the chOice for the unperturbed com­
ponent of the Klimontovich field operator (the diffusively 
streaming component). These approximations, which 
complicate the analysiS, may be deferred by using for­
mally ~xact expressions to obtain a precise definition 
of the n-point ensemble averages of interest; the latter 
may then be approximated at the final stage of analysis. 

The principal results of this paper can be phrased in 
terms of a generic stochastic perturbation problem (7) 
whose exact stochastic Green's function, defined in (8), 
is explicitly decomposed in (23) into an ensemble aver­
aged Green's function defined in (20) and a fluctuation 
therefrom. The latter components are expressed in 
terms of two coupled formally exact operator expres­
sions given in (24) and (25), typical series representa­
tions of which are given in (30). These results yield in 
(37a) the formal solution of the original stochastic prob­
lem from which can be derived the various averages 
and n-point correlations necessary for the kinetic equa­
tion descriptive of average behavior. 

For the case of the electron plasma, whose micro­
scopic field equations are summarized in (1) and (2), 
the analysis of the Klimontovich equation leads to a 
precise definition of the average electron distribution 
function (37b) or equivalently the kinetic equation for 
electrons (47b). Only at the final stage of analysiS are 
approximations introduced in the form of explicit series 
expansions whose convergence properties depend on 
the particular choice of perturbation or renormalization. 
A special choice of renormalization leads to Dupree's 
"modified orbit" analysis of plasma turbulence, de­
rived by him via a test wave formalism 1

; the renor­
malization procedure serves to simplify and clarify 
Dupree's derivation and to display explicitly higher 
order terms. The self consistent stochastic electric 
field is defined by a generiC equation (40) similar to (7) 
and may be solved by the same scattering formalism. 
For SimpliCity, however, the analysiS is carried 
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through only approximately albeit with some novel fea­
tures and leads to a kinetic equation for waves (57). 

II. ABSTRACT FORMULATION OF BASIC PROBLEM 

Let us make specific the initial value problem to be 
considered. At each space-time point r, t in a non­
relativistic electron plasma with immobile neutralizing 
ions, the dependence of the stochastic electron distribu­
tion function j = j (v, r, t) on the stochastic electric field 
E 0= E(r, t) is defined by the Klimontovitch equation4 

a e A A 

(-+v'V --E·V )/=0 at m· 
(1) 

where e, m, and v are the electron charge, mass, and 
velocity. The self-consistent dependence of the electric 
field E on j is given by the Maxwell equations which, on 
elimination of the magnetic field iI, may be written in 
operator form as 

{2) 

where the operator (admittance) dyadic!JM characteris­
tic of the Maxwell field is given by 

a vxvxl 
ijM- f Oat 1+ lJ.o a/ at (2a) 

with 1 the unit dyadic and Eo, lJ.o the vacuum dielectric 
constant and permeability in MKS units. For uniqueness 
of solution to (1) and (2) initial values ofl, E, fI have to 
be prescribed; this implies a complete statement of 
their average and n-point correlations at say t= o. 

, However, we shall limit these statements solely to 
averages and 2-point correlations. Before elucidating 
this point, let us introduce some notational concepts. 

A stochastic field \lI(r, t) may be defined at each space 
time point r, t of a physical system by adducing an en­
semble of Similarly prepared systems. At the given 
pOint r, t the random function ,j,(r, t) assumes different 
values in the various systems that constitute the ensem­
bIe. An ensemble average of the field ,j,(r, t) can be 
evaluated at each point r, t and will be denoted by 
,j, (r, t» w (r, t); a more explicit definition of the aver­
age field in terms of a particular ensemble probability 
distribution function will be unnecessary for the follow­
ing considerations. Knowledge of the average field per­
mits decomposition of the stochastic field as 

~ N 
\lI(r, t) = \lI(r, t) + w(r, f), (3) 

where ~(r, t) is the "fluctuation field". The fluctuation 
field ~(r, t) displays stochastic properties similar to 
that of the field ~(r, t) but with the convenient property 

<~(r,t»=O. 

In consequence, one infers from (1) that the 2-point 
ensemble averages or autocorrelations <~(r, t) ,j,(r', t'l) 
and <~(r,t) ~(r',t'» are related by 

(,j,(r, t) ,j,(r/ , t'» \lI(r, t) \lI(r/, t'l +($(r, t) ~(r', t'». (5) 

In the stochastic systems of interest our concern is 
primarily with the space -time evolution of the average 
field and the ~-point correlation of the fluctuation field. 

With the above notation the initial value statement 

J. Math. Phys., Vol. 15, No.6, June 1974 

appropriate to (1) and (2) prescribes 

l(v,r,O), <j(v,r,O)/(v',r', 0», 
"" -v E(r,O), (E(r, 0) E(r', 0», 
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(6a) 

(6b) 

with a Similar statement for the magnetic field. One 
should recall that only "transverse" components of 
electric and magnetic fields can be prescribed indepen­
dently; longitudinal electric field components follow 
from /. The initial value problem involves determina­
tion of the evolution of the plasma state from the pre­
scribed initial condition. Stationary turbulent states 
form a special class wherein the (not arbitrarily pre­
scribable) initial state is stationary. 

The primary difficulty in the self-consistent solution 
of (1) and (2) is associated with the nonlinear stoch­
astic nature of the Klimontovitch equation (1). In Sec. 
4 we shall find explicit expandable representations for 
j in terms of E. In Sec. 5 there are obtained a kinetic 
equation for particles, 1. e., for 1 (v, r, t), and a kinetic 
equation for waves, i. e., for the correlation spectrum 
8(k, r, t) of the 2-point correlation (E'(r, t) i'(r/, t'». 

In abstract form the Klimontovitch equation (1) can be 
written as 

(La - V)J= 0 

where, in a v, r, t spa£e the unperturbed 2perator Lo 
and the perturbation V, whose average <V)=O, are 
represented by 

a e 
Lo- at +v·V -;;;E'V", 

v-!..i·v. m U 

(7) 

Equation (7) is a generic operator equation for the field 
j wherein the initial condition (6a), which defines the 
domain of the operator La - V, acts equivalently as a 
(deterministic and stochastic) impulsive source, applied 
at t= O. It is convenient to consider first a unit deter­
ministic source; this defines the inverse operator, or 
stochastic Green's functiOn, problem: 

(La - V)G=l, (8) 

where in the v, r, t spaces 

G-g(v, r, t; v', r', t'), 

1 - o(v - v') oCr - r') o(t - t'), 

and o(u) is the Dirac delta function. For uniqueness, 
the domain of G will be defined by the requirement 
g(v, r, t; v', r', tf) = 0 for t < tf; whence (8) defines the 
"creation" Green's function, representative of the 
creation of an electron at v', r' at time t' and of its 
subsequent" propagation" to a point v, r in phase space 
at time t. Explicit representations of the operator G 
shall be derived in Sec. 3 both by diagrammatic and 
operator algebra procedures. 

III. REPRESENTATIONS OF G 

Methods familiar from the formal theory of scattering 
provide means for solving (8) for G in a variety of . 
ways. 6 A conventional procedure first introduces the 
coherent unperturbed operator Go, inverse to the opera-



                                                                                                                                    

872 N. Marcuvitz: On the theory of plasma turbulence 

tor Lo, and defined by 

LoGo= 1, (9) 

where the domain of Lo is such that Go-go(v, r, t; v',r/,t') 
= 0 for t< t', as is the case for G. The Green's function 
Go is representative of the phase space trajectory for 
unperturbed "propagation" to v, t, t of an electron 
created at v', r', t'. The perturbation operator V in (8) 
is viewed as "scattering" the unperturbed propagation, 
Go, the latter being assumed known. This scattering 
viewpoint and its relation to diagram techniques will 
now be considered. 

Diagram method 

A pictorial overview of the relevance of scattering 
concepts in the evaluation of G and its ensemble average 
G = (G) is expressible in conventional diagrammatic 
terms. Elucidation of these terms will be omitted at 
this point since their derivation follows more Simply 
via the operator method below. Creation of an electron 
at one point P and its propagation to another point Q, as 
represented either by G, Go, or G, will be pictured 
respecti vely by 

G- pf"\../VV\..,Q' Go-· p Q' G- p~. 
Thus, in Fig. (Ia), the stochastic propagation, G, of 
an electron from a creation point P to an observation 
point Q will be pictured in terms of a direct trajectory, 
Go, and a scattered contribution in two different but 
related ways. As shown in Fig. (Ia), the upper right­
hand diagram depicts the scattered contribution in terms 
of an electron starting from the creation point P, under­
going unperturbed "propagation" to the scatterer fT, 
being "scattered" and thence stochastically "propagat­
ing" via G to the observation point Q. The alternative 
lower diagram in Fig. (Ia) displays the scattered con­
tribution in terms of unperturbed electron propagation 
via Go to and from a "multiple scatterer" T. By itera­
tive substitution for G in the first scattering diagram 
one can infer that the operator T is representable as 
an infinite series of conventional diagrams involving 
V and Go. Although the terms of this seri~s display 
secularities, or divergences, the lower T diagram in 
Fig. (Ia) can be ensemble averaged to obtain the d~a­
grammatic representation for G, in terms of T= (T), 
shown in the upper diagram of Fig. (Ib). The lower dia­
gram of Fig. (Ib) arises from selective summation of 
the so-called (nonsecular) connected diagrams in the T 
representation, and provides an alternative picture of 
the scattered part of the averaged electron propagation 
G; the electron first undergoes unperturbed propagation 
to the "effective" average scatterer Ve and thence aver­
age propagation to the observation point. The hereby 
defined" effective field" or "mass operator" Ve is com­
posed of only the connected diagrams in the series 
representation of T; it is thereby represented as a sum­
mabIe but sometimes poorly convergent series. 

The above diagrammatic derivation is conventional2; 

it is reviewed primarily to exhibit the isomorphic 
quartets of operators G, fT, T, Go and of G, Ve , T, Go, 
which always appear in a scattering phrasing of pertur­
bation theoretic analyses. For solution of say initial 
value problems, difficulties in the analytical use of 
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these formally exact operators arise from the need to 
represent them as series, which may be secular or 
poorly convergent; if so, the use of renormalization 
techniques permit more convergent series 
representations. 

Assuming the operator T in Fig. (Ia) is known, and 
hence also the average operator T in Fig. (Ib), one can 
illustrate a renormalization procedure by subtraction 
of the G and G diagrams in these figures. One thereby 
infers the alternative (renormalized) diagrams shown 
in Fig. (Ic). The upper right-hand diagram, obtained 
by subtraction of the lower and upper diagrams in Figs. 
(Ia) and (Ib), resp., now depicts the unperturbed elec­
tron propagation in terms of G, and the scattering con­
tribution in terms of T = T - T and Go' Since Go and G 
are related as shown in Fig. (Ib), one is led succes­
sively to the middle and lower right-hand diagrams of 
Fig. (Ic). In terms of the new quartet of operators 
G, fT - vc' Te. G the stochastic electron propagation G 
is now represented as taking place in an averaged 
medium, wherein direct unperturbed Eropagati~n is 
characterized by G and scattering by V - Ve or Te' 
Scattering in this medium is given by the "small" re­
normalized scattering operator V - Vc with Te as a 
convergentally representable multiple scattering opera­
tor. A noteworthy feature of this renormalized repre­
sentation of G, depicted in the middle right hand dia: 
gram of Fig. (Ic), is the explicit decompo~ition of G 
into an average part G and a fluctuation GTeG. 

Operator method 

Analytical equivalents of the (; diagram representa­
tions in Fig. (1) are derivable by operator alg~braic 
manipulations of the defining equation (8) for G. :0 do 
so, we first complete the operator definition of G by 

v 
r"\JV\./'v = + ---0VVV\-
P Q P Q P Q 

" T 
+ O}----

(0) 

T 

• ) = + 0 
P Q P Q P Q 

Vc 

+ 0 
( b) 

T 
'VVV\.., c· ==::l + --~O\----
P Q P Q P Q 

To 
= + ===(0):::' == 

v-v. 
==:::li + C· ====:lcYvvvv = 

(e) 

FIG. 1. (a) Diagram representation of G in terms of Go; (b) 
diagram representation of G in terms of Go; (e) diagram repre­
sentation of G in terms of G. 
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appending a s~tement as to the domain and range of t~e 
operator Lo - V. This is done by defining, as above, G 
as the "creation" Green's function and also defining an 
adjoint to G by a more complete rewriting of (S) as7 

(Lo - V)G = 1 = G(Lo - V). (10) 

A similar completeness of definition of the unperturbed 
creation Green's function Go leads to the rewriting of (9) 
as 

(11) 

whose solution Go is presumed known. On left multipli­
cation of (10) by Go and use of (11), one then obtains as 
the analytical equivalent of the diagrams in Fig. (1a) 

G = Go + Go VG = Go + GoTGo, (12) 

where the right-hand expression results from the 
definition 

(13) 

The T operator, representative of multiple scattering 
by the stochastic perturbation V in the background Go, 
is given, on using (12) to derive the relation 6 
= (1 - Go V)-IGO' by the formally exact abstract 
expressions 

(14) 

In paSSing, it is of interest to note that the inverse 
operator (1- Go r;:h- 1 may be represented by the conven­
tional Neumann series 

(15) 

However, the singular ("curvilinear orbit") nature of 
Go implies that the terms of the series (15) display 
secular divergences2 that limit its range of applicability 
for representation of T. 

The formally exact expressions (12) and (14), although 
not readily expandable, may be ensemble averaged to 
yield, as the equivalent of the Fig. (1b) diagrams, the 
ensemble averaged G in the form 

G = Go+ Go VeG= Go+ GoTGo, 

where 

(16) 

(17) 

is the ensemble averaged multiple scattering operator 
and where, in analogy to the stochastic definition (13), 
one has introduced the coherent definition 

(1S) 

From (1S) and (16), one observes, isomorphic to (14), 
that 

(19) 

The average operator G, defined in (16) depicts a co­
herent scattering process characterized by the 
"smoothed" scattering operator Vc in a background Go. 
An alternative (differential equation type) definition, 
analogous to (10), follows from multiplication of (16) by 
Lo and use of (11) as 

(20) 

which provides a nonlinear defining equation for G, the 
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nonlinearity arising from the dependence of Ve on G. 

Although the average Green's function G is of interest, 
per se, as a conditional probability for finding an elec­
tron created at a prescribed point in phase space, it 
can also be utilized as the unperturbed background in a 
renormalized scattering representation of 6. Thus, on 
subtraction of the right-hand expressions in (12) and 
(16), one obtains 

G= G + GoTGo, (21a) 

as pictured in the upper right-hand diagram of Fig. 
(1c), where from (14) 

T= T- T= V+ VGV - (VGil). (21b) 

Noting from (16) that 

Go= G(1 + VeGr 1 = (1 + GVer1G, 

one can reexpress (21a) as 

G=G+GTeG, 

(22) 

(23) 

where the stochastic operator Te , representative of 
multiple scattering in the smoothed background, G, is 
given by 

Te=1 + VeG)-IT(1 + GV)-I. (24) 

The operator Ve is derivable from Te. On avera~~g 
(10) and comparing with (20), one infers VeG =(VG) 
whence on utilizing (23) 

Ve=(VGTc>' (25) 

Substitution of (25) and (21b) inl;g (24) provides a formal­
ly exact operator equation for Te that can be iteratively 
expanded because of the nonsingular (diffusively spread 
orbit) nature of G. 

The representation (23) of 6 is a deSirable form in 
that the direct and scattered components of G are ex­
pliCitly identifiable as ensemble average and fluctuation 
components, the latter having a zero average. A re­
vealing insight into the physical Significance of (23) is 
obtained by first rewriting the defining equation (10) for 
6 in the renormalized form 

(26) 

whence the scattering is now caused by a stochastic per­
turbation VI:; V - Vc of the coherent renormalized back­
ground operator Lo - v;,. On left multiplication of (26) by 
G and use of (20), one obtains 

(27) 

where the right-hand expression follows from the defin­
ing identity 

VIG=Tc G , 

whence one infers on use of the left part of (27) that 

Te = VI (1 - GVI)-I = VI + VIGVI (2Sa) 

and by (25) 

ve=(VpTe)· (2Sb) 

The alternative expressions (24) and (2Sa) for Te can be 
shown to be equivalent, as may be antiCipated from the 
identification of (23) and (27). InCidentally, (27) is the 
analytical equivalent of the lower diagrams in Fig. (lc). 
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The utility of the representation (27) for the stoch­
astic Green's function G is dependent on one's ability 
both to evaluate G = (6) and to obtain rapidly convergent 
representations of the formally known operators T e and 
Ve' By series expansion of the inverse operators in 
(24) one obtains for Te 

Te= (1- VeG + VeGVe'" )T(1- GVe + GVeGVe ••• )(29a) 

where on use of (23) in (21b) 

T= V+ VGV - (ifGV) + VGTpV - (VGTPV). (2gb) 

On substitution of (25) into (29a), one derives by itera­
tive use of (29b) the following series expansions (to 
fourth order in V) for Te: 

Tc= V + VGV - (VGV) + VGVGV - (VGVGV) 

- (VGV)GV - VG(VGV) 

+ VGVGVGV - (VGVGVGV) - VG(VGV)GV 

+ (VG(VGV)GV) 

- (VGV)GVGV - VGVG(VGV) + 2(VGV)G(VGV) 

- (VGVGV)Gv.- VG(VGVGV) +... (30a) 

whence by (25) 

Vc= (VGV) + 6'GVGV) + (VGVGVGV) - (VG(VGV)GV) 

- (VGV)G(VGV) +. . . (30b) 

The range of validity of the series expansions (30) is 
difficult to ascertain because of the complex nonlinear 
nature of the Eq. (24) defining Te. Since the expansions 
(30) are in terms of the average operator G, which in 
contrast to Go is nonsingular at least until trapping is 
well developed, they are more rapidly convergent than 
nonsecular perturbative e:ll'uansions in terms of Go. 
Their domain of convergt..lce is limited by the require­
ment that the bound or norm of the (Te dependent) oper­
ator product GVe is less than unity-i. e., that V and Ve 
are "small." 

Representations of Te and Ve with an ordering of 
terms different than that in (30) can be obtained by ex­
pansion of the expression (28a). Thus for V I = V - Ve 
"small", but with V and Ve permitted to be "large," one 
finds by expansion of (28) to second order in VI: 

TF VI + (VIGVI) + ... , 

Ve= (VIGV I)+ •••• 

In terms of V one has, to indicated order in t\, 

(31a) 

(31b) 

Tc= V + VGV - (VGV) - VG(VGV) - (VGV)GV + ... , 
(32a) 

(32b) 

The ordering of terms in the representations (32) is 
evidently different than in (30); inclusion of the remain­
ing terms will of course lead to identical overall series. 

It is of interest to contrast diagrammatically the Ve 
representation (30b) in terms of G with the conventional 
representation2 in terms of Go. The diagram equivalent 
of Eq. (30b) is displayed in Fig. (2a). The correspond­
ing and less rapidly convergent Go representation is 
shown in Fig. (2b); the latter follows from that in Fig. 
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In a frequently employed procedure for evaluation of G 
one expresses the Fourier (k, w) spectrum of 6 in terms 
of the stochastic v, r, t phase space trajectory of an 
electron in an E field and employs cumulant expansions8 

to find the ensemble average G= (G) in terms of various 
n-point averages of E. In abstract, however, one has a 
difficult task of solving the nonlinear equation (20); the 
complexity of the task arises from the nonlinear nature 
of Ve' Since Ve is given in (30b) as a series of the form 

(33) 

a standard perturbative procedure consists of rewriting 
(20) as 

(34) 

with Vel = Ve - Ab defining an "unperturbed" operator 
Gl by 

and deriving in the usual manner the solution 

G = (1 - Gl Vel)"lGl 

which is expandable as 

G = Gl + Gl VelGl + Gl VelGl VelGl + .... 

(35) 

(36) 

A familiar choice (Kraichnan, Dupree, Tatarskii) for 
Al is suggested by the first term in (30b), viz, 

Al = (VGI V) (36a) 

which leads to a nonlinear equation (35) for Gl that is 
solvable for restricted parameter ranges. A less 
optimum, but explicit, choice (Bourett,2 "straight line 
orbit") is 

(36b) 

with Go defined by (11) leads to a linear equation for Gl . 

In practice one usually employs only the first term G l 
in the series (35) to apprOximate G, the higher order 

(01 

........--- ........ 
" -- .......... , 
~ 

(b) 

FIG. 2. Diagram representation of effective field operator Ve: 
(a) renormalized. (h) conventional; e- Ve' 0 - V. 
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terms providing an error estimate. Better perturbative 
approximations for G are obtainable in a conventional 
manner by using At +Aa instead of At> Vca= Vc -At -Aa 
instead of Vel> G2 instead of Glf etc., in (34) and (35). 

IV. REPRESENTATIONS OF f AND E 
The derivation in Sec. m of an abstract expression for 

G permits a representation of the solution of Eq. (1) for 
j in terms of the statistical properties of E and of the 
cross correlation of E with a stochastic distribution 
function ja indicative of the phase space evolution of the 
statistical initial condition J (v, r, 0) in an average back­
ground described by G. To determine the desired sta­
tistical properties of E one utilizes the Maxwell equa­
tion (2), for E in terms of the above j solution, to ob­
tain a defining A equation for E in terms of the statistical 
properties of r and of their cross correlation with the 
initially prescribed statistics of E(r, 0). Such self con­
sistent representations of J and E permit one to derive 
the kinetic equation for particles (i. e., for f) and the 
kinetic equation for waves [i. e., for the correlation 
spectrum denSity of (E(r, t)E(r', t'l)]; these kinetic equa­
tions are coupled and must be solved self consistently. 

The abstract expression for G derived in (27), viz, 

(37) 

explicitly exhibits average and fluctuation components 
and permits a similar component representation of the 
abstract solution J of the Klimontovitch equation (1). 
~ince G arises from a coherent point source, whereas 
/ may be regarded as arising from a stochastically dis­
tributed impulsive source s - j(v, r, O)o(t) (representa­
tive of the initial excitation), Eq. (1) yields the desired 
solution 

(37a) 

where J = GS, and where fa = Gs represents the "aver­
age" evolution of the stochastic initial state which for 
t > 0 satisfies the homogenous equation 

(Lo - ve)ja = O. 

The average / follows explicitly from (37a) as*9 

/=r +G(T]"), (37b) 

whence by subtraction of (37a) and (37b) the fluctuation 
1 is given by 

1=Ja +GTcr +G{rJa -frJa». (37c) 

The statistical properties of E follow from j in (37a) 
on use of the Maxwell equation (2). Since this deter­
mination is effected in physical r, t space, rather than 
v, r, t phase space, it is convenient to employ in physical 
space the abstract notation j (v) instead of j, and also 
g(v,v') instead of G, Tc(v,v') instead of Tc' etc. Thus, 
in phySical space, the abstract solution (37a) is written 

j (v) = ja(v) + f g(v, v1)Tc(v1 , v2)!a(v2)dv1dvz, (38) 

whence on substitution into the Maxwell equation (2) one 
has exactly 

Y M' E = e f vja(v)dv + e fvg(v, V1)Tc(Vl> v 2)ja(v2)dvdv1dvz' 

(39) 

Utilizing for SimpliCity only the first term in the Tc ex-
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pansion (30a), viz., Tc"" V-(e!m)E. Vv ' one approxi­
mately reexpresses (39) in physical space as an abstract 
nonlinear equation for E (neglecting nonlinear wave 
"parametriC" and particle damping terms): 

(yo-V.)£=-J, (40) 

- e2 

V.= Ve + Ve-- J vg(v, v1)Vv j"(vl)dvdvl, (41) m 1 

J=Ja+ VeE + "., 
_Ja - e J vja(v)dv. 

Equation (40)has the same abstract form as the Kli­
montovitch equation (7) for j, save for the minor addi­
tion of the right-hand source term. Thus, as in the case 
of (10), one introduces anA abstract (in r, t space) sto­
chastic Green's function Z by 

(Yo - Ve)t + 1, (42) 

whose abstract solution is isomorphic to that given in 
(23), namely, 

(43) 

where the ensemble averaged Green's function Z is de­
fined as in (20) by 

(44) 

Vee' the "modified" medium operator, being indicative 
on the average of wave (quasiparticle) scattering by 
electron density fluctuations. As in (30) the first few 
terms in the expandable representation of Tee and Vee 
are 

Tee = Ve + VeZVe - (VeZV.) + ... , - - - - ,... 
Vee = (V.ZVe> + (VeZVeZV.> + .• ,. 

(45a) 

(45b) 

One then infers from (43) the desired abstract repre­
sentation of the solution E of (41) as 

(46a) 

where E(JI' the stochastic electric field excited by both 
the initial condition [impulse Js - €oE(r, 0) o(t») and the 
current source J acting in an average medium with 
wave propagation described by Z, is 

it - i:' - zJ - - Z(JAS + J)A • a- - , 

the stochastic field Ea - zjs evidently represents the 
evolution of the stochastic initial field E(r, 0) in the 
average medium described by Z. From (46a) the ensem­
ble average E follows as 

E = E(JI + Z(Tc.E,) 

and the fluctuation if as 

E= E",+ZTeeE(JI + Z(TceE" - (TceEOI»' 

(46b) 

(46c) 

The coupled equations (37) and (46) comprise the de­
Sired self consistent representations of! and it. 

One can rewrite the "integral representations" (37 
a, b, c) in "differential equation" form as 

(Lo - Vc>j= Tefa (47a) 
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whose average and fluctuation components are 

(Lo - Ve)/==(T]a), 

(La - Ve)! == l' cfa + (1' ala - (1' ala}). 

(47b) 

(47c) 

From the definition of fa given in connection with (37a) 
and with the use of Eq. (20) for G, one observes that, 
subsequent to the excitation oS, Eq. (47a) rephrases the 
original Klimontovitch equation (7) in terms of a re­
normalized coherenf operator Lo - Va and a stochastic 
source l' Ja, both of which are forma~ly exp!essed in 
terms of the statistical properties of E and f". Equa­
tion (47b) leads to an abstract version of a generalized 
Lenard-Balescu or Fokker-Planck equation (a kinetic 
equation for particles) provided the right-hand ~urce 
term. which is dependent on the correlation of E and 
P. is evaluated with the aid of the Maxwell equations. 
Equations (47b) and (47c) display the couplinlt,and de­
pendence of the background f and fluctuation I on the 
statistical properties of the electric field E. 

Correspondingly, subsequent to initial excitation, the 
integral representations (46) of fJ can be rewritten in 
"differential equation" form as 

(Yo-Veg)E==-J+T e)", (48a) 

whose average and fluctuation components are 
manifestly 

(Yo - Veg)E= -J+ (Tefl",), (48b) 

(Yo - Ve.)]; == -J + Te~OI + (1' eeE", - (j e)",»' (48c) 

From the definition of E", and E" given under (46a), it is 
evident that for t> 0 

(Yo - Ve.)E", = -J and (Yo - Ve.)E'" == O. (49) 

Equation (48a) constitutes the desired rephrasing of the 
self consistent Maxwell equation (40)in terms both of a 
renormalized coherent admittance operator Yo - Ve• 

and of stochastic source terms dependent on the stati­
stical properties of Ja and on Z; the term Ve. is indica­
tive of anomalous wave absorption. The average equa­
tion (48b) is used to determine the evolution of the 
background field E, whereas the if fluctuation equation 
(48c) provides a means for deriving the kinetic equation 
for the wave fluctuations. 

V. KINETIC EQUATIONS 
Kinetic equations, which provide an average macro­

scopic description of a turbulent field, generally involve 
a coupling of certain measures of the background and 
fluctuation fields. In an electron plasma the background 
measures are provided by average fields I(v, r, f), 
E(r, f) which are normally weakly varying in space and 
time. On the other hand, the fluctuation fields lev, r, f), 
E(r, t) are rapidly varying stochastic fields that must 
be correlated to obtain the desired macroscopic mea­
sures. To this end it is first desirable to transform 
the fast r, t dependence of the fl~ctuation fields. Thus, 
for example, the electric field E is repre~ented in 
terms of its Fourier-Laplace amplitude E~", bylO 

E(r, t) == 6Ek",exp[i(k.r - wt)] (50) 
k,,,, 

whence the H2-point autocorrelation" of the electric 
field may be spectrally represented as 
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(E(r, f)E(r', t'»==68 kW (r', t')exp[i(k·r" -wt")] (51a) 
t,,,, 

with the (dyadic) "correlation spectrum" 8k ", given by 

8a:",(r, t) = 6 (EkwE:. ",.) exp[i(k" . r - wilt)] (51b) 
k",(.oJ" 

where r" = r - r', til = t - t' and k" = k - k/, w" = W - w' 
are fast space-time variables and slow "frequency" 
variables, respectively. The correlation spectrum 
8kW (r, t) generally varies slowly in space-time, and 
for given k possesses poles at complex w = week); the 
latter reveal the possible collective OSCillatory wave 
excitation and correlation damping of the plasma field. 
Accordingly, one integrates the trace 81{w = 8kw over a 
suitable Laplace contour C and thereby obtains via 
residues 

J 8k",(r, f)d
2

W ==68B(k, r, t), 
c 1T B 

(52) 

where the "kinetic" correlation spectrum 8 B is charac­
teristic of the iSth collective wave type. The 8B(k, r, t) 
play the role of kinetic (phase space) distribution func­
tions descriptive of (3 type quasiparticles of momentum 
k and position r and are analogous to the distribution 
functions la(v, r, t) descriptive of a type particles of 
velocity v and position r. It is to be noted from (51a) 
and (52) that the total wave (fluctuation) energy density 
at r, t is proportional to the scalar 

(53) 

A basic (initial value) problem in plasma turbulence 
specifies the particle distribution function I(v, r, 0) and 
the correlation spectra Sa(k, r, 0) at f= 0 and inquires as 
to their subsequent temporal evolution. At any time f 
the distribution f(v, r, f) is determined by the "kinetic 
equation for particles" which is directly derivable from 
the formally exact abstract equation (37b). A corre­
sponding "kinetic equation for waves, " derivable after 
some manipulation from the abstract equation (48c) 
yields the evolution of S (k, r, t). To illustrate the de-
ri vation of these kinetic equations from the abstract 
solutions in Sec. IV we shall retain for an electron 
plasma only leading terms in the series representations 
of T V and T V in Eqs. (37) and (48). In obtaining c' c ce' ce 
(48) we have neglected terms in (40) involving higher 
than 2-point correlations; inclusion of the next order 
terms would require a self-consistent treatment of 3-
point correlations including the initial conditions. This 
truncation approximation implies a limitation on the 
strong turbulence applicability of the results, but does 
include nonlinear and trapping effects beyond the quasi­
linear level. 

To make explicit the derivation of the kinetic equation 
of waves from Eq. (48c), we first transform the fast 
r, t dependence of the latter into a k, w basis wherein it 
takes the form 

Y(k, w)·EkW = - :f:w + ." (54) 

with the nonlinear plasma admittance l/ given by 

fj(k, w) =(j(k, w) - iB(k, w) = l/L (k, w) 

"" -iW€O~+ (1- k:f)lT]-~J VgkW(V, v')'Vv.r(v')dvdv' + ... 
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and 

Z (k, w) =« (k, w) - iX (k, w), 

- J'kw = e J v l:w(v) dv. 

For simplicity, terms corresponding to v.zev.(ia 

- z'Ju), etc., on the right side of (54), and the anoma­
lous absorption term V e• in Y(k, w) have been omitted. 
For notational simplicity the weak r, t dependence of 
average quantities such as r(v, r, t) and g(v, r, t;v', r', t') 
has not been explicitly indicated. The quantity lL = koko 
denotes the longitudinal unit dyadic, IT= l-lL is the 
transverse unit dyadic, and the unit vector ko= k/I kl 
denotes the propagation direction of the k, w wave. 

From (54), one forms the autocorrelation relation 
tV "'" v,.,) "\I IV 

(Etw'y*(k', w'), Et,w') = - (Etw·J:.*w') = (J:·*w',z (k, w)'J:w), 

or, in an evident and more succinct dyadic notation, 

y+(k'w'): (EtwE:.w')=Z(k, w): (J:wJ:.~.) (55) 

where y + is the adjoint to Y, i. e., the transposed con­
jugate dyadic, On inverse transformation of (55) with 
respect to the slow frequency variables k", w", there is 
obtained via (51b) 

Y+(k -7-, w + r a~} Skw (r, t) =Z (k, w): p~w (r, t), (56) 

where 

~w = e2 J VV'Jkw (v, v' )dv dv', 

J~w(v, v') = 6 <l~w(v)l~t.(v'» exp[i(k",r - w"t)]. 
t·t W " 

(56a) 
In (56a) ~e weak r, t dependence of the current correla­
tion spectrum 9~w and density correlation spectrum 
J'kw is implicit. 

For fixed k the plasma impedanceZ(k, w) exhibits 
both branch line and pole singularities in the complex 
w-space. A two sheeted Riemann surface is required 
to display this w dependence of the dyadic components 
of Z (k, w); in the isotropic case, where Z is diagonal, 
only longitudinal and transverse components are rele­
vant. Poles ofZ (k, w) occur at w:= wa(k) = wa - iYa, cor­
responding to the zeros of det !J (k, w), and define the 
dispersion relations wa(k) and the damping (or growth) 
rates Ya(k) of the collective modes of the plasma. Poles 
(if any) lying on the so -called physical sheet [wherein 
Z(k, w) vanishes suitably for infinite w] yield the dis­
crete (unstable) eigenmode spectrum, The poles on the 
unphysical sheet correspond to the so-called quasi­
modes (the damped Landau modes of plasma theory) 
whose utility lies in the fact that they provide a rapidly 
convergent equivalent of the continuous eigenmode 
representation of the field. 11 

To determine 8a(k, r, t) defined in (52), it is first 
necessary to integrate cS tw of (56) over a suitable w­
contour C. The singularities ofZ(k, w) and the disposi­
tion of the Laplace contour C on the relevant two sheeted 
Riemann surface are shown in Fig, 3. After bringing 
Y+ to the right side of (56), one integra~s Stw over the 
contour C, which runs above the poles wa in the physical 
sheet and is closed in the lower half of the unphysical 
w- sheet by a semicircle C' at 00, An implicit conver-
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gence factor [exp( - iwt") with t" = 0 +] assures vanishing 
of the contribution on the semicircle, whence, by re­
sidue theory each pole within the closed contour C yields 
via (52), the result 

//+1. V - 1 a\ D ( ) (i~(k, Wa»)-l. oa ( t) 
~ \k -T wa + i at} :"a k, r, t =aw ',twa r, . 

(57) 

In an isotropic electron plasma, wherein Y = Y Ll + Y rl T 

and the zeros of YL and Y T are close to the real w-axis, 
one finds, on noting the admittance decomposition in 
(54), for both Y Land Y T (and hence the subscript is 
omitted), that 

Y(k, wa) ~ G(k, wa) since B(k, wa) ~ 0, 

. ay aB 
I aw (k, wa) ~ aw (k, wa) 

(58) 

where an implicit weak dependence of Y, and hence B, 
on r, t is to be remembered, In view of (58) one infers 
from (57) that, if 8a(k, r, t) (for either a longitudinal or 
transverse component) is weakly varying in space and 
time (neglecting nonlinear "parametric" terms), 

• 

• 

a~ Phys i ca 1 !'heet 

• • 

b) Unphys i ca 1 Sheet 

FIG. 3. Singularities of Z (k, w): (a) physical sheet, (b) un­
physical sheet. 
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(59) 

which defines the desired kinetic equation of waves for 
the kinetic correlation spectrum 8a(1t, r, t) of the ,Bth 
collective wave type. 

The kinetic equation for particles follows from the 
abstract Eq. (47b) on explicit representation of both the 
operator Va and the expression (rcp) in terms of auto­
correlations of E and 1a• In (47b) Vc operates on a weak­
ly varying function, whence it is representable via 
(30b) in the form 

(60) 

with, if only the leading term in (30b) is retained, the 
velocity diffusion coefficient D given by 

f)(v, r, t) "'" e: J g(v, r, t;v', r't')(i!(r, t)~(r', t')dv'dr'dt'. 
m 

(60a) 

In a k, w basis the integral in (60a) can be expressed as 

2 

O(V, r, t) = 2
e 

2 L; j[gt.w(V, v') + gl.o(v, v')]8tw (r, t)dv' 
m ttW 

(60b) 

where K= k - V /i and 0= w + (l/i)(a/at) denote operators, 
and where despite the weak r, t dependence of gtw, the 
space and time derivatives V, a/at are assumed to act 
only on 8tw (r, t). For the steady state, wherein 8tw (r, t) 
= 8tw is independent of r, t, Eq. (60b) Simplifies to the 
familiar form 

(60c) 

Similarly, from (30a) the abstract expression (TcP) can 
be exactly represented as 

(TJa) - V v'A(v, r, t), (61) 

where, if only the leading term in (30a) is retained, 
e 'II -a 

A(v, r, t) "'" - (E(r, t)f (v, r, t). (61a) 
m 

In a k, w basis (61a) becomes 

A(v, r, t) =-2
e L; J (Etwlk~,(v) + E:'w,itaw(v) 
m t.w 

t",w" 

x exp[i(k"·r - w"t)] 

whence, using the approximation (54) and inferring 
therefrom that 

'" N IV 
Etw == E~w - Z (k, w)· J.,aw 

with Y(k, w).EL = 0 and -1tw = eJv'lL (v')dv', one ex­
presses Aas 

A(v r t)=JtL; fZ(k W)+Z*(k-~' w+~~\1. 
" 2m t.wL ' l l atJJ 

J v'J~w(v, v')dv', (61b) 
N _ 

provided the "incident field" E~", and f:w, are assumed 
to be uncorrelated, a restriction that can be readily 
removed. 
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The space-time derivatives V, a/at are assumed in 
general to operate upon the weak impliCit r, t dependence 
of the correlation spectrum 

J~w(v, v') = L; (ftw(v)l:.t,,(v') exp[i(k"·r - wilt) = Jkw(V'V). 
k"w" 

(62) 

In the steady state where Jtw is independent of rand t, 
(61b) becomes 

e2 

A(v) = m 0~(k, w)· J v'JL(v, v')dv' 
k.w 

(61c) 

where R (k, w) is the plasma reSistance dyadic defined in 
connection with Eq. (54). 

With determination in (60), (61) of D and A the particle 
kinetic equation (47b) assumes the form 

(~+V'V-~E'V -V .D,V)f(V r t)=V·A at m v v v " V' 
(63) 

Because of the source term on the right, (63) differs 
from the conventional Fokker-Planck equation frequent­
ly employed to define the background particle distribu­
tion; only in the near equilibrium case wherein A=A.f 
can (63) be identified with the Fokker-Planck equation. 

The kinetic equations (59) and (63) provide the de­
sired, albeit impliCit, description of the evolution of 
the background and fluctuation properties of a Simple 
turbulent plasma. Their use is predicated upon a knowl­
edge of wa= wa -ira, !Jtwb' aB(k, wb)/aw, andD, A, which 
in turn demand a knowledge of !Jtw, Z (k, w), J~w, and 
these in turn depend on the desired kinetic fields f and 
8a in (59) and (63). This tailchasing difficulty reflects 
the nonlinear nature of plasma turbulence and appears 
to be resolvable via numerical methods. Computer runs 
are providing interesting inSights into the solution of 
these kinetic equations both in the transient and steady 
state. 

VI. CONCLUSION 

The perturbation formalism discussed above and 
employed to derive the kinetic equation for particles 
(63) and for waves (59) has the virtue of explicitly ad­
mitting higher order nonlinear corrections to the trans­
port coefficients D and A as well as to the collective 
wave frequency wa and growth (or damping) rate Ya' 

Although particle trapping is partially taken into ac­
count through the nonlinear dependence of the plasma 
admittance y on the field correlation 8, the rapidity of 
convergence of the representation of this dependence 
has to be explored. The baSic result derived herein is 
contained in Eq. (37). Its use in deriving kinetic equa­
tions is illustrated in Sec. V, wherein for an electron 
plasma some nonlinear wave-wave (parametric) and 
wave-particle (damping) effects have been omitted for 
simplicity. 
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The random matrix theory is applied to the ensemble of partially diagonalized shell-model 
Hamiltonian matrices. Using the analogy with the distribution of the poles of the unitary collision 
matrix, an expression for the joint probability density function of the eigenvalues is derived for the 
present ensemble. An approximation is used to work out a closed form expression for the probability 
density function of the lowest eigenvalue. Two simple examples are considered to see what this 
probability density function looks like. 

I. INTRODUCTION 

In many of the nuclear spectroscopy calculations one 
uses a shell-model Hamiltonian which operates in a 
fairly large space, called the spectroscopic space. This 
is obtained by distributing a given number of nucleons 
among some set of single -particle states. It is obvious 
that the dimensions of such a space will increase quite 
rapidly as the number of nucleons and the number of 
available single-particle states increase. Since it is dif­
ficult to handle such large spectroscopic spaces exact­
ly one very often uses the approximation of truncation 
of the given space. Even if one has devised some simple 
procedure for such a truncation, one would still like to 
see whether there is some way of knowing how large are 
the effects of truncation. 

We know that random matrix theoryl has been used 
quite successfully in the past to study the distribution 
of the widths and the positions of the compound nucleus 
resonances where it was difficult to know the detailed 
knowledge of the matrix elements of the compound nucle­
us Hamiltonian which are very many in number. We 
would like to see if these ideas could also be used in 
nuclear spectroscopy calculations. Unlike the compound 
nucleus our knowledge of the shell model tells us that 
we can subdivide the spectroscopic space into smaller 
subspaces. These subspaces can be conveniently de­
fined, e. g., by specifying the number of nucleons in 
various single -particle states. Since the dimensions of 
these subspaces are small, the shell-model Hamiltonian 
can be diagonalized in them. We can then introduce the 
statistical methods to handle the interactions between 
various subspaces. 

Earlier we had used2 the statistical ideas to derive 
an exact expression in terms of the centroids and the 
partial width3 for the mixing of two apprOximate sym­
metries of the Hamiltonian. The purpose of the present 
work is to consider a Hamiltonian matrix with two sub­
spaces and to derive the joint distribution of its eigen­
values. This joint distribution together with an approxi­
mation will be used to find a closed-form expression for 
the distribution of its lowest eigenvalue. A plot of this 
distribution is shown for two simple examples considered 
in Sec. IV. 

II. JOINT DISTRIBUTION OF THE EIGENVALUES 

Let us consider an ensemble of Hamiltonian matrices, 
the matrix elements of which are given by 

(1 ) 
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where XI'(fJ.=1,2, ••• , N) are fixed diagonal elements 
and HIv(vil 1) are off-diagonal elements. We assume that 
each of these off -diagonal elements has a Gaussian 
distribution with the same dispersion (1. We would like to 
derive the joint distribution of the eigenvalues EI' of this 
matrix. 

To do this we write the following identity in E which 
connects the eigenvalues E I' with the elements XI' and 
HII" 

(2) 

By equating various powers of E in the above identity, 
we obtain the follOwing relations: 

(3a) 

(3b) 

(3c) 

Relations (3) tell us that the problem of finding the joint 
distribution of E I' is similar to that of the distribution 
of the poles of the unitary collision matrix. 4 As in Ref. 
4 we first introduce a new set of variables defined by 

and derive an expression for their joint distribution. 
The indices fJ., v, CI! in relation.(4b) are all different. 

(4a) 

(4b) 

(4c) 

From relations (3) and (4) we can write the following 
matrix relation 

1 1 
6 XCI! 6' 

~tl,3 Q:1:-1,N 

(5) 

TI XCI! 
Q;tl,3 

between the variables v.,. and the squares of the off­
diagonal elements H~.,.. To find the distribution of the 
variables v.,., we assume the probability density function 
of the variables HI.,. to be 

Copyright © 1974 American Institute of Physics 880 
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P(H12,Hl3I ••• ,H1N),,~dH1" =K[exp(- 2~ "tH9JQ2dH1'" 

( 6) 

where K is the normalization constant. We now use the 
well-known methods of finding the distribution of one set 
of variables which are related to another set by a trans­
formation given by expressions (5). This gives us the 
joint probability density function of the variables v" as 

P(VU v2,··· ,vN-1)X(dVJ.L=K(1 b2 'k M~~ va 1)-1/2 

x[exp (- ~JJX dv", 

where K is the new normalization constant and M-1 is 
the inverse of the matrix in expression (5). It is given 
by 

(7) 

(8) 

In writing the inverse given by relation (8), we have 
assumed that A" (J.L = 2,3, ... ,N) are all different. The 
case where some of them are equal will be given later. 

The next step is to transform the probability density 
function from the set of the variables v" to the desired 
set E". We use relations (3a), (4), (7), and (8) to arrive 
at the following joint probability density function for the 
eigenvalues E,,: 

P(El>E2,··· ,EN) lAdE" =Kt{~(E" -A"~ 

x [exp -(4~2 ~E~)XIJJE" -Ev~ 
X (ID2 uQ1(Av-EJ~1/2 fidE u. (9) 

Before we conclude this section, we also consider the 
case when some of AIL (J.L = 2, ... ,N) are equal. We see 
from the structure of the matrix elements given by ex­
pression (1) that for such a case some of the eigenvalues 
E u are independent of HIll and are equal to those Au which 
are equal. All one has to do then is to exclude these 
values of J.L in the sums and products in expression (9) 
and add additional I) functions to take this fact into 
account. 

III. LOWEST EIGENVALUE DISTRIBUTION 

We would first like to consider the case for N=2. It 
is a straightforward calculation to obtain the probability 
density function of the lowest eigenvalue E from expres­
sion (9) by integrating out E2 from E1 to 00. It is given 
by 

P(E)dE = (21TCy2)-1/2 [(AI - E)(A2 - E)]-l/ 2 [AI + A2 - 2E] 

xexp(- 2!2 (AI -E)(A2 -E~dE, (10) 
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where the range of E is determined from the condition 
that (AI -E)(A2 -E);;' O. 

Assuming Al <A2' it follows from expression (10) that 
the average and the mean-square deviation of the lowest 
eigenvalue E are given by 

(E> =HA1 + A2) - (8v'21Ta)-1 (AI - A2)2 [exp(16~t1 (AI - A2)2] 

x [exp(8a2)'1 (AI - A2)2J[Ko«16a2)-1 (AI - A2)~ 

+K1«16a2 )-1(A1 -A2)~]2, (12) 

where Ko, K1 are the modified Bessel functions. 6 

We next consider the N-dimensional case. We have 
not been able to work out a closed form expression for 
the distribution of the lowest eigenvalue in general. To 
make further progress we introduce the approximation 
of replacing each Au (J.L = 2, ... ,N) by their centroid. 3 

We then find that the probability density function of the 
lowest eigenvalue E is given by 

P(E)dE = CN[A1 + A2 - 2EJ[A1 - E)(A2 - E)]<N-3 )/2 

x [exp- (2a2 )-1 (AI -E) (A2 -E)]dE, (13) 

where A2 is the centroid of Au (J.L = 2, ... ,N) and the 
range of E is again determined from the condition 
(AI - E)(A2 - E) ~ O. The normalization constant C N is 
given by 

CN =(2a2)-<N'l)/2 [r(HN _1»]-1. (14) 

P(E) 

L-____________ -L ____________ L-______ ~ 06 

E 

-32-35 

A, 

FIG. 1. Plots of probability denSity function for the lowest 
eigenvalue given by expression (13) for various values of A1> 
A2' 0'2, N. Aj=-32.35MeV, A2=-26.17 MeV, O'2=16.93M 
(MeV)2, N=3. 
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'6 

'4 

'2 

PtE) FIG. 2. Plots of probabil­
ity density function for the 
lowest eigenvalue given by 
expression (13) for vari­
ous values of AI, A2, ()'2, 
N. AI = - 28. 81 MeV, A2 = 
-17.31 MeV, (),2=4.88 
(MeV)2, N=4. 
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~========~ __ L-____________ ~ ________ ~.o 
-32' -30' 

E 

For the distribution (13), the average value and the 
mean-square deviation can be determined from the 
following relations: 

([E - teAl + A2)]) = - (8v'20')-1 (AI - A2)2 [r(t(2m + 1)) ]-1 

x[ _~a~ m (expt~a) [Ko(ti;a) +Kl(ti;a)~ a=/ N=:2m +2, 

(15a) 

([E -HAl +A2)])= -v'2O'(m!)-{(-:- aaar a-I 

x[ v'1 +h'1i/a (expa~)erfc(~)t=t' N=:=.2m +3, 

([E - HAl + A2))2) = HAl - A2)2 + (n -1 )0'2, 

where ~ = (80'2)"1 (AI - A2)2, 

and erfc is the complementary error function. 6 

For large values of N, it is useful to derive the 
following expression for the average value of E: 

(15b) 

(15c) 

([E -HAl + A2)]) = -t 1 Al - A21 H(N - 1)(di; +t (N + 1) ])-1/2 

+ e/2[~ +t(N _1)]-1/2}. (15d) 

For given values of AI> A2' 0'2, and N, expressions 
(15) can be used to calculate the quantity (E)±«E2) 
- (E)2)1/2, which gives us the most probable range of the 
lowest eigenvalue. It is this quantity which should give 
us some idea about the possible correction 7 which has 
to be applied to the lowest eigenvalue when we enlarge 
our basiS set of states. 

IV. ILLUSTRATIVE EXAMPLES 

To see how the probability density function of the 
lowest eigenvalue E given be expression (13) looks like, 
we choose the nucleus ISO with l2C as a core. 

As a first example, we conSider its ground state 
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which has the angular momentum and parity J' = 0·. 
Since 12C is assumed to be a core, we are left with four 
active nucleons which we assume to move in the single­
particle orbitslPl/2 and Id5/2 • As usual, we take the 
single-particle energies to be Ep == -4. 95 MeV, Ed 

= - 3. 3 Me V and the interaction \)'~tween the nucleon
5J 2 

to be a 40-meV Rosenfeld interaction. Had there been 
no configuration mixing, all the four nucleons have 
occupied the Pl/2 level. Because of the two-body inter­
action the (Pl/2)4 configuration will mix with the various 
particle-hole configurations (PI /2)4-2" (d5 / 2)2". On cal­
culating the values of All A2' 0'2, and N for the present 
example, we find that they are given by: 

·Al==-32.35 MeV, A2=- 26.17 MeV, 0'2=16.93 (MeV)2, 
N=:3. 

We note that A2 is the centroid of the J' = O· states be­
longing to two-particle-two-hole configuration. The 
plot of peE) versus E is shown in Fig. 1. Expressions 
(15) give us the most probable range of the lowest eigen­
value to be from - 33.17 to - 37.72 MeV. 

In the second example we consider the excited state 
J' = 3 - in ISO. Al is now the diagonal matrix element of 
the Hamiltonian with respect to the single particle-hole 
configuration (Pl/2)-1(d5/ 2), which interacts with the 
three -particle -three -hole configuration (p 1/2) -3 (d5 / 2)3. 
The values of All A2, 0'2, N are now given by 

Al=-28.81 MeV, A2=-17.31 MeV, a2=4.88 (MeV)2, 
N=4. 

The probability density function for the lowest eigen­
value is shown in Fig. 2. The most probable range in 
this case is from -29.08 to -30.76 MeV. 

Had there been no configuration mixing, then, it is 
obvious that in both the examples the mean-square 
deviation (E2) _(E)2 would have been zero. Therefore, 
as we had remarked earlier, the most probable range 
gives us some idea as to how large are the effects of 
configuration mixing on the lowest eigenvalue. 
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